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Abstract: (1) Background: To evaluate the effects of an AI-based denoising post-processing software
solution in low-dose whole-body computer tomography (WBCT) stagings; (2) Methods: From
1 January 2019 to 1 January 2021, we retrospectively included biometrically matching melanoma
patients with clinically indicated WBCT staging from two scanners. The scans were reconstructed
using weighted filtered back-projection (wFBP) and Advanced Modeled Iterative Reconstruction
strength 2 (ADMIRE 2) at 100% and simulated 50%, 40%, and 30% radiation doses. Each dataset was
post-processed using a novel denoising software solution. Five blinded radiologists independently
scored subjective image quality twice with 6 weeks between readings. Inter-rater agreement and
intra-rater reliability were determined with an intraclass correlation coefficient (ICC). An adequately
corrected mixed-effects analysis was used to compare objective and subjective image quality. Multiple
linear regression measured the contribution of “Radiation Dose”, “Scanner”, “Mode”, “Rater”, and
“Timepoint” to image quality. Consistent regions of interest (ROI) measured noise for objective
image quality; (3) Results: With good–excellent inter-rater agreement and intra-rater reliability
(Timepoint 1: ICC ≥ 0.82, 95% CI 0.74–0.88; Timepoint 2: ICC ≥ 0.86, 95% CI 0.80–0.91; Timepoint 1
vs. 2: ICC ≥ 0.84, 95% CI 0.78–0.90; all p ≤ 0.001), subjective image quality deteriorated significantly
below 100% for wFBP and ADMIRE 2 but remained good–excellent for the post-processed images,
regardless of input (p ≤ 0.002). In regression analysis, significant increases in subjective image quality
were only observed for higher radiation doses (≥0.78, 95%CI 0.63–0.93; p < 0.001), as well as for the
post-processed images (≥2.88, 95%CI 2.72–3.03, p < 0.001). All post-processed images had significantly
lower image noise than their standard counterparts (p < 0.001), with no differences between the
post-processed images themselves. (4) Conclusions: The investigated AI post-processing software
solution produces diagnostic images as low as 30% of the initial radiation dose (3.13 ± 0.75 mSv),
regardless of scanner type or reconstruction method. Therefore, it might help limit patient radiation
exposure, especially in the setting of repeated whole-body staging examinations.

Keywords: computed tomography; tumor staging; AI (artificial intelligence); image quality enhancement;
protection; radiation

1. Introduction

Due to repeated follow-up examinations to monitor therapy, the most common indica-
tion for whole-body computed tomography (WBCT) is malignant diseases [1]. However,
the substantial contribution of WBCT to the patients’ overall radiation exposure led to a
growing concern in recent years regarding difficultly predictable long-term harms [2–4].
This concern is especially elevated in cancer patients, where studies show a significant
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rise in lifetime mortality from radiation-induced secondary malignancies [5,6]. Adjusting
radiation dose exposure from radiological examinations “as low as reasonably achievable”
(ALARA) has hence been the topic of a multitude of studies [7–9]. However, reducing the
radiation dose in computed tomography is indivisibly linked to image quality deterioration
due to rising image noise [10]. The limits of conventional reconstruction methods for
image quality enhancements in low-dose computed tomography have previously been
explored [11]. More recently, however, the advent of AI-based post-processing denoising
solutions show promising results for further image quality enhancement [12–14]. However,
as conventional reconstruction methods, novel AI-based techniques have specific charac-
teristics and caveats essential to consider, such as reduced spatial information, blurring,
and possible loss of information [15]. Therefore, recent review articles have pointed out
the necessity to research the utility of such solutions on a use case level [16,17]. In the
setting of metastatic melanoma, organ metastases are an essential determinant for overall
survival, regardless of primary tumor location [18]. However, facilitating low-dose WBCT
for patients with metastatic melanoma is no easy task, as rising image noise can severely
complicate proper visual assessment [19]. This study aimed to evaluate the effects of an
AI denoising algorithm on image quality in WBCT stagings of melanoma patients (ocular
and cutaneous). We hypothesize that the software may produce diagnostic images at low
radiation doses beyond the limits of conventional reconstruction methods and thus help
limit radiation exposure.

2. Materials and Methods
2.1. Study Design, Population, and Radiation Dose

The institutional review board approved retrospective image data collection for this
single-center study’s purpose with a waiver for the need for informed consent (#414/2017BO2).
Therefore, from 1 January 2019 to 1 January 2021, we retrospectively included melanoma
patients with clinically indicated WBCT staging from two scanners from our clinical routine.
First, we collected the patients’ age, sex, height, and weight and computed their body mass
index (BMI in kg/m2). Next, we selected 60 patients per scanner from the initial patient
inclusion with exactly matching biometric profiles (same age, same sex, same BMI). Then,
from the dose reports of the WBCT, we collected the Computer Tomography Dose Index
(CTDIvol in mGy) and the dose-length product (DLP in mGy × cm) and computed the
effective radiation dose (ED in mSv) using appropriate weighting factors [20].

2.2. Image Acquisition and Reconstruction Parameters

We used CT examinations from two CT scanners for this study: SOMATOM Definition
AS+ and SOMATOM Force (Siemens Healthineers, Erlangen, Germany). Both scanners
employed attenuation-based tube current modulation (CARE Dose4D, reference mAs 190)
and automatic tube voltage selection (80–120 kV, reference kV 110). On SOMATOM Defini-
tion AS+, collimation was set to 0.6 × 64 mm, and on SOMATOM Force to 0.6 × 96 mm.
Pitch was 0.6, gantry rotation time was 0.5 s, and matrix size was 512 for both CT scan-
ners. For the WBCT stagings, the patients were positioned head-first on their back with
elevated arms. All analyzed scans were contrast-enhanced using Imerone 400 (Bracco,
Milan, Italy). An automated power injector applied the contrast medium through a pe-
ripheral venous cannula at a flow rate of 2.2 ± 0.5 mL/s (CT Stellant, Medrad, Indianola,
PA, USA) followed by a chaser of 50 mL saline. Images were acquired in a portal venous
phase at 80–90 s after administration of contrast medium. The WBCT images from both
scanners were reconstructed with equivalent medium-soft kernels (Br36f for SOMATOM
Definition AS+ and Bf40d for SOMATOM Force) in axial orientation with a slice thickness
and an increment of 1 mm. We used two conventional reconstruction methods (weighted
filtered back-projection (wFBP) and Advanced Modeled Iterative Reconstruction strength 2
(ADMIRE®, Siemens Healthineers, Erlangen, Germany)) for image reconstruction. All
reconstructions were performed offline using a dedicated software solution (ReconCT ver.
14.2.0.4998, Siemens Healthineers, Erlangen, Germany) that allows for retrospective noise
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insertion to simulate acquisition at lower tube currents (mAs). In addition to full radiation
dose reference datasets (100% mAs), we thus simulated 50%, 40%, and 30% radiation dose.
Furthermore, a novel AI-based post-processing software solution (PixelShine®, AlgoMed-
ica, Sunnyvale, CA, USA) was used to denoise all WBCT images, resulting in four datasets
per radiation dose level and 16 datasets per examination.

2.3. Image Quality Analysis
2.3.1. Subjective Image Quality

The patient datasets were anonymized and randomized by a group member otherwise
not associated with subjective image quality analysis. Five readers with different experience
levels in WBCT staging independently rated subjective image quality on a 5-point Likert
scale (1 = poor, 2 = subpar, 3 = fair, 4 = good, 5 = excellent) according to the diagnostic
requirements mentioned in the chapters “Chest, General” and “Abdomen, General” of the
European Guidelines on Image Quality in Computed Tomography [21]. Each reader rated
the datasets two times with six weeks between each session.

2.3.2. Objective Image Quality

Objective image quality analysis was performed in MatLab (Ver. R2021a, The Math-
Works, Natick, MA, USA), using a previously described, custom-built script [22]. This
script allows for consistent region of interest (ROI) measurements across matching sets of
examinations. We placed 6 ROI in homogenous areas of paraspinal muscles in 5 consecutive
slices. The MatLab script automatically extracted mean CT numbers in Hounsfield units
(HU) and their standard deviations (SD) per ROI. The SD of HU was defined as image
noise and used to measure objective image quality.

2.4. Statistical Analysis

Statistical analysis and illustration were performed using GraphPad Prism version
9.3 for Windows (GraphPad Software, San Diego, CA, USA). Data distribution was tested
using the Shapiro–Wilk test. Normally distributed variables were expressed as mean ± SD,
and non-normally distributed variables as median and interquartile range (IQR). Data
analysis ensued using a mixed-effects model with Greenhouse–Geisser correction in case
of violation of sphericity. In addition, Bonferroni correction was used for multiple compar-
isons to counteract type 1 error increase. An adjusted p-value ≤ 0.05 indicated statistical
significance. Multiple linear regression with three-way interactions was utilized to inves-
tigate the contribution of the variables “Effective Radiation Dose” (ED in mSv, reference
category 30%), “Scanner” (CT scanner, reference category SOMATOM Definition AS+),
“Mode” (reconstruction/post-processing mode, reference category wFBP), “Rater” (refer-
ence category Rater 1), and “Timepoint” (first/second subjective rating, reference category
timepoint 1) to subjective image quality. The utility and goodness-of-fit of the multiple lin-
ear regression model were measured using analysis of variance (ANOVA), adjusted R2, and
the standard deviation of the residuals (Sy.x). R2 values of ≤0.13 were considered indicative
for poor, 0.13–0.26 for moderate, and ≥0.26 for high goodness-of-fit [23]. To quantify the
subjective image quality scores’ inter-rater agreement and intra-rater variability, we used
an intraclass correlation coefficient (ICC, two-way mixed, absolute agreement, average
measures) with 95% confidence intervals (95%CI) [24]. ICC values of 0–0.5 were considered
poor, 0.51–0.74 moderate, 0.75–0.9 good, and 0.91–1.00 excellent levels of agreement.

3. Results
3.1. Study Population and Radiation Dose

The initial database search (keywords: “melanoma staging”) revealed a total of
1873 melanoma patients (ocular and cutaneous) with clinically indicated CT staging from
1 January 2019 to 1 January 2021 on two scanners (SOMATOM Definition AS+, SOMATOM
Force) for eligibility assessment. If patients had more than one WBCT in the given time-
frame, only the first scan was included, and the others (duplicates) were excluded. We
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selected all patients with exactly matching biometric profiles (same age, same sex, same
BMI) and excluded all patients without exact match. Further exclusion criteria were no
portal venous phase, no whole-body CT, and non-contrast-enhanced examinations. Thus,
1753 patients were excluded, and 120 patients were enrolled in the study (60 patients per
scanner). For details about our study population (see Table 1). Figure 1 visualizes the study
workflow and the patient enrollment.
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Table 1. Patient characteristics and radiation dose.

Female Male Overall

SO
M

A
TO

M
D

efi
ni

ti
on

A
S+

Patient characteristics
N 30 30 60

Age 63 ± 12 59 ± 16 61 ± 14
BMI 26 ± 3 27 ± 2 26 ± 3

Radiation dose
CTDIvol (mean ± SD) 4.31 ± 0.95 4.46 ± 0.94 4.38 ± 0.95

DLP (mean ± SD) 746.63 ± 165.58 759.54 ± 168.45 753.08 ± 167.15
ED (mean ± SD)

100% mAs 10.72 ± 2.53 11.39 ± 2.53 11.05 ± 2.55
50% mAs 5.36 ± 1.27 5.70 ± 1.26 5.53 ± 1.28
40% mAs 4.29 ± 1.01 4.56 ± 1.01 4.43 ± 1.02
30% mAs 3.22 ± 0.76 3.42 ± 0.76 3.32 ± 0.77

SO
M

A
TO

M
Fo

rc
e

Patient characteristics
N 30 30 60

Age 63 ± 12 59 ± 16 61 ± 14
BMI 26 ± 3 27 ± 2 26 ± 3

Radiation dose
CTDIvol (mean ± SD) 4.15 ± 0.97 4.32 ± 0.97 4.22 ± 0.97

DLP (mean ± SD) 714.42 ± 168.85 726.78 ± 171.77 720.60 ± 170.43
ED (mean ± SD)

100% mAs 9.17 ± 2.17 9.59 ± 2.13 9.38 ± 2.16
50% mAs 4.59 ± 1.08 4.79 ± 1.06 4.69 ± 1.08
40% mAs 3.67 ± 0.87 3.83 ± 0.85 3.75 ± 0.86
30% mAs 2.75 ± 0.65 2.88 ± 0.64 2.81 ± 0.65

N = number; SD = standard deviation; BMI = body mass index (kg/m2); CTDIvol = Computer Tomography Dose
Index (mGy); DLP = dose length product (mGy x cm); ED = effective radiation dose (mSv).

3.2. Image Quality Analysis
3.2.1. Subjective Image Quality

On SOMATOM Definition AS+, overall subjective image quality at 100% radiation
dose was good (4 (4–4)) for wFBP and good (4 (4–4)) for ADMIRE 2. These ratings decreased
to poor at 30% radiation dose (1 (1–2)) for both reconstruction modes. The post-processed
images had good image quality (4 (4–5)) at each radiation dose. On SOMATOM Force,
overall subjective image quality at 100% radiation dose was good (4 (4–5)) for wFBP and
excellent (5 (4–5)) for ADMIRE 2. At 30% radiation dose, these ratings decreased to poor
(1 (1–2)) for wFBP and subpar (2 (1–2)) for ADMIRE 2. At 100%, both post-processed
images from both reconstruction modes were rated excellent (≥5 (4–5)), decreasing to good
(4 (4–5)) image quality at lower radiation doses. Regardless of CT scanner, radiation dose,
or reconstruction mode, mixed-effects analysis with pairwise comparisons showed no
significant differences between the subjective image quality ratings of all post-processed
images (p ≥ 0.069), as well as between the post-processed images and the 100% wFBP
and ADMIRE 2 images (p ≥ 0.245). While the subjective image quality ratings overall
deteriorated significantly for decreasing radiation dose (p ≤ 0.002), there were no signifi-
cant differences between wFBP and ADMIRE 2 at each level (p ≥ 0.611). The inter-rater
agreement and the intra-rater reliability of the subjective image quality ratings were good
to excellent (Timepoint 1: ICC ≥ 0.82, 95% CI 0.74–0.88; Timepoint 2: ICC ≥ 0.86, 95% CI
0.80–0.91; Timepoint 1 vs. 2: ICC ≥ 0.84, 95% CI 0.78–0.90; all p ≤ 0.001). Table 2 shows
further details about the ratings for each timepoint, the inter-rater agreement, and the
intra-rater reliability.
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Table 2. Subjective image quality ratings, inter-rater-agreement, and intra-rater reliability.

Timepoint 1 Timepoint 1 Timepoint 1 vs. 2
Rating Inter-Rater Agreement Rating Inter-Rater Agreement Intra-Rater Reliability

ED Mode Median
(IQR) ICC (95% CI) p Median

(IQR) ICC (95% CI) p ICC (95% CI) p

SO
M

A
TO

M
D

efi
ni

ti
on

A
S+

100%

wFBP 4 (4–4) 0.97 (0.96–0.98) <0.001 4 (3–4) 0.95 (0.93–0.97) <0.001 0.98 (0.97–0.99) <0.001
ADMIRE 2 4 (4–5) 0.96 (0.94–0.98) <0.001 4 (4–5) 0.96 (0.95–0.98) <0.001 0.98 (0.97–0.98) <0.001
wFBP + PS 4 (4–5) 0.97 (0.96–0.98) <0.001 4 (4–5) 0.86 (0.80–0.91) <0.001 0.98 (0.97–0.98) <0.001

ADMIRE 2 + PS 4 (4–5) 0.97 (0.95–0.98) <0.001 4 (4–5) 0.93 (0.90–0.96) <0.001 0.98 (0.98–0.99) <0.001

50%

wFBP 3 (3–3) 0.98 (0.98–0.99) <0.001 3 (2–3) 0.98 (0.97–0.99) <0.001 0.98 (0.98–0.99) <0.001
ADMIRE 2 3 (3–4) 0.98 (0.97–0.99) <0.001 3 (3–4) 0.97 (0.95–0.98) <0.001 0.98 (0.97–0.99) <0.001
wFBP + PS 4 (4–5) 0.94 (0.92–0.96) <0.001 4 (4–5) 0.89 (0.83–0.93) <0.001 0.94 (0.92–0.96) <0.001

ADMIRE 2 + PS 4 (4–5) 0.95 (0.93–0.97) <0.001 4 (4–5) 0.93 (0.90–0.96) <0.001 0.95 (0.93–0.97) <0.001

40%

wFBP 2 (2–2) 0.98 (0.97–0.99) <0.001 2 (1–2) 0.97 (0.95–0.98) <0.001 0.99 (0.98–0.99) <0.001
ADMIRE 2 2 (2–2) 0.99 (0.98–0.99) <0.001 2 (2–3) 0.96 (0.94–0.97) <0.001 0.98 (0.97–0.99) <0.001
wFBP + PS 4 (4–5) 0.92 (0.89–0.95) <0.001 4 (4–5) 0.91 (0.87–0.94) <0.001 0.92 (0.88–0.95) <0.001

ADMIRE 2 + PS 4 (4–5) 0.95 (0.93–0.97) <0.001 4 (4–5) 0.95 (0.92–0.96) <0.001 0.95 (0.92–0.96) <0.001

30%

wFBP 1 (1–1) 0.99 (0.98–0.99) <0.001 1 (1-1) 0.96 (0.94–0.97) <0.001 0.98 (0.97–0.99) <0.001
ADMIRE 2 1 (1–2) 0.97 (0.96–0.98) <0.001 1 (1-2) 0.96 (0.94–0.97) <0.001 0.98 (0.97–0.99) <0.001
wFBP + PS 4 (4–5) 0.91 (0.87–0.94) <0.001 4 (4-5) 0.96 (0.94–0.98) <0.001 0.91 (0.87–0.94) <0.001

ADMIRE 2 + PS 4 (4–5) 0.95 (0.92–0.96) <0.001 4 (4-5) 0.98 (0.97–0.98) <0.001 0.94 (0.92–0.96) <0.001

SO
M

A
TO

M
Fo

rc
e

100%

wFBP 4 (4–5) 0.98 (0.97–0.99) <0.001 4 (4–5) 0.98 (0.97–0.99) <0.001 0.99 (0.98–0.99) <0.001
ADMIRE 2 5 (4–5) 0.95 (0.92–0.97) <0.001 5 (4–5) 0.96 (0.95–0.98) <0.001 0.96 (0.95–0.98) <0.001
wFBP + PS 5 (4–5) 0.82 (0.74–0.88) <0.001 5 (4–5) 0.89 (0.84–0.93) <0.001 0.84 (0.78–0.90) <0.001

ADMIRE 2 + PS 5 (5–5) 0.91 (0.86–0.94) <0.001 5 (4–5) 0.91 (0.87–0.94) <0.001 0.85 (0.79–0.90) <0.001

50%

wFBP 3 (3–4) 0.99 (0.98–0.99) <0.001 3 (3–4) 0.98 (0.97–0.99) <0.001 0.99 (0.98–0.99) <0.001
ADMIRE 2 4 (3–4) 0.96 (0.94–0.97) <0.001 4 (3–4) 0.95 (0.93–0.97) <0.001 0.97 (0.96–0.98) <0.001
wFBP + PS 4 (4–5) 0.92 (0.88–0.95) <0.001 4 (4–5) 0.91 (0.88–0.94) <0.001 0.84 (0.77–0.89) <0.001

ADMIRE 2 + PS 4 (4–5) 0.94 (0.92–0.96) <0.001 4 (4–5) 0.83 (0.75–0.89) <0.001 0.88 (0.83–0.92) <0.001

40%

wFBP 2 (2–3) 0.99 (0.99–1.00) <0.001 2 (2–3) 0.98 (0.96–0.98) <0.001 0.99 (0.98–0.99) <0.001
ADMIRE 2 3 (2–3) 0.98 (0.97–0.99) <0.001 3 (2–3) 0.95 (0.92–0.97) <0.001 0.97 (0.96–0.98) <0.001
wFBP + PS 4 (4–5) 0.92 (0.88–0.94) <0.001 4 (4–5) 0.86 (0.80–0.91) <0.001 0.86 (0.80–0.91) <0.001

ADMIRE 2 + PS 4 (4–5) 0.93 (0.89–0.95) <0.001 4 (4–5) 0.9 (0.85–0.93) <0.001 0.85 (0.79–0.90) <0.001

30%

wFBP 1 (1–2) 0.98 (0.97–0.99) <0.001 1 (1–2) 0.97 (0.96–0.98) <0.001 0.99 (0.99–0.99) <0.001
ADMIRE 2 2 (1–2) 0.96 (0.94–0.97) <0.001 2 (1–2) 0.93 (0.89–0.95) <0.001 0.98 (0.97–0.99) <0.001
wFBP + PS 4 (4–5) 0.86 (0.80–0.91) <0.001 4 (4–5) 0.92 (0.88–0.95) <0.001 0.87 (0.82–0.91) <0.001

ADMIRE 2 + PS 4 (4–5) 0.92 (0.88–0.95) <0.001 4 (4–5) 0.95 (0.92–0.96) <0.001 0.93 (0.90–0.95) <0.001

ED = effective radiation dose; wFBP = weighted filtered back-projection; ADMIRE 2 = Advanced Modeled Iterative
Reconstruction strength 2; PS = PixelShine; ICC = intraclass correlation coefficient; 95% CI = 95% confidence
interval; p = significance level.

The multiple linear regression model was able to predict subjective image quality
(F (178; 19 021) = 364; p < 0.001) and showed a high goodness-of-fit (adjusted R2 = 0.77,
Sy.x = 0.62). The variables “Scanner: SOMATOM Force”, “Mode: Admire 2”, “Rater: Rater
2–5”, and “Timepoint: Timepoint 2” did not contribute to increases in subjective image
quality (p > 0.564). Significant increases in subjective image quality were observed for
higher radiation doses (≥0.78, 95%CI 0.63–0.93 points; p < 0.001), as well as for “Mode:
ADMIRE 2 + PS” (2.88, 95%CI 2.72–3.03 points, p < 0.001) and “Mode: wFBP + PS” (3.06,
95%CI 2.91–3.21 points, p < 0.001). Table 3 shows additional regression metrics. Figure 2
shows pooled subjective image quality ratings (all raters, all timepoints, all scanners) as a
function of “Effective Radiation Dose” and “Mode”.

Figure 3 shows comparison images for both scanners across all radiation dose levels
and reconstruction modes. Of note is the consistent image quality of the post-processed
images when compared to conventional methods, with only minor decreases in image
sharpness below 100%.
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Table 3. Linear regression metrics: subjective image quality.

Variable B SE 95% CI |t| p

Intercept 1.21 0.06 1.09–1.33 20.1 <0.001

ED (reference: 30%)
40% 0.78 0.08 0.63–0.93 10.1 <0.001
50% 1.78 0.08 1.63–1.93 23 <0.001
100% 2.78 0.08 2.63–2.93 35.9 <0.001

Scanner (reference: SOMATOM Definition AS+)
SOMATOM Force 0.22 0.07 0.09–0.35 3.26 0.053

Mode (reference: wFBP)
ADMIRE 2 0.04 0.08 −0.11–0.2 0.58 0.564

ADMIRE 2 + PS 2.88 0.08 2.72–3.03 37.2 <0.001
wFBP + PS 3.06 0.08 2.91–3.21 39.6 <0.001

Rater (reference: Rater 1)
Rater 2 0.01 0.08 –0.16–0.16 0 >0.999
Rater 3 0.01 0.08 –0.16–0.16 0 >0.999
Rater 4 0.01 0.08 –0.14–0.17 0.15 0.882
Rater 5 0.01 0.08 –0.16–0.16 0 >0.999

Timepoint (reference: Timepoint 1)
Timepoint 2 0.03 0.07 –0.1–0.16 0.46 0.648

B = estimate; SE = standard error; 95% CI = 95% confidence interval; |t| = absolute value of t statistics, p =
significance level; ED = effective radiation dose; Mode = reconstruction/postprocessing mode; wFBP = weighted
filtered back-projection; ADMIRE 2 = Advanced Modeled Iterative Reconstruction strength 2; PS = PixelShine;
Timepoint = time of subjective image quality rating.
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3.2.2. Objective Image Quality

For both scanners, wFBP reconstructions had significantly higher image noise than
ADMIRE 2 reconstructions at each radiation dose level (p < 0.001). Nevertheless, direct com-
parisons of image noise from wFBP and ADMIRE 2 reconstructions between SOMATOM
AS+ and SOMATOM Force showed no significant differences (p ≥ 0.987). Furthermore, all
post-processed images had significantly lower image noise than the standard wFBP and AD-
MIRE 2 reconstructions (p < 0.001), with no differences between the post-processed images
themselves, regardless of scanner type, radiation dose, or reconstruction mode (p ≥ 0.255).
Table 4 shows mean image noise values of all datasets with pairwise comparisons be-
tween each scanner group (SOMATOM Definition AS+ vs. SOMATOM Definition AS+,
SOMATOM Force vs. SOMATOM Force). Figure 4 visualizes the measured noise levels.

Table 4. Mean noise levels and pairwise noise comparisons.

Noise p (Two-Sided, Adjusted) vs. 100% ED

ED Mode Mean ± SD wFBP ADMIRE 2 wFBP + PS ADMIRE 2 + PS

SO
M

A
TO

M
D

efi
ni

ti
on

A
S+

100%

wFBP 12.85 ± 1.63 <0.001 <0.001 <0.001
ADMIRE 2 10.75 ± 1.36 <0.001 <0.001 <0.001
wFBP + PS 7.8 ± 0.13 <0.001 <0.001 0.423
ADMIRE 2 + PS 7.8 ± 0.13 <0.001 <0.001 0.423

50%

wFBP 17.99 ± 2.51 <0.001 <0.001 <0.001 <0.001
ADMIRE 2 15.05 ± 2.11 <0.001 <0.001 <0.001 <0.001
wFBP + PS 7.8 ± 0.15 <0.001 <0.001 0.936 0.943
ADMIRE 2 + PS 7.8 ± 0.15 <0.001 <0.001 0.860 0.991

40%

wFBP 20.06 ± 2.89 <0.001 <0.001 <0.001 <0.001
ADMIRE 2 16.78 ± 2.42 <0.001 <0.001 <0.001 <0.001
wFBP + PS 7.8 ± 0.18 <0.001 <0.001 0.947 0.941
ADMIRE 2 + PS 7.8 ± 0.17 <0.001 <0.001 0.963 0.969

30%

wFBP 23.07 ± 3.46 <0.001 <0.001 <0.001 <0.001
ADMIRE 2 19.29 ± 2.89 <0.001 <0.001 <0.001 <0.001
wFBP + PS 7.8 ± 0.2 <0.001 <0.001 0.980 0.981
ADMIRE 2 + PS 7.8 ± 0.2 <0.001 <0.001 0.979 0.969

SO
M

A
TO

M
Fo

rc
e

100%

wFBP 12.35 ± 1.57 <0.001 <0.001 <0.001 <0.001
ADMIRE 2 10.73 ± 1.36 <0.001 <0.001 <0.001
wFBP + PS 7.8 ± 0.13 <0.001 <0.001 0.422
ADMIRE 2 + PS 7.8 ± 0.12 <0.001 <0.001 0.422

50%

wFBP 17.29 ± 2.42 <0.001 <0.001 <0.001 <0.001
ADMIRE 2 15.02 ± 2.11 <0.001 <0.001 <0.001 <0.001
wFBP + PS 7.8 ± 0.15 <0.001 <0.001 0.927 0.807
ADMIRE 2 + PS 7.8 ± 0.14 <0.001 <0.001 0.920 0.927

40%

wFBP 19.27 ± 2.78 <0.001 <0.001 <0.001 <0.001
ADMIRE 2 16.74 ± 2.41 <0.001 <0.001 <0.001 <0.001
wFBP + PS 7.8 ± 0.17 <0.001 <0.001 0.930 0.868
ADMIRE 2 + PS 7.8 ± 0.17 <0.001 <0.001 0.936 0.895

30%

wFBP 22.17 ± 3.32 <0.001 <0.001 <0.001 <0.001
ADMIRE 2 19.26 ± 2.89 <0.001 <0.001 <0.001 <0.001
wFBP + PS 7.8 ± 0.19 <0.001 <0.001 0.936 0.897
ADMIRE 2 + PS 7.8 ± 0.19 <0.001 <0.001 0.978 0.978

ED = effective radiation dose; SD = standard deviation; mAs = tube current; wFBP = weighted Filtered Back
Projection; ADMIRE 2 = Advanced Modeled Iterative Reconstruction strength 2; PS = PixelShine.
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Figure 5 visualizes image quality aspects in the setting of a hepatic melanoma metasta-
sis (marked with red arrows) in a 54-year-old woman at different radiation dose levels using
conventional reconstruction methods (top row) and post-processing (bottom row). Note
the highly enhanced image quality in the post-processed images, facilitating diagnostic
assessment as low as 30% of the initial radiation dose.
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4. Discussion

In CT imaging, radiation dose reduction is vital to promote patient safety and minimize
the risk for difficultly predictable long-term harms, especially for secondary malignancies.
However, radiation dose reduction is indivisibly linked with image quality deterioration
due to increasing image noise. Thus, balancing safety versus image quality can be difficult,
especially in cancer patients who need repeated follow-up whole-body CT scans. This
study evaluated an AI-based post-processing denoising software solution regarding image
quality compared to conventional reconstruction methods. Regardless of input radiation
dose or scanner type, the software offered a significantly larger dose reduction potential
than wFBP and ADMIRE reconstruction. In our study, subjective image quality analysis
confirmed decreases at lower radiation doses for conventional reconstruction methods but
showed high subjective image quality for the post-processed images. These results are in
line with previous studies. Shin et al. reported excellent image quality at 50% radiation
dose without significant differences to their 100% reference ADMIRE reconstruction [25].
Converting their results into effective radiation dose, they measured lower absolute dose
levels at 50% in comparison with what we did at 30% in our study. However, it is worth
pointing out that they investigated abdominal CT scans instead of whole-body scans. Al-
though there was no statistical significance in the decrease from excellent to good image
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quality on SOMATOM Force, it is still noteworthy that there was a slight drop in image
quality from 100% to 50%. In the post hoc unblinded results discussion, our readers pointed
out this might have mostly been due to slightly decreasing image sharpness. As image
sharpness was already part of our subjective image quality assessment criteria, we did
not further investigate this effect. Previous studies have nonetheless described similar
results. Shin et al. reported a significant loss of spatial resolution at radiation doses below
50% [25]. Furthermore, Kang et al. indicated a significant blurring effect that may be
introduced by denoising [26]. However, it is noteworthy that our setup used a newer CT
scanner generation than both these studies. Therefore, we hypothesize this effect to be more
prevalent in older scanner generations. As expected, multiple linear regression showed
significant image quality increases for rising radiation doses. Interestingly, the model
showed that the different scanners used in this study, and the conventional reconstruction
modes did not significantly increase subjective image quality. A significant contribution to
image quality was observed for the post-processing algorithm, with the highest estimate
for wFBP + PixelShine. Previous studies have described similar results with higher image
quality enhancement potentials for wFBP than ADMIRE reconstructions. Hata et al., for ex-
ample, described relatively smaller image quality improvements for model-based iterative
reconstruction input images than for wFBP images when using denoising algorithms [27].
In conjunction with the results of previous studies, they argued wFBP images have a greater
room for improvement than iteratively reconstructed images [28]. Looking at the multiple
linear regression estimates in synopsis with our study’s subjective image quality analysis
scores, we found that ADMIRE reconstructions predominantly received higher scores than
their wFBP counterparts. Therefore, we conclude that this result is due to the relational
nature of multiple linear regression itself. As expected, in objective image quality analysis,
we measured significantly lower noise levels for the post-processed datasets than for con-
ventional reconstruction methods. It is, however, essential to reinforce the fact that these
results were stable, regardless of scanner type or radiation dose. Especially in the setting
of repeated CT examinations to monitor tumor treatment, the investigated algorithm can
contribute significantly to radiation dose reduction and thus potentially decrease the risk of
secondary malignancies. In our study, the investigated algorithm facilitated significantly re-
duced radiation doses in the setting of repeated WBCT staging examinations and, therefore,
potentially decreases the risk of secondary malignancies. This study has several limitations.
First, this was a retrospective study with 120 patients. Although a total of 1920 datasets
were reviewed, a prospective follow-up study is merited to confirm the implications of our
results for clinical decision-making. Second, this study used biometrically matching patient
cohorts from two scanners and employed realistic low-dose simulations to prevent repeated
radiation exposure. If feasible, the power of similar future studies could further benefit
from prospective low-dose CT acquisition in an intraindividual setting. Third, multiple
studies have pointed out unfamiliar appearances, loss of spatial information, and blurring
in AI denoising post-processing. Therefore, it might be best to handle the generalizability
of the results of such algorithms with caution and reevaluate them for specific medical
questions on a use case level. Fourth, although performed in an oncological setting, this
study focused on image quality aspects of overall organ visibility rather than specific tumor
staging. Further studies will be needed to confirm our results regarding lesion detectability
in denoised low dose CT datasets. Lastly, this study utilized two CT scanners from one
vendor, which might not be readily available at every site. Our results might therefore be
specific to this setup.

5. Conclusions

The investigated AI post-processing software solution produces diagnostic images as
low as 30% of the initial radiation dose (3.13 ± 0.75 mSv), regardless of scanner type or
reconstruction method. Therefore, it might help limit patient radiation exposure, especially
in the setting of repeated whole-body staging examinations.
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