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Abstract: Blood glucose stability in diabetic patients determines the degree of health, and changes in
blood glucose levels are related to the outcome of diabetic patients. Therefore, accurate monitoring
of blood glucose has a crucial role in controlling diabetes. Aiming at the problem of high volatility
of blood glucose concentration in diabetic patients and the limitations of a single regression pre-
diction model, this paper proposes a method for predicting blood glucose values based on particle
swarm optimization and model fusion. First, the Kalman filtering algorithm is used to smooth and
reduce the noise of the sensor current signal to reduce the effect of noise on the data. Then, the
hyperparameter optimization of Extreme Gradient Boosting (XGBoost) and Light Gradient Boosting
Machine (LightGBM) models is performed using particle swarm optimization algorithm. Finally, the
XGBoost and LightGBM models are used as the base learner and the Bayesian regression model as
the meta-learner, and the stacking model fusion method is used to achieve the prediction of blood
glucose values. In order to prove the effectiveness and superiority of the method in this paper, we
compared the prediction results of stacking fusion model with other 6 models. The experimental
results show that the stacking fusion model proposed in this paper can accurately predict blood
glucose values, and the average absolute percentage error of blood glucose prediction is 13.01%, and
the prediction error of the stacking fusion model is much lower than that of the other six models.
Therefore, the proposed diabetes blood glucose prediction method in this paper has superiority.

Keywords: diabetes mellitus; blood glucose; particle swarm optimization; model fusion

1. Introduction

Diabetes is a group of metabolic diseases characterized by chronic hyperglycemia. It
is caused by various reasons and is often accompanied by a series of metabolic disorders
of sugar, protein, fat, water, and electrolytes in the body due to defective insulin secretion
or insulin function. According to relevant data and studies, the prevalence of diabetes
in China is the highest in the world. Diabetes is difficult to cure and may lead to many
complications that seriously threaten the lives of patients [1]. Currently, many experts and
scholars have made great contributions to the study of blood glucose value prediction, and
many different prediction methods have been proposed. At present, the mainstream blood
glucose value prediction methods are mainly divided into two aspects, one is the blood
glucose value prediction method based on human physiological model, and the other is
the data-driven blood glucose value prediction method.

Physiological model-based methods for predicting blood glucose values are mainly
based on medical theory and can be divided into maximum and minimum models. The
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basic idea of the method of blood glucose prediction based on the extreme value model
is to simulate the metabolic process of blood glucose values by covering all metabolic
information of the human body to the maximum extent and integrating this information.
The minimum model-based method for predicting blood glucose values is relatively simple,
as its basic idea is to not include other metabolic information of the human body, and only
the core equation is used to represent the relationship between blood glucose values and
insulin. In 2021, Wang et al. proposed an Random search and Grid search (RG) hyperpara-
metric optimization method based on the sequential use of stochastic search and grid search
for improving the prediction of blood glucose levels from boosted integrated learning mod-
els. Based on historical medical data collected through physical examination methods,
40 human health indicators were used to indirectly predict patients’ blood glucose levels.
Experiments with real clinical data demonstrate that the proposed RG dual optimization
approach helps improve the predictive performance of its rich set of four state-of-the-art
Boosting integrated learning models, achieving Mean Squared Error (MSE) improvements
from 1.47% to 24.40% and Root Mean Squared Error (RMSE) improvements from 0.75%
to 11.54% [2]. In the same year, Yusra. Obeidat et al. used a machine learning (ML) based
model to track patients’ glucose levels and predict the appropriate amount of insulin and
used an artificial neural network (ANN) model to predict blood glucose. The experimental
results showed that the method had a mean square error of 5.79 [3]. Since human physio-
logical metabolism is a complex process, which is affected by many external factors, and
physiological modeling requires consideration of individual differences and knowledge of
pharmacology, the accuracy of predicting blood glucose values by physiological models is
often not guaranteed.

The Continues Glucose Monitoring System (CGMS) is an innovative technological
breakthrough in the field of glucose monitoring. It reflects blood glucose levels by continu-
ously monitoring the glucose concentration in the subcutaneous intercellular fluid [4]. Blood
glucose homeostasis is an important measure of the health status of diabetic patients, and, as
there is no cure for diabetes, it is important for the control and treatment of diabetic patients if
the blood glucose level can be predicted quickly and accurately. Based on the data provided
by CGMS, researchers have proposed various prediction methods to predict blood glucose
values by building data-driven models, such as autoregressive (AR) [5–7] models, support
vector machines [8,9], and neural networks [10,11]. In 2018, Takoua. Hamdi et al. used
support vector machine and differential evolution algorithm to predict blood glucose values
in type 1 diabetes, and the experimental results proved that the support vector machine
model based on differential evolution algorithm achieved high prediction accuracy [12]. In
the same year, Jaouher Ben. Ali et al. proposed a new method based on artificial neural
networks for predicting blood glucose levels in type 1 diabetes, and experimental results
showed that the method was accurate and adaptive [13]. In 2019, Dong et al. proposed a
new Blood glucose (BG) prediction method Clu-RNN (Cluster-Recurrent Neural Networks),
which is based on RNN integrating the processing of clustering into classical RNN, and
after experiments showed that the method has some improvement in blood glucose pre-
diction accuracy compared with support vector machine and other RNN methods [14]. In
2020, Ganjar Alfian et al. used XGBoost model to predict future blood glucose values in
type 1 diabetic patients and experimental results showed that the accuracy of blood glucose
prediction based on XGBoost model was better than other models [15]. In the same year,
Wang et al. used the more novel LightGBM model and optimized the model parameters
using a Bayesian optimization algorithm to finally predict blood glucose levels, and the
experiments demonstrated that the optimized model had higher prediction accuracy than
the XGBoost and Categorical Boosting (CatBoost) models [16].

Through the above study, it is easy to find that in the previous studies on the prediction
of blood glucose values, most scholars used a single model. Although these models have
good performance, there are more parameters, and the choice of different parameters
have some influence on the experimental results. In addition, a single model has its
limitations and often does not work as well as it should when dealing with uncertain
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data. Therefore, fusing different models to take advantage of their respective strengths.
The accuracy of blood glucose prediction can be further improved. To solve the above
problems, this paper proposes a blood glucose prediction method based on particle swarm
optimization and model fusion based on the blood glucose data provided by CGMS.
The method mainly optimizes XGBoost and LightGBM models with hyperparameters
by particle swarm optimization algorithm, and then improves blood glucose prediction
accuracy by using the optimized XGBoost and LightGBM models as base learners and
Bayesian regression models as meta-learners for model fusion based on the idea of stacking
model fusion. The main innovations of this paper are four points as follows:

(1) The main methods of current research are to learn the training model from the his-
torical blood glucose data of the same patient. This paper is to build the model by
learning the historical blood glucose data of different patients, so as to achieve the
prediction of blood glucose level of brand-new patients.

(2) The Kalman filter algorithm is used to smooth and reduce the noise of the actual
operating current signal of the sensor to reduce the influence of noise on the data and
improve the accuracy of the experimental results.

(3) Hyperparameter optimization of XGBoost and LightGBM models uses particle swarm
optimization algorithm to achieve their near-optimal performance.

(4) The stacking model fusion method is used to integrate the prediction results of the
base learners to take advantage of their respective advantages and effectively reduce
the prediction error, so as to improve the accuracy of blood glucose prediction.

2. Introduction of Related Algorithms
2.1. Particle Swarm Optimization Algorithm

Particle swarm optimization algorithm (PSO) [17,18] is an evolutionary algorithm
technique based on the study of bird predation behavior. The basic idea of this algorithm
is to find the optimal solution through collaboration and information sharing among
individuals in a population.

2.1.1. Fundamentals

In the d-dimensional continuous search space, the i-th (i = 1, 2, . . . , n) particle in
the particle population is defined: xk

i =(xk
i1, xk

i2, . . . , xk
id), denoting the position of the

i-th particle at moment k; the optimal position experienced by each particle is denoted as
pk

i =
(

pk
i1, pk

i2, . . . , pk
id

)
, and the optimal position experienced by the population is denoted

as pk
g =

(
pk

g1, pk
g2, . . . , pk

gd

)
. According to the above theory, the velocity vk+1

id and position

xk+1
id of each particle in the population at the moment k+1 is updated as shown below.

vk+1
in = wkvk

id + c1r1

(
pk

id − xk
id

)
+ c2r2

(
pk

gd − xk
id

)
(1)

xk+1
id = xk

id + vk+1
id (2)

where w denotes the inertia weight, k denotes the number of current iterations, r1 and
r2 are random numbers between (0, 1), and c1 and c2 are acceleration factors, which are
individual learning factors and group learning factors, respectively.

2.1.2. Algorithm Pseudocode

The particle swarm optimization Algorithm 1 (PSO) pseudocode is as follows:
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Algorithm 1: Particle swarm optimization algorithm (PSO)

Input:
Position x, velocity v of each particle
Dimension d of the particle, learning factor c1, c2

Output: the optimal position of the particle x
1: FOR each particle i // Iterate over each particle
2: FOR each particle i // Iterate over each particle
3: Initialize position xid randomly within peimissible range // Initialize particle position
4: Initialize velocity vid randomly within peimissible range // Initialize particle velocity
5: END FOR
6: END FOR
7: Iteration k = 100 // Set the number of iterations
8: Do
9: FOR each particle i
10: Calculate fitness value // Calculate the particle fitness (fitness function is: MAPE)
11: IF the fitness value is better than pk

id,pbest in history // Optimal particle position
12: Set current fitness value as the pk

id,pbest
13: END IF
14: END FOR
15: Choose the particle having the best fitness value as the pk

d,gbest // Group optimal
position
16: FOR each particle i
17: FOR each dimension d
18: Calculate velocity according to the equation

19: vk+1
id = ωvk

id + c1r1

(
pk

id,pbest − xk
id

)
+ c2r2

(
pk

d,gbest − xk
id

)
//Update speed

20: Update particle position according to the equation
21: xk+1

id = xk
id + vk+1

id // Update the position of the particle
22: END FOR
23: END FOR
24: k = k + 1
25: WHILE maximum iterations or minimum error criteria are not attained // Termination
Conditions

2.2. The Stacking Model Framework

The basic idea of stacking integrated learning is that multiple base learners are trained
using the original dataset, and the prediction output of each base learner is fed into the
meta-learner as a new dataset, and the output of the meta-learner is used as the final
prediction [19–21], as shown in Figure 1.
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In which the K-fold (K = 5) cross-validation method is used in fusing N (N ≥ 1) base
learners and 1 meta-learner. The exact flow of the algorithm is as follows:
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(1) Divide the data set into training set and test set, randomly divide the training set into
K copies by non-repetitive sampling and select K − 1 copies of them each time as the
training set of the base learner and 1 copy as the validation set.

(2) Repeating the operation K times, with each subset having a chance to become a
validation set.

(3) Predicting the validation set (1 copy) with the base learner model obtained by training
each training set (K − 1 copies).

(4) Step 3 loops K times to obtain K base learner models and a new column of data
of the same length as the training set (a combination of the predictions from the
validation set).

(5) With N base learners, step 4 loops N times to obtain N new columns of data as the
training set for the meta-learner.

(6) The K models obtained in step 4 are predicted for the test set and the predictions have
k columns, the arithmetic mean of which is taken after 1 column.

(7) With N base learners, step 6 loops N times to obtain N new columns of data as the
test set for the meta-learner.

(8) The trained meta-learner using the training set predicts the test set and the result is
the final prediction result.

To facilitate the elaboration of the principle. The principle of choosing 1 base learner
and 1 meta learner to do stacking model fusion is shown in Figure 2.
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3. Construction of the Fusion Model Based on PSO
3.1. Data Source

The data used in this paper are from the sensor data provided by Yuwell Group, which
contains the blood glucose data of 33 patients on 24 May and the blood glucose data of
10 patients on 16 June, totaling 464,438 and 113,591 items, respectively. Among them,
the data on 24 May were used as the training set of the model and the data on 16 June
were used as the test set of the model, in which only blood glucose concentration values
containing fingertip blood collection measurements, (i.e., actual blood glucose values),
totaling 1281 entries, were used to judge the model prediction results. The main data items
of the data are shown in Table 1.

3.2. Data Pre-Processing
3.2.1. Feature Selection

The main data items in the dataset of this paper include sensor running time, operating
current signal value, blank current signal value, body surface temperature, actual blood
glucose value, calibration value, Continues Glucose Monitoring (CGM) concentration,
actual current value involved in blood glucose calculation, blood glucose concentration
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value generated by the Kellett algorithm without calibration, and blood glucose value
after calibration based on the most recent fingertip blood collection value. In order to
better select the features, this paper uses the heat map method to show the correlation
between each feature and the real blood glucose value. In addition, to augment the features,
the current operating hour value of the sensor (hour) and the sensor operating hour (in
minutes) (time_length) were added as new features after analysis. Figure 3 shows the heat
map of the characteristic correlation coefficient matrix, the higher the value the higher
the correlation.

Table 1. Main data items.

Data Items Description

itime Running time
iw Operating current
ib Blank current
t Body surface temperature

cno Actual blood glucose value
bg Sensor calibration value

base_ref CGM concentration
Iw_net Actual operating current

ref Uncalibrated blood glucose value
STD Calibrated blood glucose value

itime in the table refers to the current running time of the sensor, every three minutes; cno is the actual blood
glucose concentration obtained by fingertip blood collection; bg is the calibration value, and when it is not 0, it
means that the bg value calibrates CGM at this time, base_ref is the blood glucose value generated by the Kellett
algorithm; STD is the blood glucose value after calibration based on the last fingertip blood collection.
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From Figure 3, it can be seen that bg, cno, and other features are not correlated.
Additionally, base_ref, ref, and STD are more correlated with cno, but it is known from
Section 2.1 that they are the output and calibration values of the Fisheye Kellett algorithm
and cannot be used as features. Furthermore, iw, ib, t, Iw_net, and cno have either high or
low correlation, and the newly added features hour, time_length, and cno also have some
correlation and can be used as features. Therefore, the final features selected in this paper
are: iw, ib, t, Iw_net, hour, and time_length.

3.2.2. Kalman Filtering Algorithm

Among the many blood glucose data acquired by the CGMS system, the current signal
from the sensor has certain burr and noise, which will affect the model effect if the current
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signal is directly input to the model. Therefore, the original data needs to be smoothed and
noise reduced.

Kalman filter (KF) [22] algorithm, is a recursive predictive filtering algorithm. It pro-
vides an efficient and computable method for estimating the process state and minimizing
the mean square error of the estimate. The Kalman filter is widely used and powerful as it
can estimate the past and current state of the signal, and even the future state, making it
ideal to use Kalman filtering in a system, like the one used in this paper, where the sensor
signal varies continuously. It can be specifically divided into two steps, the prediction
process and the correction process [23].

(1). Prediction process: the state of the next moment is estimated by the state of the
previous moment, and the calculation formula is as follows:

xk = Axk−1 + Buk (3)

Pk = APk−1 AT + Q (4)

where xk and uk denote the prior estimates and system control quantities, respectively,
A and B are the state transfer matrix and control matrix, respectively, and P and Q are the
error covariance and process noise, respectively.

(2). Correction process: according to the current moment of the state estimate and the
observed state, the optimal state is estimated, and the calculation formula is as follows:

Kk =
Pk HT

HPk HT + R
(5)

x̂k = xk + Kk(Zk − Hxk) (6)

Pk = (1− Kk H)Pk (7)

where Kk is the Kalman gain, R is the noise average of the sensor, H is the state variable of
the transformation matrix, Zk is the measured value of the sensor, and x̂k is the posterior
estimate, i.e., the current optimal solution.

Taking the training set as an example, the iw values of the training set are smoothed
and noise-reduced by the Kalman filtering algorithm, and the comparison results before
and after noise reduction are shown in Figure 4.

Diagnostics 2022, 12, x FOR PEER REVIEW 8 of 17 

 

 

where 𝑥  and 𝑢  denote the prior estimates and system control quantities, respectively, 
A and B are the state transfer matrix and control matrix, respectively, and P and Q are the 
error covariance and process noise, respectively. 

(2). Correction process: according to the current moment of the state estimate and the 
observed state, the optimal state is estimated, and the calculation formula is as follows: 

𝐾 =     (5)

𝑥 = 𝑥 + 𝐾 (𝑍 − 𝐻𝑥 )  (6)𝑃 = (1 − 𝐾 𝐻)𝑃   (7)

where 𝐾  is the Kalman gain, R is the noise average of the sensor, H is the state variable 
of the transformation matrix, 𝑍  is the measured value of the sensor, and 𝑥  is the pos-
terior estimate, i.e., the current optimal solution. 

Taking the training set as an example, the iw values of the training set are smoothed 
and noise-reduced by the Kalman filtering algorithm, and the comparison results before 
and after noise reduction are shown in Figure 4. 

 
Figure 4. Comparison of the original values of training set iw with the filtered values. 

3.2.3. Data Normalization 
Data normalization is the scaling of data to a smaller specific range. Data normaliza-

tion can speed up the computation of data and may even improve the prediction accuracy 
of the model. Common methods of data normalization include: min-max normalization 
[24], log function conversion, atan function conversion, z-score normalization [25], and 
fuzzy quantification method. Since the fluctuation range of patients' blood glucose values 
in the dataset is large and there are outliers, the z-score method is chosen to normalize all 
data in this paper, and the transformation function is. z =    (8)

where μ is the mean, σ is the standard deviation, and x and z are the data before and after 
normalization. 

3.3. Particle Swarm Optimization Base Learner 
The data of 27 patients were selected from the blood glucose data of 33 patients on 

May 24 for model training and parameter optimization, and the data of the remaining 6 

Figure 4. Comparison of the original values of training set iw with the filtered values.

3.2.3. Data Normalization

Data normalization is the scaling of data to a smaller specific range. Data normalization
can speed up the computation of data and may even improve the prediction accuracy of
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the model. Common methods of data normalization include: min-max normalization [24],
log function conversion, atan function conversion, z-score normalization [25], and fuzzy
quantification method. Since the fluctuation range of patients’ blood glucose values in the
dataset is large and there are outliers, the z-score method is chosen to normalize all data in
this paper, and the transformation function is.

z =
x− µ

σ
(8)

where µ is the mean, σ is the standard deviation, and x and z are the data before and after
normalization.

3.3. Particle Swarm Optimization Base Learner

The data of 27 patients were selected from the blood glucose data of 33 patients on
24 May for model training and parameter optimization, and the data of the remaining
6 patients containing real blood glucose values were used as the test set to evaluate the
model of tuning parameters.

In the process of hyperparameter optimization of the model, we used the particle
swarm optimization algorithm, the average absolute percentage error of the model is first
selected as the fitness function of the particles. Next, the particle swarm parameters are
initialized, the position and velocity of each particle are randomly initialized, then the
fitness of each particle is calculated. Finally, we determined whether the location of each
particle is the current optimal value based on the adaptation size. If it is the optimal value,
the value of the original position is replaced, and then the position and velocity of each
particle are updated. When the set maximum number of iterations is reached, the position
of the particle with the current optimal value is output. It is worth noting here that the
position of the particle represents the value of the model parameters.

In the process of using the optimization model for the prediction of the test set,
the model parameters as the velocity update equation for the particles is vk+1

id = ωvk
id +

c1r1 (pk
id,pbest − xk

id ) + c2r2 (pk
d,gbest − xk

id ), the update formula for the position is xk+1
id =

xk
id + vk+1

id . Where the total number of particles N is 10, the particle dimension d is 2, the
number of iterations k is 100, and the inertia weight w is 0.5 and the learning factors c1 and
c2 are set to 2. Table 2 shows the main parameters and descriptions of the XGBoost and
LightGBM models.

Table 2. Main parameters and descriptions of XGBoost and LightGBM models.

Parameter Name Meaning Set Value

max_depth Maximum depth of the tree 3
reg_lambda L2 Regularization term weights 1

learning_rate Learning Rate 0.1
n_estimators Number of iterations 100
num_leaves Number of leaf nodes of the tree 20

The range of values of the parameters position and speed of XGBoost and LightGBM
are shown in Table 3.

Table 3. Optimization scheme of XGBoost and LightGBM model parameters.

Parameter Range of Values Speed Range

reg_lambda(XGBoost) [2, 8] [0, 1]
n_estimators(XGBoost) [50, 100] [0, 10]
num_leaves(LightGBM) [2, 15] [0, 1]
n_estimators(LightGBM) [1, 20] [0, 1]
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3.4. Stacking Model Fusion

Stacking is a rather special hierarchical structure, where the first layer is a different
base learner and the second layer above the base learner output results in a meta-learner
for the input data. In order to prevent overfitting, based on stacking model fusion, this
paper proposes to add a five-fold cross-validation with two repetitions in the meta-learner
training process to avoid the overfitting problem.

In order to improve the accuracy of blood glucose prediction, combining the ad-
vantages of strong generalization ability and high operational efficiency of XGBoost and
LightGBM models, this paper proposes to construct a blood glucose prediction model
based on particle swarm optimization and model fusion, using XGBoost model and Light-
GBM model after particle swarm optimization in the first layer and weak learner-Bayesian
regression model in the second layer. The specific flow chart of the construction of the
fusion model based on particle swarm optimization is shown in Figure 5.
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4. Experimental Results and Analysis
4.1. Experimental Environment

The computer configuration used in this paper is Intel i5-7300 2.5GHz quad-core
quad-thread CPU, 16G RAM, Windows 10 operating system, programming language
python, programming environment pycharm, and libraries, such as numpy, sklearn, pandas,
xgboost, lightgbm are used, respectively.

4.2. Model Evaluation Metrics

In this paper, two evaluation metrics, mean absolute percentage error (MAPE) and
root mean square error (RMSE), are used to evaluate the performance of the model. Mean
absolute percentage error (MAPE) is one of the most popular metrics used to evaluate the
prediction performance, and root mean square error (RMSE) is usually used as a measure
of the prediction results of machine learning models, and their smaller values indicate a
higher accuracy of blood glucose value prediction. Their specific evaluation functions are
formulated as follows:
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MAPE =
1
N ∑N

i=1
|ŷi − yi|

yi
× 100% (9)

RMSE =

√
1
N ∑N

i=1(ŷi − yi)
2 (10)

where N is the number of samples, ŷi is the predicted blood glucose value, and yi is the
true blood glucose value.

4.3. Analysis and Comparison of Filtering Results

In this paper, the use of Kalman filtering algorithm is able to reduce the influence of
sensor signal noise on blood glucose prediction results, as shown in Table 4.

Table 4. KF filtering result.

Model MAPE (%) RMSE

XGBoost 16.00 27.56

KF-XGBoost 14.77 24.44

LightGBM 16.12 27.78

KF-LightGBM 15.08 26.08

As can be seen from Table 4, the prediction error of blood glucose was significantly
reduced after smoothing and noise reduction in the original data using the Kalman filtering
algorithm. In terms of the MAPE metric, the prediction error of KF-XGBoost is 1.23% lower
than that of XGBoost, and the prediction error of KF-LightGBM is 1.04% lower than that of
LightGBM. In terms of RMSE metrics, the prediction error of KF-XGBoost is 3.12% lower
than that of XGBoost, and the prediction error of KF-LightGBM is 1.7% lower than that of
LightGBM. It can be seen that the Kalman filter algorithm can significantly improve the
prediction accuracy of blood glucose after processing the raw data.

4.4. Analysis and Comparison of Optimization Results

Figure 6 shows the curve of the fitness value with the number of PSO iterations when
the particle swarm optimization algorithm optimizes the parameters of XGBoost model,
and Figure 7 shows the curve of the fitness value with the number of PSO iterations when
the particle swarm optimization algorithm optimizes the parameters of LightGBM model.
From Figures 6 and 7, it can be seen that the optimal combination of parameters for the
XGBoost model can be searched when the number of iterations reaches about 10, and the
optimal combination of parameters for the LightGBM model can be searched when the
number of iterations reaches about 20.
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The optimization results using PSO with the set termination iteration conditions are
shown in Table 5.

Table 5. PSO optimization results.

Parameter Final Value

reg_lambda(XGBoost) 4
n_estimators(XGBoost) 52
num_leaves(LightGBM) 14
n_estimators(LightGBM) 20

Based on the dataset, the model was trained using the optimized parameters, and the
prediction results are shown in Table 6.

Table 6. Comparison of PSO optimization results.

Model MAPE (%) RMSE

XGBoost 14.77 24.44

PSO-XGBoost 13.85 22.91

LightGBM 15.08 26.08

PSO-LightGBM 14.07 21.54

As it can be seen in Table 6, the prediction error of blood glucose was significantly
reduced after hyperparameter optimization of the model using the particle swarm optimiza-
tion algorithm. In terms of the MAPE metric, the prediction error of PSO-XGBoost is 0.92%
lower than that of XGBoost, and the prediction error of PSO-LightGBM is 1.01% lower
than that of LightGBM. In terms of RMSE metrics, the prediction error of PSO-XGBoost
is 1.53% lower than that of XGBoost, and the prediction error of PSO-LightGBM is 4.54%
lower than that of LightGBM. It can be seen that the particle swarm optimization algorithm
can significantly improve the blood glucose prediction accuracy after hyperparameter
optimization of the model.

4.5. Analysis and Comparison of Model Fusion Results

In this paper, the output results of the first layer XGBoost and LightGBM models are
input into the second layer Bayesian regression model as a way to predict blood glucose
values, and the prediction results are shown in Table 7. In order to better verify the effect of
the models, this paper compares XGBoost, LightGBM, CatBoost, Bayesian regression, linear
regression, and Kellett algorithm, and evaluates the effect of each model by calculating the
mean absolute percentage error and root mean square error.
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Table 7. Comparison of the prediction results of each model.

Model MAPE (%) RMSE

XGBoost 14.77 24.44

LightGBM 15.08 26.08

CatBoost 14.44 24.35

Linear regression 15.09 24.08

Bayesian regression 15.09 24.08

Kellett algorithm 18.05 27.92

Stacking fusion model 13.01 23.15

As can be seen from the table, compared with the base learner, CatBoost, linear
regression, Bayesian regression and Kellett algorithm, the blood glucose prediction method
based on particle swarm optimization and model fusion proposed in this paper has a
great advantage in prediction performance. In terms of MAPE metrics, the prediction
effect improves by 1.76% and 2.07% over the base learner and 5.04% over the Kellett
algorithm. In the RMSE metric, the prediction effect improves 1.29% and 4.98% over the
base learner, and 4.77% over the Kellett algorithm. In terms of both metrics, the blood
glucose prediction method proposed in this paper is much better than CatBoost, linear
regression, Bayesian regression, and Kellett algorithm in terms of prediction effectiveness
and generalization ability.

Figure 8 shows the prediction results of the base learner and the fusion method on the
patient’s blood glucose values, and from Figure 8, it can be seen that the fusion method
proposed in this paper has the best prediction results, the LightGBM model has the worst
prediction results, and the XGBoost model has the prediction results in between. Combined
with the evaluation indexes in Table 7, the MAPE of the fusion method is 13.01% and the
RMSE is 23.15, the MAPE of the XGBoost model is 14.77% and the RMSE is 24.44, and the
MAPE of the LightGBM model is 15.08% and the RMSE is 26.08. The values of MAPE and
RMSE of the fusion method proposed in this paper are the smallest, and then the highest
prediction accuracy of the fusion method, which is consistent with the prediction results
in Figure 8.
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Figure 9 shows the prediction results of CatBoost, linear regression, Bayesian re-
gression, Kellett algorithm, and fusion methods on patients’ blood glucose values. From
Figure 9, it can be seen that the fusion method proposed in this paper has the best prediction
results, the CatBoost model has the second-best prediction effect, Kellett algorithm has
the worst prediction effect, and linear regression and Bayesian regression have prediction
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results between them. Combined with the evaluation indexes in Table 7, the MAPE of the
fusion method is 13.01% and the RMSE is 23.15, the MAPE of the CatBoost model is 14.44%
and the RMSE is 24.35, the MAPE of the Kellett algorithm is 18.05% and the RMSE is 27.92,
and the MAPE of linear regression with Bayesian regression is 15.09% and the RMSE is
24.08, which is consistent with the predicted results in Figure 9.
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In general, Figures 8 and 9 show the prediction results of each model for the first
50 bars of patients’ blood glucose in the test set compared with the true blood glucose values.
From the Figures 8 and 9, it can be seen that the prediction results of the stacking fusion
model are very close to the true blood glucose values in most cases compared with XGBoost,
LightGBM, CatBoost, Bayesian regression, linear regression, and Kellett algorithm, which
have a better fit and prediction results. It can be seen that the blood glucose prediction
method based on particle swarm optimization and fusion model proposed in this paper
has certain superiority.

From the results in Table 7, the prediction error of the XGBoost model is closer to that
of the prediction method in this paper. In order to better show the comparison results,
the prediction results are broken down by patients below. Table 8 and Figure 10 show the
comparison results of the mean absolute percentage error of blood glucose prediction for
10 patients between the particle swarm optimization and model fusion-based blood glucose
prediction method proposed in this paper and the XGBoost model.

Table 8. Predicted blood glucose results in 10 patients.

Patient Number Stacking Fusion Model XGBoost Model

1 13.66 15.17

2 12.19 13.13

3 15.01 16.50

4 11.23 12.22

5 9.68 11.13

6 19.51 20.64

7 10.89 16.31

8 18.09 18.83

9 8.35 10.28

10 10.04 11.24
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As can be seen from Table 8 and Figure 10, the method proposed in this paper outper-
formed the XGBoost model in terms of blood glucose prediction for all 10 patients, with
errors between 1% and 2% lower than the XGBoost model. Especially for the blood glucose
prediction of patient No. 7, the two pulled apart a large gap. This shows that the method
proposed in this paper is more accurate than the XGBoost model in prediction, has better
generalization ability, and has certain superiority in predicting the blood glucose level of
brand-new patients.

5. Discussion

The current signal of the sensor obtained from CGMS has a certain burr and noise,
and this paper uses the Kalman filtering algorithm to attempt to reduce the influence of
sensor signal noise on the blood glucose prediction results. Through the experimental
results, it is found that the filtered data is closer to the real current signal of human body,
which has a significant improvement on the prediction accuracy of blood glucose value.
The XGBoost and LightGBM models themselves have a large number of parameters, and
different parameter pairings have a certain impact on the experimental results. In this paper,
the particle swarm optimization algorithm is used to optimize the hyperparameters of the
XGBoost and LightGBM models to achieve the best prediction results. The experimental
results show that the prediction accuracy of the optimized model has been improved
compared with that before the optimization. In addition, in the process of blood glucose
prediction, a single model has certain limitations and often does not work as well as it
should in dealing with uncertain data. The stacking model fusion method can fuse different
models and bring their respective advantages into play to further improve the accuracy of
blood glucose prediction. Through the experimental results, it was found that the fused
model has further improvement in blood glucose prediction accuracy than the original
model. However, this paper aimed to achieve the prediction of blood glucose levels in
brand new patients, which has some value for practical clinical application and deserves to
be studied in depth.

6. Summary

In this paper, the proposed method of blood glucose prediction based on particle
swarm optimization and fusion model firstly uses the Kalman filter algorithm and z-score
method to preprocess the sensor data, then uses particle swarm optimization algorithm
to optimize the hyperparameters of XGBoost and LightGBM models, and finally uses the
optimized XGBoost and LightGBM models as the base learner and Bayesian regression



Diagnostics 2022, 12, 3062 15 of 16

models are used as meta-learners, and the models are trained and tested using sensor
data to finally achieve more accurate prediction of blood glucose values. Through exper-
imental comparison, the prediction effect of the fusion model based on particle swarm
optimization is significantly better than the base learner, with 1.76% and 2.07% improve-
ment in the prediction accuracy, and has higher prediction accuracy compared with other
regression models.

The shortcoming of this study is that the best combination of models is selected
manually rather than through an intelligent combination mechanism, so its efficiency
is not high. It is hoped that in future research a base learner library can be established
and combined with different swarm intelligence optimization algorithms to achieve the
automatic combination of base learners for optimal prediction.
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