
Citation: Siordia-Millán, S.;

Torres-Ramos, S.; Salido-Ruiz, R.A.;

Hernández-Gordillo, D.; Pérez-

Gutiérrez, T.; Román-Godínez, I.

Pneumonia and Pulmonary

Thromboembolism Classification

Using Electronic Health Records.

Diagnostics 2022, 12, 2536. https://

doi.org/10.3390/diagnostics12102536

Academic Editors: Shang-Ming Zhou,

Haider Raza and Honghan Wu

Received: 31 August 2022

Accepted: 17 October 2022

Published: 19 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

diagnostics

Article

Pneumonia and Pulmonary Thromboembolism Classification
Using Electronic Health Records
Sinhue Siordia-Millán 1 , Sulema Torres-Ramos 1 , Ricardo A. Salido-Ruiz 1 , Daniel Hernández-Gordillo 2 ,
Tracy Pérez-Gutiérrez 2 and Israel Román-Godínez 1,*

1 División de Tecnologías para la Integración Ciber-Humana, Centro Universitario de Ciencias Exactas e
Ingenierías, Universidad de Guadalajara, Guadalajara 44430, Mexico

2 Unidad Médica De Alta Especialidad, Hospital de Especialidades, Centro Médico Nacional De Occidente,
Guadalajara 44349, Mexico

* Correspondence: israel.roman@academicos.udg.mx

Abstract: Pneumonia and pulmonary thromboembolism (PTE) are both respiratory diseases; their
diagnosis is difficult due to their similarity in symptoms, medical subjectivity, and the large amount
of information from different sources necessary for a correct diagnosis. Analysis of such clinical
data using computational tools could help medical staff reduce time, increase diagnostic certainty,
and improve patient care during hospitalization. In addition, no studies have been found that
analyze all clinical information on the Mexican population in the Spanish language. Therefore,
this work performs automatic diagnosis of pneumonia and pulmonary thromboembolism using
machine-learning tools along with clinical laboratory information (structured data) and clinical text
(unstructured data) obtained from electronic health records. A cohort of 173 clinical records was
obtained from the Mexican Social Security Institute. The data were preprocessed, transformed, and
adjusted to be analyzed using several machine-learning algorithms. For structured data, naïve Bayes,
support vector machine, decision trees, AdaBoost, random forest, and multilayer perceptron were
used; for unstructured data, a BiLSTM was used. K-fold cross-validation and leave-one-out were
used for evaluation of structured data, and hold-out was used for unstructured data; additionally,
1-vs.-1 and 1-vs.-rest approaches were used. Structured data results show that the highest AUC-ROC
was achieved by the naïve Bayes algorithm classifying PTE vs. pneumonia (87.0%), PTE vs. control
(75.1%), and pneumonia vs. control (85.2%) with the 1-vs.-1 approach; for the 1-vs.-rest approach,
the best performance was reported in pneumonia vs. rest (86.3%) and PTE vs. rest (79.7%) using
naïve Bayes, and control vs. diseases (79.8%) using decision trees. Regarding unstructured data,
the results do not present a good AUC-ROC; however, the best F1-score were scored for control vs.
disease (72.7%) in the 1-vs.-rest approach and control vs. pneumonia (63.6%) in the 1-to-1 approach.
Additionally, several decision trees were obtained to identify important attributes for automatic
diagnosis for structured data, particularly for PTE vs. pneumonia. Based on the experiments, the
structured datasets present the highest values. Results suggest using naïve Bayes and structured data
to automatically diagnose PTE vs. pneumonia. Moreover, using decision trees allows the observation
of some decision criteria that the medical staff could consider for diagnosis.

Keywords: automatic clinical diagnosis; pneumonia; pulmonary thromboembolism; machine learning;
BiLSTM

1. Introduction
1.1. Respiratory Diseases

Nowadays, respiratory diseases have become a point of attention in public health
problems. For example, pneumonia is an infection of the lung parenchyma provoked by a
bacteria or virus. This infection insidiously affects lung function by constantly reducing
its operation, resulting in significant morbidity and mortality for the patients [1]. It is
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estimated that in the United States of America (USA), more than 1.5 million adults are
hospitalized annually, with a rate of 100,000 deaths during hospitalization, from which one
in three dies in less than a year [2]. In Mexico, more than 57,000 deaths associated with
pneumonia were reported during the year 2020 due to the current COVID-19 pandemic [3].

According to [4], pulmonary thromboembolism (PTE) is caused by an embolus that
travels and occludes the arteries of the lung. Such obstruction is the result of thrombus
formation, which may result in severe or potentially lethal dyspnea [1]. PTE is the third most
common cardiovascular syndrome in the world, with an estimated incidence of 0.45–0.95
per 1000 persons per year in western countries [5]. In addition, in six European countries
during 2004, there were over 370,000 deaths related to Venous thromboembolism (VTE),
of which 59% were PTE diagnosed after death and 7% of patients who died prematurely
were correctly PTE-diagnosed before death [6]. Moreover, PTE has been the third cause
of mortality in the General Hospital of the National Medical Center of the Mexican Social
Security Institute (IMSS, by its acronym in Spanish) [7], with a mortality rate of 30% [8].

1.2. Pneumonia and PTE Diagnosis

The diagnosis of pneumonia and PTE present particular complexity considering the
similarity of their symptoms, this is, cough, shortness of breath, and chest pain [9,10];
also, the given signs and symptoms are often subjective and nonspecific. For this reason,
the criteria or auxiliary diagnoses specified in the guidelines [6,11] should always be
complemented by the treating physician’s determination. Along with the inherent difficulty
of diagnosing such diseases, medical staff must analyze, as quickly as possible, the patients’
health history, which nowadays is stored in electronic health records (EHRs). Examples
of such data are laboratory tests, medical auscultation, and clinical history [12]. All this
information could be helpful to medical staff to increase certainty in making a diagnosis.

This, in turn, could result in more efficient patient care at the time of hospital admis-
sion. However, to make use of EHR information, there are a least three problems. First,
the amount of data increases every time a patient is admitted; second, the quality of the
data is as good as the acquisition methodology; and third, the information comes from
different origins, meaning that the data types are heterogeneous.

1.3. Computational Tools for Data Analysis

To take advantage of the EHR information, different computational methodologies
could be used, for instance, Knowledge Discovery From Data (KDD) [13]. The KDD
methodology is the process of generating new and useful knowledge from data sets by ap-
plying the following pipeline: cleaning, integration, data selection and transformation, data
mining, pattern evaluation, and presentation of the results [14]. This pipeline guides the
identification of relationship patterns between different elements in the data. Specifically,
applying KDD to EHRs is intended to find patterns that, at first glance, are not evident,
but that are necessary to identify factors that may be closely related to certain clinical
conditions [15].

Due to the varied nature of the EHR data, one can use different strategies based on the
data category, this is, structured or unstructured data. With structured data (quantitative
observations), we could use traditional machine learning (ML), while for unstructured data
(qualitative observations), natural language processing (NLP) is more appropriate [12,16].

1.4. State-of-the-Art

There is some previous work related to using computational tools for medical data
analysis. For instance, the authors of [17] intended to predict diagnoses and medications
categories (ICD-9) of patients by performing a multilabel classification. They use a recurrent
neural network (RNN) to analyze historical data such as diagnosis codes, medication codes,
or procedure codes, all extracted from EHRs belonging to 260,000 patients over eight years.
They reported a recall of 79%.
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A different study was presented in [18], in which the authors classified intensive care
patients by analyzing clinical measurements such as body temperature, heart rate, diastolic
and systolic blood pressure, and blood glucose, among others, to recognize patterns in
the time series. To do so, the authors use a short-long term memory (LSTM) model. They
reported an F1-score of 0.5641 and 0.4688 for classifying patients with asthma and acute
respiratory distress syndrome (ARDS) (respiratory conditions), respectively.

Regarding machine-learning application in intensive care areas, the authors of [19]
used both structured and unstructured data such as patient information (e.g., age and gen-
der), vital and laboratory data (e.g., oxygen saturation and blood urea nitrogen), and clinical
narrative notes (e.g., medical personal descriptions) to predict the start and finish of five
invasive intervention tasks (i.e., invasive ventilation, non-invasive ventilation, vasopres-
sors, colloid boluses, and crystalloid boluses) in the emergency department. They achieved
an area under curve-receiver operating characteristic (AUC-ROC) of 0.90 using an LSTM
model to predict patients with mechanical ventilation intervention.

A closer work to the one presented here is [20], where the authors propose a methodol-
ogy to discriminate patients that have pneumonia from those whose do not from a sample
of COVID-19-diagnosed patients. To do so, the authors used medical history and laboratory
test results. They report a predictive rate of 77.1% using a backward stepwise logistic
regression model and an overall predictive rate of 81.3% using a decision tree.

On the other hand, several works apply NLP methodologies to perform automatic
diagnoses. For example, Liu et al. and Bagheri et al. [21,22] developed models to predict
chronic diseases and cardiovascular risk prediction. The former mixed clinical text with
laboratory results, while the latter used X-ray radiology reports and laboratory results.
Both used a type of LSTM. The former reported a recall of 0.15 with a precision of 0.145,
0.152, and 0.025 for predicting congestive heart failure, kidney failure, and stroke. The latter
obtained an F1-score above of 0.81.

Regarding respiratory conditions, the authors of [23] used NLP+SVM to diagnose
patients with pneumonia, training their model with information extracted from the emer-
gency department’s clinical notes that were tagged using ICD-9 codes. They reported a
recall of 89%. On the other hand, Kaur et al. [24] identified pediatric patients that met the
Asthma Predictive Index (API) criteria by analyzing EHRs with the use of NLP algorithms.
The proposed model reported a sensitivity of 86% and a specificity of 98%.

For Latin American studies, Villena et al. [25] collaborated with technical and clinical
experts to develop a system capable of classifying Chilean patients suffering from any of
the 85 pathologies described in the national system of “Explicit Health Guarantees”. Their
objective was to aid in reducing the waiting time to be attended in their corresponding
health clinics. The authors used word embeddings (WE) combined with SVM, random
forest, logistic regression, and multilayer perceptron. They achieved an average F1-score of
0.85 with a random forest model.

1.5. Aim

Considering the difficulty of making a correct diagnosis of pneumonia and PTE
due to their similar symptoms, the heterogeneity and amount of data of the EHRs to be
considered, and the scarcity of studies that analyze natural language text to classify these
pulmonary diseases, specifically in Spanish, we propose to perform automatic classification
of patients with pneumonia or pulmonary embolism through the analysis of clinical notes
or laboratory results, based on the KDD procedure and the use of NLP and ML tools. This
study could be useful to avoid the subjectivity of empirical clinical judgment and, by using
decision tree models, provide medical experts with decision criteria that could increase
their diagnosis precision.

2. Materials and Methods

Figure 1 depicts the methodology followed in this work. First, the data were extracted
from the EHRs and stored in a relational database; then, data were split into two categories,
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structured and unstructured. Depending on their category, data were cleaned and pre-
possessed accordingly. From each data category, several machine-learning models were
trained and tested using several classification evaluation methodologies.

Figure 1. Methodological sequence.

2.1. Data—Data Acquisition

The EHRs were acquired following the protocol accepted on 21 April 2021 (number
R-2021-785-035) by the Research and Ethics Committee of the Scientific Research National
Committee of the IMSS.

According to the protocol, Table 1 shows the inclusion criteria for the collection of
clinical records. All records that did not meet one or more of the previously mentioned
criteria were discarded, as well as patients with diagnoses of both PTE and pneumonia.
Each patient’s clinical record was defined by admission clinical notes, discharge summaries,
and one or more laboratory studies requested by the emergency department.

This work corresponds to a retrospective and exploratory diagnostic study, with non-
probabilistic sampling and a sample size estimated between 155 to 310 clinical records for a
prevalence of 50% and a target of 80%, based on [26].

Finally, 173 clinical records were collected that met the inclusion criteria and were
extracted from the EHRs in PDF format. From these, 61 had a final diagnosis of PTE, 73 of
pneumonia, and 39 corresponded to control subjects.
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Table 1. Inclusion criteria for the collection of clinical records.

Subjects with PTE or Pneumonia Control Subjects

Patients over 18 years old Patients over 18 years old

Patients with an admission note from the
emergency department.

Patients without a final diagnosis of
pneumonia or pulmonary embolism

Patients with one or more laboratory studies
requested by the emergency department

Admission notes for preoperative assessment
for bariatric surgery

Laboratory studies not older than one week
with respect to the patient’s admission note

Patients with one or more laboratory studies
for pre-surgical assessment of bariatric surgery

Laboratory studies with one or more studies of
blood biometry, procalcitonin, blood chemistry,
serum electrolytes, coagulation times, and/or

arterial blood gases

Laboratory studies with one or more studies of
blood biometry, procalcitonin, blood chemistry,
serum electrolytes, coagulation times, and/or

arterial blood gases

Patients with discharge summary from
pulmonology

Discharge summary for pre-surgical
assessment for bariatric surgery

Discharges summaries with final diagnosis of
PTE or pneumonia

Discharge summary with final diagnosis of
obesity due to excess calories

Final diagnosis according to ICD-10
classification

Final diagnosis according to
ICD-10 classification

Clinical records from the year 2017 to 2022 Clinical records from the year 2017 to 2022

2.2. Data—Database Creation

The structures of the PDF files were explored and a standard format was distinguished
for each type of clinical note. It consists of two types of general structures for admission
notes and discharge summaries. The structure for admission notes is shown in Table 2.

Table 2. Fields extracted from the entry notes. Ql: qualitative, Qt: quantitative, N: nominal, T: text,
D: discrete, C: continuous.

Field Nature Type Field Nature Type

NSS (unique identifier) Ql N Health indications and status Ql T
Date of admission Qt D Weight Qt C
Subject’s gender Ql D Height Qt C

Admission specialty Ql T Temperature Qt C
Reason for admission Ql T Respiratory rate Qt D

Interrogation Ql T Blood pressure Qt D
Initial diagnosis Ql T BMI (body mass index) Qt C
Treatment plan Ql T Peripheral oxygen saturation Qt D

Prognosis Ql T Capillary glucose Qt D

Table 3 shows the structure of the discharge summaries and Figure 2 shows a sample of
a discharge summary where confidential information is censored and the identity attribute
used in the database is indicated in a green box. The yellow boxes highlight the structured
and unstructured information used in the study; in a blue box is the diagnosis code
according to ICD-10.
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Table 3. Fields extracted from discharges summaries. Ql: qualitative, Qt: quantitative, N: nominal,
T: text, D: discrete, C: continuous.

Field Nature Type Field Nature Type

NSS (unique identifier) Ql N Health indications and status Ql T
Date of admission Qt D Prognosis of health Ql T
Date of discharge Qt D Health status Ql T
Subject’s gender Ql T Diagnosis discharge/demise Ql T

Specialty of discharge Ql T Weight Qt C
Reason for egress Ql T Size Qt C

Referral to specialty Ql T Temperature Qt C
Admission diagnosis Ql T Respiratory rate Qt D
Summary of progress Ql T Blood pressure Qt D

Treatment plan Ql T BMI (body mass index) Qt C
Recommendations Ql T Peripheral oxygen saturation Qt D

Risk factors Ql T Capillary blood glucose Qt D

Figure 2. Example of discharge summary; the identity attribute used in the database is indicated in a
green box. The yellow boxes highlight the structured and unstructured information used in the study
and the blue box shows the diagnosis code according to ICD-10.

Tables 4 and 5 show the laboratory studies and specialized areas corresponding to
the type of laboratory study performed. Figure 3 shows an example of a laboratory study
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where confidential information is hidden. The identity attributes are highlighted in a green
box, and the specialized areas of the laboratory study are highlighted in a blue box.

Table 4. Fields extracted from laboratory studies. Ql: qualitative, qt: quantitative, N: nominal, T: text,
D: discrete.

Field Nature Type Extracted Field Nature Type

NSS (unique identifier) Ql N Patient’s age Qt D
Order folio requested Ql N Qualitative service Ql T

Date of order Qt D

Table 5. Specialized fields extracted from laboratory studies. Ql: qualitative, Qt: quantitative,
D: discrete, C: continuous, T: text.

Field Operational Definition Nature Type

Determination Contains the name of the variable Ql T
Result Contains the value of the variable Qt D/C
Unit Contains the unit of the variable Ql T

Normal value Contains the limiting values of the variable Qt D/C

Figure 3. Example of laboratory study; identity attributes are highlighted in a green box and the
specialized areas of the laboratory study are highlighted in a yellow box.

Based on the information from Tables 2–5, a data storage structure was designed using
the relational model paradigm [27] and implemented using the MySQL database manager
version 8.0. To do so, a program was coded in Python version 3.8.11 with the use of the
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libraries pdfminer.six 20201018, pdfplumber 0.5.28, mysql-connector 2.2.9, and mysqlclient
2.0.3 to read the PDF files and extract and store the data in the database model. To identify
information in the PDF files, several regular expressions were specifically designed.

The dataset obtained from the previous process is available as a Supplementary
Table S1.

2.3. Structured Data—Data Preprocessing

First, an exploration of structured data was performed, analyzing the laboratory
studies and vital signs measured during the clinical examination of the patients such as
gender, weight, height, temperature, heart and respiratory rate, blood pressure, body mass
index (BMI), saturation, and capillary glucose.

Using a database query, a first version of the dataset was created corresponding to the
following data: vital signs (12), coagulation studies (5), hematology studies (22), immune
infect studies (2), immunology studies (3), and clinical chemistry studies (47). This dataset
corresponds to a matrix formed by 91 columns (attributes) and 173 row (instances). Panda
library (version 1.2.4.) was used to manage the information.

Then, we looked for attributes where the number of missing values surpassed 60%
concerning the total number of instances, eliminating 46 attributes. Hence, the size of the
dataset decreased from 91 to 45. Table 6 presents the study and its corresponding remaining
variables. The values for the instances that still contained missing values were input with
the simple decision tree strategy.

Table 6. Variables resulting from the elimination of missing data.

Variables Studies Variables Studies

Dimer II Coagulation Plateletocrit Hematology
Thromboplastin partial time Coagulation Platelet Count (PLT) Hematology

Prothrombin time Coagulation Red cell blood distribution width (RDW) Hematology
Age Vital signs Mean corpuscular volume (MCV) Hematology

Breathing frequency Vital signs Procalcitonin Immune infect
Gender Vital signs High-sensitive troponin I Immune infect

Diastolic blood pressure Vital signs Serum calcium Clinical chemistry
Systolic blood pressure Vital signs Chlorine Clinical chemistry

Saturation Vital signs CO2 Clinical chemistry
Temperature Vital signs Serum creatinine Clinical chemistry

Platelet distribution width (PDW) Hematology Base excess Clinical chemistry
Basophils Hematology Phosphorus Clinical chemistry

Mean corpuscular hemoglobin
concentration (MCHC) Hematology Blood glucose Clinical chemistry

Eosinophils Hematology HCO3 Clinical chemistry
Erythrocytes Hematology Magnesium Clinical chemistry

Mean corpuscular hemoglobin
(MCH) Hematology PCO2 Clinical chemistry

Hematocrit Hematology pH Clinical chemistry
Leukocytes Hematology PO2 Clinical chemistry

Lymphocytes Hematology potassium Clinical chemistry
Monocytes Hematology O2 saturation Clinical chemistry

Mean platelet volume (MPV) Hematology Sodium Clinical chemistry
Total neutrophils Hematology Urea Clinical chemistry

Platelets Hematology

A Pearson’s correlation coefficient analysis was then performed in order to identify
and eliminate highly correlated variables. Pearson’s correlation reflects the linear corre-
lation of two normal continuous variables [28], as shown in Equation (1), where X and Y
contains n observations: X = {x0, x1, x2, . . . , xn}, and Y = {y0, y1, y2, . . . , yn}, with x̄ and ȳ
corresponding to the average of X and Y, respectively. Only one of those attributes with a
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correlation greater than or equal to +/−0.95 was selected, under the criterion of an expert
physician, as shown in Table 7.

r = ∑n
i=1(xi − x̄)(yi − ȳ)√

∑n
i=1(xi − x̄)2 ∑n

i=1(yi − ȳ)2
(1)

Table 7. Attributes with Pearson correlation greater than +/−0.95.

r Value Selected Discarded

+1 Urea Calculated Urea
+0.965 Hematocrit Hemoglobin
+0.965 PT: Prothrombin Time INR: International Normalized Ratio

2.4. Structured Data—Modeling and Evaluation

To perform modeling, six machine-learning algorithms were used: decision tree (DT),
random forest (RF), support vector machine (SVM), artificial neural network (ANN), naïve
Bayes (NB), and AdaBoost. These models were selected because they have presented
outstanding performances on several classification problems [29].

DT consists of a supervised learning method that learns from training tuples labeled
by class, resulting in a flowchart-like structure, which is made up of internal nodes that
denote a test on an attribute, branches that represent a test result, leaf nodes (or terminal
nodes) that have a class label, and, finally, the top node that represents the most significant
attribute [14]. The DT models require an attribute split criterion such as the Gini index,
which considers a binary division for each attribute and measures the impurity of the data
set, a data partition, or a set of training tuples (D), as shown in Equation (2). pi is the
probability that a tuple in D belongs to class (Ci), which is estimated by |Ci,D|/|D| [14].

Gini(D) = 1−
m

∑
i=i

p2
i (2)

RF is a supervised learning method that creates a set of decision trees from a bootstrap
sample with training data [29]. When developing individual trees, an arbitrary subset of
attributes is drawn (hence the term “random”) from which the best attribute for the split is
selected. The final model is based on the majority vote from individually developed trees
in the forest [30].

SVM is an algorithm for the classification of linear and nonlinear data that uses nonlin-
ear mapping to transform the original training data into a higher dimension and searches
for the optimal linear separator hyperplane using support vectors (“essential” training
tuples) and margins (defined by the support vectors) [14]. SVM requires the solution of the
following optimization problem (as shown in Equation (3)).

min
ω,b,ξ

subject to

1
2

wTw + C
l

∑
i=1

ξi

yi(wTφ(xi) + b) ≥ 1− ξi,

ξi ≥ 0

(3)

Here, training vectors xi are mapped into a higher dimensional space by the function
φ. SVM finds a linear separating hyperplane with the maximal margin in this higher
dimensional space. C > 0 is the penalty parameter of the error term. Furthermore,
K(xi, xj) ≡ φ(xi)

Tφ(xj) is called the kernel function [31], for example, the radial basis
function (see Equation (4)), where γ is a kernel parameter.

RBF : K(xi, xj) = exp(−γ‖xi − xj‖2), γ > 0. (4)
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An ANN is a set of connected input/output units (neurons). Each input is associated
with a value that weights the input. The ANN can have two or more layers. Every neuron
is conformed by two operations: a weighted linear summation w1x1 + w2x2 + · · ·+ wmxm
followed by a non-linear activation function f (·) : Rm → Ro. The output layer receives the
values from the last hidden layer and transforms them into one or several output values.
The ANN is trained using the multi-layer perceptron algorithm (MLP) [14].

The MLP is a supervised learning algorithm that learns a function f (·) : Rm → Ro by
training on a dataset, where m is the number of dimensions for input and o is the number
of dimensions for output. It trains using some sort of gradient descent solver such as
stochastic gradient descent (SGD) or Adam [32], updating parameters by using the gradient
of the loss function with respect to each weight. These gradients are calculated using the
backpropagation algorithm [33].

The NB algorithm uses all attributes to determine the probability that an instance
belongs to a class, under the two assumptions that all attributes are class independent and
all attributes are equally important [14]. This algorithm uses the Bayes’ theorem to calculate
the probability (Pr[H|A]) of an instance belonging to a class according to Equation (5),
where A are instances and H are class values.

Pr[H|A] =
Pr[A|H]Pr[H]

Pr[A]
(5)

Adaboost was formulated by Yoav Freund and Robert Schapire [34]; this method
is used with other learning algorithms to improve classification performance using a
classification algorithm that updates the weight of the base estimator with probability
estimates, changing the distribution of the training set based on the performance of previous
classifiers. An AdaBoost classifier is a meta-estimator that begins by fitting a classifier on
the original dataset and then fits additional copies of the classifier on the same dataset,
but where the weights of incorrectly classified instances are adjusted such that subsequent
classifiers focus more on difficult cases. To do this, AdaBoost implements a new multiclass
algorithm: stagewise additive modeling using a multi-class exponential loss function
algorithm (SAMME) (see Equation (6)). There is also a variant of the SAMME algorithm
known as SAMME.R (R for Real) that converges more quickly than SAMME and also
performs slightly better than SAMME (see Equation (7)) [35].

C(x) = arg max
k

M

∑
m=1

α(m) · I(T(m)(x) = K). (6)

C(x) = arg max
k

M

∑
m=1

h(m)
k (x) (7)

All classifiers’ performances were evaluated with classification accuracy (CA), F1-score,
and the maximized area under the curve of the receiver operating characteristic (ROC-
AUC) [14]. These evaluation metrics analyze how well a classifier can recognize positive (P)
or negative (N) instances by computing metrics based on the correct predictions (TP: true
positives and TF: true negatives), incorrect predictions (FP: false positives and FN: false
negatives), or by a weighted average of the resulting metrics, as seen in Equation (8)–(11).

Accuracy =
TP + TN

P + N
(8)

Precision =
TP

TP + FP
(9)

Recall =
TP
P

(10)



Diagnostics 2022, 12, 2536 11 of 25

F1-score =
2 ∗ Precision ∗ Recall

Precision + Recall
(11)

The area under the curve indicates how well the negative and positive classes fare
with respect to the decision index by measuring the entire area under the ROC curve [29].

Finally, the parameters used for each algorithm are shown in Table 8.

Table 8. Training step parameters by algorithm.

Algorithm Parameter Value

Decision tree

Minimum number of instances in leaves 3
Limit of subsets splits 5
Maximal tree depth 3
Majority reaches (%) 95

Random forest Number of trees 5
Limit of subsets splits 5

Support vector machine

Cost 1
Regression loss epsilon 0.10

Kernel RBF
Numerical tolerance 0.001

Iteration limit 100

Neural networks

Neurons in hidden layers 10, 6
Activation Tanh

Solver Adam
Regularization 0.03

Maximal iterations 2500

Adaboost

Base of estimator Tree
Number of estimators 50

Learning rate 1
Classification algorithm SAMME.R
Regression loss function Linear

2.5. Unstructured Data—Data Set Up

To work with the clinical history of admission notes and discharge summaries, such
information was obtained from the database and preprocessed using the NLTK library [36]
to adapt it to the word embeddings (WE) process. WE allows the representation of words
as real numerical vectors that capture semantic and syntactic relationships [37]. To do this,
a preprocessing of the text was done to make them suitable for feature extraction:

1. Tokenization;
2. Stopwords removal;
3. Unnecessary characters removal;
4. Text conversion to lowercase;
5. Text stemming;
6. Text lemmatization.

The FastText library allows the generation of the WEs by representing each word as a
bag of n-gram characters, thus helping to maintain the morphology of the word, enabling
it to represent rare words outside the vocabulary [38].

Eight different pre-trained models made by [39] were used. Four were pre-trained
with biomedical text corpora and another four with clinical text corpora; in both cases,
cased and uncased CBOW and cased and uncased Skipgram architectures were used.

As a result, for each word in the clinical history, a 300-dimensional vector ranging
between [−1, 1] was obtained. Then, to have just one value that represents the word,
the vector’s component average was computed. It is worth noticing that the patients’
clinical histories have different lengths; thus, zero-padding should be performed for those
vectors shorter than the largest vector, resulting in eight two-dimensional matrices corre-
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sponding to the vectorized clinical histories of the patients. Finally, to every matrix, an extra
column vector was appended, corresponding to a given class.

Once the dataset was created, a BiLSTM model was trained to perform classification.
A BiLSTM consists of two LSTM models, where one takes the input data in a forward
direction and the other in a reverse direction, in order to increase the amount of information
available to the network and improve the relation of a word to its context [40].

The LSTM model is used to classify and process sequential data using a set of sub-
networks known as memory cells. Each memory cell preserves its state over time and
regulates the flow of information through nonlinear gates. This model solves the long-term
memory problem caused by the vanishing of the gradient. To do so, LSTM holds an inner
condition that symbolizes the memory cell of the LSTM neuron. The inner condition state
is usually augmented by recurrent gates that control the movement of the information over
the cell state [41].

These gates are updated and calculated as seen in Equations (12)–(14), where it, ft,
and ot represent input, forget, and output gates, respectively [42].

it = tanh(Wxixt + Whiht−1) (12)

ft = σ(Wx f xt + Wh f ht−1) (13)

ot = σ(Wxoxt + Whoht−1) (14)

2.6. Unstructured Data—Modeling and Evaluation

The two-dimensional arrays were transformed into three-dimensional arrays to be
used in a BiLSTM model. The first dimension corresponds to the samples or sequences
(vectorized words), the second element is the time steps or observation points (total inter-
rogations), and the last dimension defines the features or observations in a time step (in
our case, only one feature was defined). Then, the next step was to find the best network
parameters using a grid search method [43]. Table 9 shows the proposed parameters.
The search was performed on a randomization dataset split 70–30% for training and testing,
respectively. The process was repeated 10 times.

Table 9. Proposed parameters for BiLSTM.

Parameter Proposed Values Selected Values

Optimizer [‘adam’, ‘SGD’] SGD
Learning rate [0.01, 0.025, 0.05, 0.1, 0.5] 0.1
Momentum [0.01, 0.025, 0.05, 0.075, 0.1, 0.5] 0.1

Neurons [5, 10, 20, 50, 100] 50
Density [1, 2, 3, 4, 5] 1
Epochs [5, 10, 25, 50, 100] 25

The BiLSTM model was trained and tested with the parameters found during the grid
search according to the experiments presented in the Section 3.

3. Results

In the following, the results of structured and unstructured data are presented.

3.1. Structured Data

To perform the training and evaluation of the machine-learning algorithms, six binary
datasets were created with respect to the target attribute (i.e., final diagnosis): (1) PTE vs.
Pneumonia, (2) Control vs. PTE, (3) Control vs. Pneumonia, (4) PTE vs. Rest, (5) Pneumonia
vs. Rest, and (6) Control vs. Diseases. Such datasets were built intending to find patterns
that differentiate patients: (a) that suffer from PTE or pneumonia from those who do not
(Datasets 2 and 3); (b) that suffer pneumonia from those that suffer from PTE (Dataset 1);
(c) that suffer from a pulmonary disease from those who do not (Dataset 6); (d) PTE or
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pneumonia from control or another pulmonary disease (Datasets 4 and 5). Model evaluation
was performed using area under curve (AUC-ROC), classification accuracy (CA), and F1-
score. The ML models used were decision trees (DT), support vector machine (SVM),
random forest (RF), artificial neural networks (ANN), naïve Bayes (NB), and AdaBoost.

Table 10 presents the results of all the ML models trained and tested with each dataset,
using a five-fold cross-validation methodology. Table 11 presents the experiments evaluated
using leave-one-out.

Observe that for “1-group vs. 1-group” (see Table 10), the “Pneumonia vs. Control”
and the SVM algorithm obtained the best performance in both CA (83.0%) and F1-score
(81.4%); additionally, the SVM obtained the second-best AUC (83.2%). Notice that, on aver-
age, this dataset presents the best CA (75.5%) and F1-score (75.5%) among all classifiers
(classifier performance average per classifier, CPApC). Regarding classification algorithms,
the SVM presents, on average, the highest CA (76.2%) and F1-score (74.0%) scores among
all algorithms (dataset performance average per dataset, DPApC). Otherwise, the “PTE vs.
pneumonia” dataset and NB obtained the highest score for AUC (85.8%) metric, the best
dataset score average (AUC 80.4%), and the best classifier score average (AUC 76.0%).

Table 10. The “1-group vs. 1-group” experiments evaluated using a five-fold cross-validation method-
ology. Values are presented in percentages. The first element of the dataset is the positive attribute.

Metric Dataset DT SVM RF ANN NB AdaBoost CPApD 1

AUC

PTE vs. Control 59.1 63.1 70.1 54.8 71.8 77.2 66
Pneumonia vs. Control 61.1 77.55 78.5 78.2 83.7 71.9 75.2

PTE vs. Pneumonia 69.0 83.2 71.8 81.5 85.8 * 64.6 76.0
DPApC 2 63.1 74.6 73.5 71.5 80.4 71.2

CA

PTE vs. Control 61.4 71.6 71.6 61.4 61.4 78.4 67.6
Pneumonia vs. Control 65.0 83.0 * 79.0 77.0 73.0 76.0 75.5

PTE vs. Pneumonia 66.4 73.9 66.4 70.9 79.9 64.2 70.3
DPApC 2 64.3 76.2 72.3 69.8 71.4 72.9

F1-score

PTE vs. Control 62.5 66.8 67.7 61.4 62.8 78.9 66.7
Pneumonia vs. Control 65.6 81.4 * 77.9 76.9 74.5 76.5 75.5

PTE vs. Pneumonia 66.5 73.8 66.3 70.9 79.9 64.2 70.3
DPApC 2 64.9 74.0 70.6 69.7 72.4 73.2

* Best performance per metric. 1 Classifier performance average per dataset. 2 Dataset performance average per
classifier.

On the other hand, for “1-group vs. Rest” experiments (see Table 11), considering that
in this experiment the datasets are unbalanced, the AUC and F1-score are more suitable
metrics to consider. Hence, the best performance was obtained for “Pneumonia vs. Rest”
with NB (AUC 86.5%). The classifier performance average per dataset (CPApD) is AUC
(77.7%) and the dataset performance average per classifier (DPApC) is AUC (80.1%). Notice
that for the same experiment (i.e., “Pneumonia vs. Rest” with NB), the CA is around 80.1%,
which could be considered high. Regarding F1-score, the best performance is achieved by
AdaBoost in combination with “Control vs. Disease” dataset (F1-score 85.6%); moreover,
this dataset presents the highest F1-score average among all classifiers (F1-score 79.3%).
On the other hand, the F1-score for “Pneumonia vs. Rest” using NB is 80.2%, which is the
highest among all classifiers and corresponds to the highest AUC (86.5%).

Additionally, a leave-one-out cross-validation was performed to consider a higher
variability on each test. Tables 12 and 13 present the results for “1-group vs. 1-group” and
“1-group vs. Rest” experiments, respectively. Regarding “1-group vs. 1-group” experiments
(see Table 12), note that “PTE vs. pneumonia” with NB still shows the best AUC (87.0%).
In regard to CA and F-score metrics, the best scores were obtained using the “Pneumonia
vs. Control” dataset with SVM, achieving 82.0% and 80.5%, respectively. On classifier
performance averages, notice that the best score is still achieved by the SVM algorithm for
CA (75.7%) and F1-score (73.9%). The best dataset performance average was achieved by
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“Pneumonia vs. Control” for CA and F1-score, with both scores being 74.7%; regarding
AUC, the best score was achieved by the “PTE vs. pneumonia” dataset with 76.2%.

Table 11. The “1-group vs. Rest” experiments evaluated using a five-fold cross-validation methodology.
Values are presented in percentages. The first element of the dataset is the positive attribute.

Metric Dataset DT SVM RF ANN NB AdaBoost CPApD 1

AUC

PTE vs. Rest 71.9 75.9 75.2 75.4 79.4 61.9 73.3
Pneumonia vs. Rest 76.1 81.8 77.9 79.5 86.5 * 64.1 77.7
Control vs. Diseases 69.5 69.8 74.3 67.6 74.3 71.1 71.1

DPApC 2 72.5 75.8 75.8 74.2 80.1 65.7

CA

PTE vs. Rest 71.4 69.6 72.0 69.6 69.6 64.6 69.5
Pneumonia vs. Rest 68.9 71.4 72.7 73.3 80.1 64.6 71.8
Control vs. Diseases 82.6 82.6 85.1 80.1 65.8 86.3 * 80.4

DPApC 2 74.3 74.5 76.6 74.3 71.8 71.8

F1-score

PTE vs. Rest 70.1 66.1 71.2 70.0 70.0 64.4 68.6
Pneumonia vs. Rest 68.5 71.3 72.5 73.3 80.2 64.5 71.7
Control vs. Diseases 81.3 75.3 83.3 80.1 70.1 85.6 * 79.3

DPApC 2 73.3 70.9 75.7 74.5 73.4 71.5

* Best performance per metric. 1 Classifiers’ performance average per dataset. 2 Datasets performance average
per classifier.

Table 12. The “1-group vs. 1-group” experiments evaluated using a leave-one-out methodology.
Values are presented in percentages. The first element of the dataset is the positive attribute.

Metric Datasets DT SVM RF ANN NB AdaBoost CPApD 1

AUC

PTE vs. Control 55.0 66.8 59.5 58.3 75.1 67.8 63.8
Pneumonia vs. Control 57.3 76.3 75.0 74.4 85.2 65.7 72.3

PTE vs. Pneumonia 69.1 80.1 73.4 79.0 87.0 * 68.8 76.2
DPApC 2 60.5 74.4 69.3 70.6 82.4 67.4

CA

PTE vs. Control 62.5 70.5 64.8 67.0 67.0 68.2 66.7
Pneumonia vs. Control 69.0 82.0 * 80.0 75.0 75.0 67.0 74.7

PTE vs. Pneumonia 60.4 74.6 65.7 72.4 76.9 69.4 69.9
DPApC 2 64.0 75.7 70.2 71.5 73.0 68.2

F1-score

PTE vs. Control 58.4 66.8 62.5 66.5 68.3 69.2 65.3
Pneumonia vs. Control 69.5 80.5 78.4 75.1 76.3 68.6 74.7

PTE vs. Pneumonia 60.5 74.5 65.7 72.4 76.9 69.3 69.9
DPApC 2 62.8 73.9 68.9 71.3 73.8 69.0

* Best performance per metric. 1 Classifiers’ performance average per dataset. 2 Datasets performance average
per classifier.

On the other hand, concerning “1-group vs. Rest” experiments, notice that “Control
vs. Diseases” dataset along with DT algorithm reported best CA and F1-score, 88.2% and
87.5%, in that order. The best AUC, still correspond to the NB algorithm when testing
“pneumonia vs. Other” dataset (86.3%). Regarding datasets performance averages per
classifier, the algorithm with the higher score is DT with a CA of 77.9% and F1-score of 78.9%;
on the other hand, the higher classifiers’ performance average per dataset corresponds to
the dataset “Control vs. Disease” with a CA of 81.1% and F1-score: 80.0%. As to AUC,
the higher datasets performance averages was achieved using the “pneumonia vs. Rest”
with a 76.7%. Notice that, on the contrary to previous experimentation (Tables 10–12),
in this experiment DT shows the best F1-scores to differentiate “Control vs. Diseases” and
its AUC performance is 79.8% which corresponds to the highest AUC among all classifiers
in “Control vs. Disease” dataset.
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Table 13. The “1-group vs. Rest” experiments evaluated using a leave-one-out methodology. Values
are presented in percentages. The first element of the dataset is the positive attribute.

Metric Datasets DT SVM RF ANN NB AdaBoost CPApD 1

AUC

PTE vs. Rest 74.0 74.8 76.0 75.2 79.7 67.8 74.6
Pneumonia vs. Rest 73.7 81.9 73.1 79.1 86.3 * 66.3 76.7
Control vs. Diseases 79.8 67.0 68.6 64.2 76.0 73.7 71.6

DPApC 2 75.8 74.6 72.6 72.8 80.7 69.3

CA

PTE vs. Rest 75.2 69.6 69.6 70.8 74.5 69.6 71.6
Pneumonia vs. Rest 73.3 72.7 65.8 69.6 80.1 66.5 71.3
Control vs. Diseases 88.2 83.2 83.9 77.0 68.3 85.7 81.1

DPApC 2 78.9 75.2 73.1 72.5 74.3 73.9

F1-score

PTE vs. Rest 73.7 66.1 69.0 70.9 74.9 69.6 70.7
Pneumonia vs. Rest 72.5 72.6 65.7 69.6 80.2 66.5 71.2
Control vs. Diseases 87.5 * 75.6 81.4 77.8 72.2 85.6 80.0

DPApC 2 77.9 71.4 72.0 72.8 75.8 73.9

* Best performance per metric. 1 Classifiers’ performance average per dataset. 2 Datasets performance average
per classifier.

Based on the results obtained for the DT algorithm (see Table 13), we extended the
analysis to include the decision tree graphs that achieved F1-scores closer to the average
F1-scores of several trials. The objective was to provide a visual representation of the
decision rules obtained from analyzing each dataset. This set of rules allows one to observe
the conditions that discriminate one class from another. Table 14 depicts the average
F1-score of 100 iterations (“Average F1-score” column); the rest of the columns present
several evaluation metrics of the iterations with the F1-score closer to the average. Notice
that the highest F1-score for the “1-group vs. 1-group” was achieved with the “PTE vs.
pneumonia” dataset with a score of 0.777, obtaining a sensitivity of 0.791 and a specificity
of 0.916. On the other hand, with respect to the “1-group vs. Rest”, the highest score was
achieved in the “Control vs. Disease“ dataset with a score of 0.759, a sensitivity of 0.700,
and a specificity of 0.400.

Table 14. Average decision tree models for all datasets using five-fold stratified cross-validation.
Spec = specificity, CA = accuracy, Pr = precision, Sens = sensitivity. The first element of the dataset is
the positive attribute.

Dataset Average F1-Score F1-Score Spec CA Pr Sens

PTE vs. Control 0.603 0.609 1.000 0.611 0.708 0.730
Pneumonia vs. Control 0.736 0.733 0.600 0.800 0.733 0.733

PTE vs. Pneumonia 0.766 0.777 0.916 0.777 0.798 0.791

PTE vs. Rest 0.657 0.727 0.538 0.757 0.763 0.719
Pneumonia vs. Rest 0.636 0.619 0.571 0.625 0.619 0.619
Control vs. Diseases 0.744 0.759 0.400 0.906 0.950 0.700

Figures 4–7 depicts the decision tree graphs corresponding to those datasets with the
best F1-scores (see Table 14), that is, “PTE vs. Pneumonia”, “Control vs. Diseases”, and
“Pneumonia vs. Control”, as well as “PTE vs. Control”, which does not present one of the
best performances, but is of interest for specialists.

Figure 4 depicts the decision tree graph corresponding to “PTE vs. pneumonia”. It
can be observed that there are tree leaves that gather 91 out of 107 patients. From that,
two leaves correspond to 50 PTE patients (32 + 18) and 41 pneumonia patients. Hence,
to differentiate a patient with PTE from one with pneumonia, Equation (15) is suggested by
the decision tree algorithm.
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Condition =


PTE,

if TN ≤ 78.20 and
((UTI ≤ 67.41 and Sat ≤ 98) or
(UTI > 67.41 and Ur < 10.043))

Pneumonia,
if TN > 78.2 and Plat > 153.0

and PT > 11.3

(15)

where TN = “total neutrophils”, UTI = “ultrasensitive troponin I”, “Sat = saturation”,
Ur = “urea”, Plat = “platelets”, and PT = “prothrombin time”.

Figure 4. Decision tree graph of PTE vs. pneumonia, where N corresponds to the total of sub-
jects analyzed, T and F are correct and incorrect classifications, respectively, and N is the total of
patients evaluated.

Additionally, Equations (16) and (17) show the decision rules extracted from
Figures 5 and 6, respectively. Equation (16) gathers 64 out of 70 of the patients, that is,
45 (27 + 18) for PTE and 19 (15 + 4) for control. Alternatively, Equation (17) assembles 76
out of 80 of the patients, that is, 55 (51 + 4) from pneumonia and 21 (10 + 11) from control.

Condition =



PTE,
if (CO2 ≤ 22.397 and PLT ≤ 46.434) or

(CO2 > 22.397 and Mono > 5.75
and pH > 7.38)

Control,
if CO2 > 22.39 and

((Mono ≤ 5.75 and BF ≤ 21.983) or
(Mono > 5.75 and pH ≤ 7.38))

(16)

where PLT = “platelet test”, Mono = “monocytes”, BF = “breathing frequency”, pH =
“potential hydrogen”, and CO2 = “carbon dioxide”.

Condition =



Pneumonia,

if Eos ≤ 2.194 and
((ProTime > 12.3 and

Hema ≤ 55.35)
or (Protime ≤ 12.3 and

BF > 21.535))

Control,

if (Eos ≤ 2.194 and
ProTime ≤ 12.3

and BF ≤ 21.535) or
(Eos > 2.194 and Plat ≤ 312.5)

(17)
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where Eos = “eosinophils”, ProTime = “prothrombin time”, Hema = “hematocrit”, BF =
“breathing frequency”, and Plat = “platelets”.

Figure 5. Decision tree graph of the analysis for the group of PTE versus control, where N corresponds
to the total of subjects analyzed, T and F are correct and incorrect classifications, respectively, and N
is the total of patients evaluated.

Figure 6. Decision tree graph of the analysis for the group of pneumonia vs. control, where N corre-
sponds to the total of subjects analyzed, T and F are correct and incorrect classifications, respectively,
and N is the total of patients evaluated.

Finally, Figure 7 presents the DT graph for “Control vs. Disease”; the corresponding
rules are shown in Equation (18).
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Condition =



Control,

if (Eos ≤ 2.194 and
TPT ≤ 29.25 and SC ≤ 1.994) or

(Ecos > 2.194 and PCO2 > 33.195
and Pro > 0.628)

Disease,
if Eos ≤ 2.194 and

(TPT > 29.25 and PT > 11.05) or
(TPT ≤ 29.25 and SC > 1.994)

(18)

where Eos = “eosinophils”, TPT = “tromboplatin partial time”, PCO2 = “partial pressure of
carbon dioxide”, SC = “serum calcium”, Pro = “procalcitonin”, PT = “prothrombin time”.

Figure 7. Decision tree graph of the analysis for the group of control versus diseases, where N
corresponds to total subjects analyzed, T and F are correct and incorrect classifications, respectively,
and N is the total patients evaluated.

3.2. Unstructured Data

Based on the parameters found by a grid search (see Table 9), Table 15 shows the
result using the BiLSTM with six different experiments grouped by classification strategy
(1-group vs. rest and 1-group vs. 1-group). The evaluation was performed using a hold-out
methodology with a ratio split of 70–30%, performing 20 iterations. In every iteration,
the dataset’s split was performed randomly. The best F1-score for each group of datasets
is in bold.

Notice that the best performance is for differentiating control patients against patients
with either pneumonia or PTE (1-group vs. Rest). The second-best is the “Control vs.
Pneumonia” experiment, which is a particular case of the best-scoring experiment dataset.

Table 15. Average results (percentage) of the BiLSTM model with unstructured data for six different
binary datasets.

Group Accuracy Precision Recall F1-Score AUC

Control vs. Diseases 61.3 77.1 71.6 72.7 50.3
PTE vs. Rest 51.3 60.4 63.2 60.5 46.3

Pneumonia vs. Rest 48.6 56.3 60.5 57.0 46.6

Control vs. PTE 52.9 64.0 57.0 58.5 52.1
Control vs. Pneumonia 54.3 65.7 65.3 63.6 48.4

PTE vs. Pneumonia 51.7 56.7 56.7 55.9 47.9
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4. Discussion

The classification algorithm performance indicates the classifiers’ capacity to differen-
tiate between subjects with a particular condition (PTE vs. pneumonia) or between patients
with a specific condition and those considered as control. Since both classes are equally
important in this work, in the “1-group vs. 1-group” experiments, the AUC and CA were
used as evaluation metrics. Mainly, AUC was used to find the algorithm that reports the
best performance for each experiment when varying the classification threshold. On the
other hand, CA, along with the validation methodology, determines the models’ average
performance when varying the training and testing sets. In addition, considering that the
datasets are unbalanced in the “1-group vs. Rest” cases, F1-score is taken into account.
Regarding validation methodology, it will be discussed only for the leave-one-out results,
since they present both higher variability in the training and testing datasets and a larger
number of evaluations.

4.1. Structured Data
4.1.1. 1-Group vs. 1-Group

Regarding the “1-group vs. 1-group” experiments (see Table 12), observe that the
DPApC indicates that, on average, NB is the more adequate classification algorithm due
to it corresponding to the highest AUC average over all datasets (82.4%). Particularly,
the highest AUC (87.0%) was obtained by evaluating the dataset “PTE vs. pneumonia”,
which indicates that there are some laboratory variables that allow for distinguishing one
condition from the other. On the other hand, considering that the datasets are balanced,
CA should be taken into account to observe the behavior of the classifiers while varying
the training and testing datasets. Notice that contrary to the AUC experiment, the highest
average CA over all datasets was achieved by the SVM (75.7%), particularly, the highest
CA (82%) was achieved by the SVM classifier tested on the “Pneumonia vs. Control”
dataset. In regard to the NB algorithm, the CA corresponding to “PTE vs. pneumonia”
corresponds to the highest score (76.9%) among the other two datasets, “PTE vs. Control”
and “Pneumonia vs. Control” with the same classification metric. Conversely, the SVM
presents the second-best AUC (76.3%) corresponding to the dataset that presents the best
CA, “Pneumonia vs. Control”. It is worth noticing that the worst scores in AUC and CA
are presented for “PTE vs. Control”, which indicates that such classification is the more
difficult to perform.

4.1.2. 1-Group vs. Rest

With reference to the “1-group vs. Rest” experiments (see Table 13), notice that
the highest DPApC and CPApD AUC scores corresponds the NB and “Pneumonia vs.
Rest” experiments, with 80.7% and 76.7%, respectively; additionally, this combination of
experiment and classification algorithm scored the higher AUC among all other options
(86.3%), meaning that NB is the algorithm that obtains the best performance when varying
the classification threshold. On the other hand, considering that in the “1-group vs. Rest”
experiments, the datasets are unbalanced, F1-score is a good metric to observe; hence,
the best DPApC and CPApD corresponds to DT and “Control vs. Diseases” experiments,
with 77.9% and 80.0%, respectively, obtaining the highest score as well (87.5%).

It was also observed that the control patients present some of the best CA. obtaining
82.0% using SVM on the “Pneumonia vs. Control” dataset in the “1-group vs. 1-group”
experiment (see Table 12), and an F1-score of 87.5% using DT on the “Control vs. Disease”
dataset in the “1-group vs. Rest” experiments (see Table 13). It is noticeable that in all the
experiments that involved “Pneumonia vs. Control”, using either five-fold cross-validation
or leave-one-out, the same classification algorithms obtained better performances using
this dataset than training with the “PTE vs. Control” dataset. From this, it is feasible to
deduce that the laboratory variables used in this work to describe the PTE condition are
not enough, which agrees with the guidelines listed in [6] that advise having a compatible
clinical picture such as shortness of breath, chest pain, cough, hemoptysis, and tachypnea.
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In addition, arterial blood gas and cardiac enzyme studies are required to determine the
severity of the disease and a specialized imaging study of pulmonary angiotomography is
needed to confirm the diagnosis. This latter study is the gold standard for the diagnosis
of PTE, since it evidences the thrombus in the pulmonary arteries. On the other hand,
the diagnosis of pneumonia is advised to be carried out through shortness of breath, fever,
chills, and cough; a simpler imaging study, that is, a chest X-ray to corroborate the diagnosis;
and laboratory studies of hematology and clinical chemistry, as indicated by [11]. Therefore,
the complexity of the pulmonary thromboembolism diagnosis compared with pneumonia
is evident.

To the best of our knowledge, there is no previous work regarding the classification
of PTE vs. pneumonia; the closest work found was [20], where the author intended to
discriminate pneumonia vs. non-pneumonia in patients with COVID-19. The authors
of [20] reported a predictive rate of 77.1% using a backward stepwise logistic regression
model, which is lower than the CA of 82.0% scored by the SVM and near to the CA of 76.9%
scored by the NB both using the “Pneumonia vs. Control” (see Table 12). Additionally,
the authors of [20] reported the use of the decision tree algorithm on their classification
task; nonetheless, it is not clear which parameters were used for training the model, nor
what validation methodology was used. This is contrary to the present work, where
all decision tree parameters are presented, as well as the decision rules and validation
methodology. Additionally, their sample (50 patients) was lower than that of the present
work (173 patients).

4.1.3. Decision Rules

Regarding the decision rules obtained from the decision trees, Figure 4 shows the
result of the DT model trained with “PTE vs. Pneumonia” dataset. It is observed that
neutrophils above 78.2 are associated with infectious processes such as pneumonia, which
is derived from the activation of inflammatory cells during an inflammatory process. This is
why platelets are above 153 and why patients with PTE present lower total neutrophils [44].
Furthermore, ultrasensitive troponin I is used as a criterion for the stratification of the
severity of PTE, so it is expected that patients are in both deviations of the graph, as they
show low or high values based on the severity of the disease [6]. When the infectious
process is severe, it may present with elevated prothrombin time (>11.3), as observed in
the 41 patients classified with pneumonia by the model [45]. Finally, those patients with
lower neutrophils (<78.2), could be elderly patients, since they may not have elevated
neutrophils or elevated troponin and urea, which indicate a more severe disease, since
these patients may have a diffusion of several organs such as the heart and kidneys [46].
However, we can appreciate an imbalance in the classification of subjects with PTE by urea,
where 7 subjects out of 18 are misclassified. This is because urea is an attribute that is used
to classify the severity of pneumonia according to the CURB-65 scale [47], so the subjects
misclassified with PTE are actually subjects with non-severe pneumonia.

On the other hand, it was observed in Figure 5, “PTE vs. Control”, that the decision
begins with the value of CO2 ≤ 22,397 mmHg. It is known that pulmonary embolism
causes an increase in dead space due to a ventilation–perfusion imbalance, causing an
increase in arterial CO2 and activating medullary chemoreceptors that increase minute
ventilation, decreasing arterial CO2 and causing respiratory alkalosis, which is frequently
observed in patients with pulmonary thromboembolism [48]. The platelet count for patients
with PTE has values lower than 46.4. However, a value near 15 is still normal for healthy
patients [49].

In Figure 6 for “Pneumonia vs. Control”, the decision begins with the percentage of
eosinophils, which is associated with increased risk of pneumonia in patients with chronic
obstructive pulmonary disease [50]. A higher respiratory rate inclines the decision to
pneumonia; the respiratory rate is even a marker of severity included in some scales such as
CURB-65 [47]. It was observed that most of the patients with pneumonia have hematocrit
values below 55.35; this is because the control subjects are patients with various degrees of
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obesity whose disease is usually associated with insulin resistance that increases the level
of hemoglobin and hematocrit [51]. Obesity is also associated with polyglobulia, which is a
disease with elevated hematocrit [52].

The DT model for “Control vs. Diseases” (see Figure 7) shows that low eosinophils
(<2.1) are present in acute respiratory pathologies, as in patients with severe COVID-19,
who have presented values of up to zero eosinophils [53].

4.2. Unstructured Data

In the case of unstructured data analysis, there are no other works, presumably,
that address the classification problem of PTE vs. pneumonia using BiLSTM, so a direct
comparison is not available. However, some works use natural language processing
applied to different conditions; for example, the authors of [21] reported a BiLSTM that
achieved a recall of 0.15 with a precision of 0.145, 0.152, and 0.025 for predicting congestive
heart failure, kidney failure, and stroke. Compared with the present work, our proposal
overcomes their results by achieving 0.657 and 0.653 for precision and recall, respectively,
to predict “pneumonia vs. Control”; and 0.567 for precision and recall predicting “PTE
vs. pneumonia”. On the contrary, the authors of [22] reported an F1-score of around 0.84
when doing cardiovascular risk prediction; such a result is greater than the highest F1-
score presented in this work, which was achieved when training with the dataset “Control
vs. Diseases”. This behavior is common, since it is known that the same classification
methodologies do not always work for every problem. In addition, other variables that
could affect the performance of our model are the number of clinical notes analyzed,
as well as the limited availability of training corpus for the analysis of clinical text in
Spanish [54]; even when using corpus in Spanish, if the corpus is from a different region,
for example, Spain, such differences will impose certain language limitations, which will
be reflected in the BiLSTM model. This is the case in the present work.

5. Conclusions

For medical staff, pneumonia and pulmonary thromboembolism diagnosis is a chal-
lenge due to the similarity of symptoms. The information contained in electronic health
records is helpful to carry out that diagnosis; however, this information is extensive and
heterogeneous, making it complicated for an expert to analyze it all. In this work, we
performed automatic classification of these respiratory diseases using machine-learning
techniques and data obtained from the EHRs, considering structured (laboratory informa-
tion) and unstructured data (patient clinical history in Spanish).

Regarding the structured data or laboratory variables, the obtained results in the 1-vs.-
1 experiment showed that using the naïve Bayes model, it is possible to distinguish PTE vs.
pneumonia with more precision, according to the AUC metric. In the 1-vs.-Rest approach,
it was observed that there is greater complexity in diagnosing PTE than pneumonia. On the
other hand, even though the decision tree algorithm does not present the best performance,
it has the advantage of a visual description that might be used by the specialist to perform
a diagnosis; in this sense, the model considered the neutrophils variable as the most
important feature to distinguish between PTE and pneumonia.

Concerning unstructured data or clinical text, the classification of PTE vs. pneumonia
using the BiLSTM model does not present good performance, achieving a precision of
57.6%. This low performance could be related to the limited availability of training corpus
for the analysis of clinical text in Spanish.

Some limitations can be found in this work, for example, the use of WE built using
Spanish from Spain. It would be preferable to build a WE from scratch using notes that
use Mexican Spanish. Furthermore, the number of records expected was between 155 to
310 per condition; however, it was not possible to obtain the desired number of patients per
condition, so a greater amount of EHRs will be used in future works. Only the “1-group vs.
1-group” and “1-group vs. Rest” strategies were explored; building a three-class model
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would be interesting. Finally, a combination of structured data and unstructured data
would be interesting for future work.
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USA United States of America
PTE Pulmonary Thromboembolism
VTE Venous Thromboembolism
IMSS Mexican Social Security Institute (by its acronym in Spanish)
EHR Electronic Health Records
KDD Knowledge Discovery From Data
ML Machine Learning
NLP Natural Language Processing
ICD-9 International Classification of Disease, Ninth Revision
ICD-10 International Classification of Disease, Tenth Revision
RNN Recurrent Neural Network
LSTM Long-Short Term Memory
ARDS Respiratory Distress Syndrome
AUC-ROC Area Under Curve-Receiver Operating Characteristic
SVM Support Vector Machine
API Asthma Predictive Index
WE Word Embeddings
RF Random Forest
PDF Portable Document Format
NB Naïve Bayes
NSS Social Security Number (by its acronym in Spanish)
DT Decision Tree
ANN Artificial Neural Network
SGD Stochastic Gradient Descent
CBOW Continuous Bag of Words
BiLSTM Bidirectional Long-Short Term Memory
CA Classification Accuracy
DPApC Dataset Performance Average per Classifier

https://www.mdpi.com/article/10.3390/diagnostics12102536/s1
https://www.mdpi.com/article/10.3390/diagnostics12102536/s1


Diagnostics 2022, 12, 2536 23 of 25

CPApD Classifier Performance Average per Dataset
TN Total Neutrophils
UTI Ultrasensitive Troponin I
Sat Saturation
Ur Urea
Plat Platelets
PT Prothrombin Time
PLT Platelet Test
Mono Monocytes
BF Breathing Frequency
pH Potential Hydrogen
CO2 Carbon Dioxide
Eos Eosinophils
ProTime Prothrombin Time
Hema Hematocrit
TPT Tromboplatin Partial Time
PCO2 Partial Pressure of Carbon Dioxide
SC Serum Calcium
Pro Procalcitonin
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