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Abstract: Background: Insulin resistance is a common etiology of metabolic syndrome, but receiver
operating characteristic (ROC) curve analysis shows a weak association in Koreans. Using a machine
learning (ML) approach, we aimed to generate the best model for predicting insulin resistance in
Korean adults aged > 40 of the Ansan/Ansung cohort using a machine learning (ML) approach.
Methods: The demographic, anthropometric, biochemical, genetic, nutrient, and lifestyle variables
of 8842 participants were included. The polygenetic risk scores (PRS) generated by a genome-wide
association study were added to represent the genetic impact of insulin resistance. They were divided
randomly into the training (n = 7037) and test (n = 1769) sets. Potentially important features were
selected in the highest area under the curve (AUC) of the ROC curve from 99 features using seven
different ML algorithms. The AUC target was ≥0.85 for the best prediction of insulin resistance
with the lowest number of features. Results: The cutoff of insulin resistance defined with HOMA-IR
was 2.31 using logistic regression before conducting ML. XGBoost and logistic regression algorithms
generated the highest AUC (0.86) of the prediction models using 99 features, while the random forest
algorithm generated a model with 0.82 AUC. These models showed high accuracy and k-fold values
(>0.85). The prediction model containing 15 features had the highest AUC of the ROC curve in
XGBoost and random forest algorithms. PRS was one of 15 features. The final prediction models for
insulin resistance were generated with the same nine features in the XGBoost (AUC = 0.86), random
forest (AUC = 0.84), and artificial neural network (AUC = 0.86) algorithms. The model included the
fasting serum glucose, ALT, total bilirubin, HDL concentrations, waist circumference, body fat, pulse,
season to enroll in the study, and gender. Conclusion: The liver function, regular pulse checking, and
seasonal variation in addition to metabolic syndrome components should be considered to predict
insulin resistance in Koreans aged over 40 years.

Keywords: insulin resistance; HOMA-IR; machine learning; XGboost; liver function; obesity

1. Introduction

Insulin acts by binding to the insulin receptors to activate the insulin-receptor sub-
strates (IRS) via phosphorylation in various tissues [1,2]. IRS phosphorylation induces the
signaling cascades through PI3-kinase and protein kinase B activation to improve glucose
uptake into the tissues, glycogenesis, lipogenesis, and protein synthesis [3]. When the
blood glucose levels are elevated, insulin is released from the pancreatic β-cells to maintain
glucose homeostasis. Insulin resistance is defined as the condition with attenuated insulin
signaling in various tissues, particularly skeletal muscles, adipose tissues, and the liver,
to elevate insulin secretion to make normoglycemia [4]. People with insulin resistance
have hyperinsulinemia and develop prediabetic conditions in Caucasians [3,4]. However,
Asians do not develop hyperinsulinemia when insulin resistance occurs because of the
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small pancreatic β-cell mass and low insulin secretion capacity. Prediabetes progresses
quickly to type 2 diabetes in Asians, accelerating cardiovascular disease progression [5,6].

Genetic and environmental factors affect insulin resistance, contributing to developing
metabolic diseases. Genetic factors are highly associated with insulin secretion capacity
along with insulin sensitivity under the insulin-resistant state, especially in Asians [7,8].
Environmental factors mainly included aging, sedentary lifestyle, alcohol drinking, smok-
ing, unhealthy eating habits, including high intake of refined sugar and animal fat and low
intake of dietary fiber, vitamin C, vitamin D, and calcium [9,10]. These factors interact with
various biochemical parameters involved in energy, glucose, lipid, and immune metabolism
to modulate insulin resistance.

Insulin resistance can be measured directly using a hyperinsulinemic-euglycemic
clamp, but it is conducted for clinical studies, not in a clinical setting. The homeostasis
model assessment of insulin resistance (HOMA-IR) is an indirect insulin resistance index
altered according to age and gender in the Korean population [11]. Insulin resistance is a
common etiology for metabolic syndrome (MetS), represented by a cluster of abdominal
obesity, hyperlipidemia, hyperglycemia, and hypertension, which are interrelated to the
attenuation of insulin signaling [12]. However, insulin resistance is weakly linked to MetS
after adjusting for gender and age in the receiver operating characteristic (ROC) curve
analysis (area under the curve (AUC) of the ROC curve = 0.67). Moreover, the MetS
components were also associated with insulin resistance (AUC = 0.614–0.75) in Korean
population studies [5]. Thus, it is better to find better risk factors to predict insulin resistance
in a clinical setting. The cutoff values for HOMA-IR vary according to age, gender, and
metabolic disease status. The cutoff value of HOMA-IR for MetS risk in the Korean National
Health and Nutrition Examination Survey (KNHANES) during 2008–2010 is 2.11 for men,
2.0 for premenopausal women, and 2.14 for post-menopause women [11]. On the other
hand, the HOMA-IR for the dysglycemia risk in KNHNAES in 2015 is 1.6 in both genders,
and for the type 2 diabetes risk, the cutoff value is 2.9 for men and 2.4 for women [5]. The
cutoff value of HOMA-IR for normoglycemia and prediabetes in different populations
is 1.8–2.5 [13,14]. Therefore, the cutoff for insulin resistance should be assigned to the
study population.

Insulin resistance can be used for the early detection of MetS, type 2 diabetes, nonalco-
holic fatty liver disease (NAFLD), nonalcoholic steatohepatitis (NASH), and cardiovascular
diseases [15]. Although the risk factors for insulin resistance are well known, there is no
suitable model for insulin resistance to explain the etiology and predict it in Asians. The
machine learning approach to disease diagnosis and prediction has increased recently. The
AUC of the ROC curve is applied for external validation of the optimal fitting of the model,
and the target values are 0.8–0.85, suggesting that the model is adequate for predicting in-
sulin resistance [16,17]. The prediction model can identify the insulin resistance risk factors
to predict cardiometabolic diseases early. When the insulin resistance prediction model is
available, the model can be applied to classify the participants into low- and high-insulin
resistance groups in the large cohorts in the Korean Genomic and Epidemiological Research
Study (KoGES), which did not include the HOMA-IR values, and the genetic impacts and
gene-lifestyle interaction can be studied. Therefore, the objective of the present study was
to generate the best predicting model for insulin resistance, defined by HOMA-IR, from
genetic, environmental, and biochemical factors using a machine-learning algorithm in an
Ansan/Ansung cohort. This study also provided crucial risk factors for insulin resistance
in Asians.

2. Materials and Methods
2.1. Participants

KoGES included the Ansan/Ansung, rural, and city hospital-based cohorts. However,
serum insulin concentrations were measured only in the Ansan/Ansung cohort to estimate
the insulin resistance index. The participants were aged between 40 and 74 years and
were residents of Ansan City (a large city area; n = 4205) or Ansung City (a small city
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area; n = 4637) from 2001 to 2007. The Institutional Review Board of the Korean National
Institute of Health approved the KoGES (KBP-2015-055), and Hoseo University approved
the present study (1041231-150811-HR-034-01). Written informed consent was obtained
from all subjects.

2.2. Demographic, Anthropometric, and Biochemical Measurements

The participants who lived within the Ansan/Ansung areas for at least six months
participated voluntarily in the cohort study. The participants with a severe stage of cancer
and metabolic diseases were excluded. The demographic information, including age,
education, income, smoking history, alcohol consumption, and physical activity, was
collected in a health interview.

The height, weight, and waist and hip circumference were measured in patients
wearing a light gown. The body fat and muscle mass were estimated by bioelectrical
impedance analysis (Inbody 3.0, Biospace, Seoul, Korea) [18]. The body mass index (BMI)
was calculated from the weight [kg]/square of height [m2]. Lean body mass and fat mass
were measured by Inbody 4.2 (Cheonan, Korea). Skeletal muscle mass index was calculated
by dividing lean body mass by body weight × 100, while body fat percent was determined
by dividing total fat mass by body weight × 100. The blood pressure was determined
on the right arm at the same height as their heart in the sitting and lying positions three
times, and the average values were used. The pulse was also counted before assessing the
blood pressure. Current smokers were defined as having smoked more than 100 cigarettes
throughout their lifetime and within the last six months, whereas former smokers had not
smoked for the last six months. Alcohol intake was assessed by the drinking frequencies
and the alcohol amount in each drinking event during the last six months prior to the
interview. The regular activity was evaluated as a regular moderate exercise for >30 min at
a time at least five times a week or as regular vigorous exercise for >20 min at one time at
least three times per week.

The blood samples from each participant were collected after an overnight fast, and
the serum and plasma were separated. The biochemical variables were measured using
an automatic analyzer (ZEUS 9.9; Takeda, Tokyo, Japan). The variables were as follows:
glucose, total cholesterol, HDL-cholesterol, triglycerides, platelet, alanine aminotransferase
(ALT), aspartate aminotransferase (AST), γ-glutamyl transpeptidase (γ-GTP), creatinine,
and total bilirubin. Fasting serum insulin levels and high-sensitive C-reactive protein (CRP)
were analyzed using ELISA kits (DiaSorin, Stillwater, MN, USA). Serum LDL concentrations
were calculated with the Friedewald formula: serum total cholesterol–serum HDL–serum
triglyceride/5. The estimated glomerular filtration rate (eGFR) was estimated using the
equation of 175 × (serum creatinine concentrations)−1.154 × (age)−0.203. In females, the
eGFR was multiplied by 0.742.

The HOMA-IR was calculated using the following equation: serum glucose concen-
tration (mM) × serum insulin concentration (µU/mL)/22.5, which was reported to have
a strong correlation with the hyperinsulinemic-euglycemic clamp (r = 0.88). The insulin
resistance for the HOMA-IR cutoff based on the ROC curve to influence the MetS risk was
2.31, but it showed low validity in the following: the AUC (0.679), sensitivity (0.645), and
specificity (0.641) for the ROC using Proc logistic in SAS. The ROC showed low diagnostic
ability for the MetS risk by insulin resistance [19]. Another hospital-based study in Korean
adults showed that the 2.34 cutoff for HOMA-IR had 0.672 AUC, 0.628 sensitivity, and
0.657 specificities in 2006 [20]. The AUC of the ROC suggested that MetS could not estimate
low- and high-insulin resistance using the HOMA-IR cutoff. MetS was defined according
to the 2005 revised National Cholesterol Education Program-Adult Treatment Panel III
criteria for Asia [21,22]. The results suggested that MetS did not predict the HOMA-IR
risk. Therefore, a better prediction model will be needed to predict low- and high-insulin
resistance using HOMA-IR.
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2.3. Genetic Variants for Insulin Resistance

Genotyping and quality-control processes were conducted on the DNA isolated from
the peripheral blood of the participants in the Ansan/Ansung cohort by the Korean Center
for Disease Control and prevention described previously in detail [18]. Genotyping was
assessed using the Affymetrix Genome-Wide Human SNP array 5.0 (Affymetrix, Santa
Clara, CA, USA) for the Ansan/Ansung cohort. The genetic variants were excluded when
they had low genotyping accuracies (<98%), high heterozygosity (>30%), high missing
genotype call rates (≥4%), or gender biases. GWAS was performed with high-insulin
resistance and low-insulin resistance after adjusting for age, gender, area, and BMI using
the GPLINK program version 2.0 downloaded from the website (http://pngu.mgh.harvard.
edu/~purcell/plink, accessed on 14 April 2021). Fifty-two genetic variants involved with
insulin resistance were selected, and ten genetic variants were selected using the genetic
variant-genetic variant interaction by the GMDR program downloaded from the website
(http://www.ssg.uab.edu/gmdr/, accessed on 4 May 2021). Among ten genetic variants,
the best model included three genetic variants based on the trained balance accuracy
(TRBA), test balance accuracy (TEBA), and cross-validation consistency (CVC) in the GMDR
models [23]. The genetic variants in the best model were linked to insulin resistance, which
was published in a previous study [24]. The poly-genetic risk scores (PRS) was calculated by
summing the number of risk alleles in the 3-SNP model, including the slit guidance ligand
3 (SLIT3)_rs2974430, pleckstrin homology domain-containing A5 (PLEKHA5)_rs1077044,
and protein phosphatase 2 regulatory subunit B-gamma (PPP2R2C)_rs16838853. The PRS
was used to indicate the genetic impact of insulin resistance [24].

2.4. Assessment of the Food and Nutrient Intake Using Semi-Quantitative Food Frequency
Questionnaires (SQFFQ)

The usual food intake during the last six months was evaluated by SQFFQ, of which
validity and reproducibility were acceptable compared with three-day records for four
seasons [25]. The SQFFQ included 103 common Korean foods, and their eating frequencies
were divided into the following: never or seldom, once a month, two to three times a
month, one to two times a week, three to four times a week, five to six times a week,
once a day, twice a day, and three times or more per day. The amount of food at each
eating event was answered as more, equal, or less based on the portion size shown by
the photographs of foods in each food category. The food intake of each participant
was calculated by multiplying the midpoint of the selected frequencies by the selected
portion size of each food. The energy and nutrients, such as protein, carbohydrates, fat
and saturated, monounsaturated, and polyunsaturated fatty acids, were calculated from
the food intake determined by SQFFQ, using the Can-Pro 2.0 nutrient intake assessment
software developed by the Korean Nutrition Society [9].

2.5. Experimental Design for Machine Learning for Predicting Insulin Resistance by HOMA-IR

The data were curated, and 99 features potentially related to insulin resistance were
selected manually from 1411 variables in the Ansan/Ansung cohort (Figure 1A). Variables
with collinearity were excluded. For example, the body weight and BMI were omitted
because the waist and hip circumferences, body fat percent, and muscle mass percent
were included to explain the body composition. The fasting serum glucose concentrations
and hemoglobin A1c (HbA1c) contents were included because they provided the different
conditions of glucose homeostasis. On the other hand, the serum insulin concentrations
were excluded because the HOMA-IR was an independent feature. Therefore, the HOMA-
IR prediction model predicts the fasting serum insulin concentrations when the serum
glucose concentrations are assigned.

http://pngu.mgh.harvard.edu/~purcell/plink
http://pngu.mgh.harvard.edu/~purcell/plink
http://www.ssg.uab.edu/gmdr/
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rect insulin resistance index, and 2.31 was used as the cutoff for participants of both genders. The 
prediction models for insulin resistance were generated using seven ML algorithms. (B) The An-
san/Ansung cohort participants were randomly divided into a training set of 80% and a test set of 
20% participants. The best model was selected with a random grid search after 1000 repetitions in 
seven different ML algorithms, including linear regression, support vector machines (SVM), 
XGBoost (XGB), decision tree, random forest, K-nearest neighbor (KNN), and artificial neural net-
work (ANN). The best prediction model was selected using the AUC of the ROC. The accuracy 
and k-fold cross-validation of the predicted models were assessed in the test set. 

2.6. Training for the Features for Generating Insulin Resistance Prediction Model and Testing 
the Models for Verifying the Prediction Model 

Figure 1. Analysis processing to generate a prediction model in the participants. (A) A total of
8842 adults participated, and 99 features were selected manually from 1411 in the Ansan/Ansung
cohort to predict the insulin resistance model using the seven machine learning (ML) approach.
Missing data were filled with the mean values for continuous variables and the mode values for
the categorical variables. Data were normalized using the z-score. HOMA-IR was used as an
indirect insulin resistance index, and 2.31 was used as the cutoff for participants of both genders.
The prediction models for insulin resistance were generated using seven ML algorithms. (B) The
Ansan/Ansung cohort participants were randomly divided into a training set of 80% and a test set of
20% participants. The best model was selected with a random grid search after 1000 repetitions in
seven different ML algorithms, including linear regression, support vector machines (SVM), XGBoost
(XGB), decision tree, random forest, K-nearest neighbor (KNN), and artificial neural network (ANN).
The best prediction model was selected using the AUC of the ROC. The accuracy and k-fold cross-
validation of the predicted models were assessed in the test set.

The missing values in the selected variables were filled with the mean for continuous
variables and mode for categorical variables. Each variable was normalized to the z-score
(Figure 1A). The training and test datasets were divided randomly into 80% (n = 7037) and
20% (n = 1769), respectively. The training set and test set included 1174 and 313 participants
with high HOMA-IR (>2.31), respectively.

In the training set, each normalized dataset of 99 features was trained to generate
repeated permutations using the randomized grid search method in seven different al-
gorithms (Figure 1B). Each algorithm found the best model to improve the area of ROC
curve, accuracy, and K-fold in the test dataset. The algorithm models fitted for predicting
the metabolic status were as follows: logistic regression, support vector machines (SMV),
extreme gradient boosting (XGBoost), decision tree, random forest, K-nearest neighbor
(KNN), and artificial neural network (ANN) [26].
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2.6. Training for the Features for Generating Insulin Resistance Prediction Model and Testing the
Models for Verifying the Prediction Model

After running the 99 features, the relative importance from the random forest and
XGBoost algorithm models were used to search for the best model in the training set. The
best model with the highest area of the ROC, accuracy, and K-fold in the test dataset was
selected from the random forest and XGBoost algorithm models. None of the algorithm
models showed a positive or negative relationship. The SHapley Additive exPlanation
(SHAP; https://shap.readthedocs.io/en/latest/index.html, accessed on 16 September 2021)
was used to explain the selected models from the random forest and XGBoost.

2.7. Statistical Analysis

Statistical analysis was conducted using SAS (Cary, NC, USA), and a machine learning
approach was performed using Scikit-learn in Python 3.8.5 (https://www.python.org/
downloads/windows/, accessed on 7 October 2021) and the TensorFlow platform. The
HOMA-IR cutoff was calculated using logistic regression with the ROC curve in SAS. Six
prediction models for insulin resistance were generated with Scikit-learn in Python 3.8.5,
while the ANN prediction model was made with the TensorFlow platform.

The results are presented as the means ± standard deviations or number and per-
centage in the general characteristics of the variables. The significance of the differences
between variables was determined according to genders and HOMA-IR using the two-
way ANOVA in the Ansan/Ansung cohort. The statistical significance was accepted for
p-values < 0.05.

3. Results
3.1. Anthropometric and Biochemical Measurement of the Participants

The age of the participants was higher in women than men, but there were no signifi-
cant differences in the low- (Low-IR) and high-insulin resistance (High-IR) groups. The
HOMA-IR was approximately 2.6 times higher in the High-IR than Low-IR, but there was
no significant difference between men and women (Table 1). Hence, a prediction model for
insulin resistance according to gender is unnecessary. The anthropometric measurements,
including BMI, waist circumferences, muscle mass, and fat mass, showed significant differ-
ences in gender and insulin resistance. The MetS incidence was much higher in women
and high-IR groups. According to the HOMA-IR and gender, the MetS components dif-
fered significantly, but their significant differences were substantial with insulin resistance
(Table 1). The serum glucose concentrations and HbA1c contents were much higher in the
high-IR group than the low-IR group, while lower in women than men. The serum LDL and
triglyceride concentrations showed a similar tendency to the serum glucose concentrations,
while the serum HDL concentrations showed an opposite trend (Table 1). The pulse, SBP,
and DBP were higher in those with insulin resistance, and the gender differences were
minimal. The serum AST and ALT concentrations were also higher in the High-IR group
than the Low-IR group and lower in women than men (Table 1).

https://shap.readthedocs.io/en/latest/index.html
https://www.python.org/downloads/windows/
https://www.python.org/downloads/windows/
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Table 1. Characteristics of the participants in the Ansan/Ansung cohort.

Men (n = 4183) Women (n = 4659)

Low-IR
(n = 3906)

High-IR
(n = 677)

Low-IR
(n = 3850) High-IR (n = 809)

Age (year) 52.0 ± 0.15 b 50.6 ± 0.34 c 52.4 ± 0.14 a 53.7 ± 0.31 a***
HOMA-IR 1.22 ± 0.03 c 3.43 ± 0.08 a 1.37 ± 0.03 b 3.41 ± 0.07 a**###

BMI (mg/kg2) 24.0 ± 0.06 d 26.2 ± 0.13 b 24.5 ± 0.05 c 26.7 ± 0.12 a***###

Waist circumferences(cm) 82.2 ± 0.21 c 88.4 ± 0.54 a 80.3 ± 0.22 d 86.5 ± 0.46 b***###

Skeletal muscle mass index (%) 35.4 ± 0.04 a 33.9 ± 0.10 b 30.8 ± 0.04 c 29.4 ± 0.09 d***###

Fat mass (%) 21.3 ± 0.09 d 24.8 ± 0.21 c 31.3 ± 0.09 b 34.4 ± 0.20 a***###

MetS (%)9 558 (15.9) 256 (37.8) *** 813 (21.1) 350 (43.3) ***
Serum glucose (mg/dL) 86.0 ± 0.34 c 112.4 ± 0.77 a 81.7 ± 0.33 d 101.2 ± 0.70 b***###

HbA1c (%) 5.71 ± 0.15 c 6.44 ± 0.04 a 5.69 ± 0.15 c 6.30 ± 0.03 b**###

Serum total cholesterol (mg/dL) 190 ± 0.61 b 199 ± 1.38 a 190 ± 0.58 b 199 ± 1.26 a###

Serum HDL (mg/dL) 44.1 ± 0.17 b 41.0 ± 0.39 d 46.1 ± 0.16 a 43.0 ± 0.35 c***###

Serum LDL (mg/dL) 105 ± 0.83 c 103 ± 2.2 c 113 ± 0.85 b 118 ± 1.83 a***
Serum Triglyceride (mg/dL) 169 ± 1.74 c 227 ± 3.96 a 142 ± 1.66 d 183 ± 3.62 b***###

Serum CRP (mg/dL) 0.24 ± 0.01 0.29 ± 0.02 0.21 ± 0.01 0.26 ± 0.02
Pulse 62.8 ± 0.13 64.8 ± 0.29 64.0 ± 0.12 67.3 ± 0.27 ***###

SBP (mmHg) 119 ± 0.46 b 125 ± 1.18 a 119 ± 0.47 b 127 ± 1.01 a###

DBP (mmHg) 76.5 ± 0.27 80.7 ± 0.70 74.9 ± 0.28 80.0 ± 0.60 **###

Serum AST (U/L) 32.4 ± 0.31 b 34.5 ± 0.70 a 27.0 ± 0.29 c 28.0 ± 0.64 c***##

Serum ALT(U/L) 31.8 ± 0.45 b 43.6 ± 1.02 a 22.4 ± 0.43 d 27.8 ± 0.94 c***###

Low-IR, low insulin resistance (≤2.31 HOMA-IR); High-IR, high insulin resistance (>2.31 HOMA-IR). HOMA-IR,
homeostasis model assessment of insulin resistance; BMI, body mass index; HbA1c, hemoglobin A1c; HDL,
high-density lipoprotein; LDL, low-density lipoprotein CRP, high-sensitive C-reactive protein; SBP, systolic blood
pressure; DBP, diastolic blood pressure; AST, aspartate aminotransferase; ALT, alanine aminotransferase. Skeletal
muscle mass index was calculated by dividing skeletal muscle mass by body weight × 100. * significantly different
by genders at p < 0.05, ** at p < 0.01, *** at p < 0.001. ## significantly different by HOM-IR at p < 0.01, ### at
p < 0.001. a,b,c Different superscript letters of the means indicate significant differences among the groups by
Tukey’s test at p < 0.05.

3.2. Lifestyle-Related Variables

The energy intake based on the EER percent was similar regardless of insulin resistance,
but men had a lower EER than women (Table 2). Energy and nutrient intakes showed
significant differences with gender but not insulin resistance (Table 2). The CHO and fat
intake were similar in the low-IR and High-IR groups, but women had a much higher
carbohydrate and lower fat intake than men. The intake of saturated fatty acids (SFA),
monounsaturated fatty acids (MUFA), and polyunsaturated fatty acids (PUFA) was higher
in men than women, and it did not differ with insulin resistance groups (Table 2). SFA,
MUFA, and PUFA intake showed similar trends with fat intake (Table 2). The differences in
CHO, fat, and protein intake interacted with gender and insulin resistance: in men, their
intake was higher in the high-IR group than the low-IR group, but it showed the opposite
tendency in women. The protein intake also had a higher intake in men than women but
was not affected with insulin resistance (Table 2). Both gender and insulin resistance status
did not affect dietary fiber and calcium intake. Vitamin C and sodium intakes were affected
by gender but not insulin resistance: vitamin C intake was higher, but sodium intake was
lower in women than in men (Table 2).

The alcohol intake, smoking status, and regular exercise did not significantly affect
insulin resistance, and only the alcohol intake was significantly different with gender
(Table 2).
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Table 2. Nutrient intake and lifestyle-related variables.

Men (n = 4183) Women (n = 4659)

Low-IR
(n = 3906)

High-IR
(n = 677)

Low-IR
(n = 3850) High-IR (n = 809)

Energy (EER%) 96.8 ± 0.66 b 97.1 ± 1.49 b 106 ± 0.62 a 109 ± 1.38 a***
CHO (En%) 69.7 ± 0.12 b 68.8 ± 0.27 b 71.7 ± 0.11 a 72.4 ± 0.25 a***++

Fat (En%) 15.3 ± 0.09 a 15.9 ± 0.21 a 13.6 ± 0.09 b 13.0 ± 0.19 c***++

SFA (En%) 3.76 ± 0.04 a 3.96 ± 0.09 a 3.15 ± 0.04 b 2.93 ± 0.08 b***++

MUFA (En%) 4.88 ± 0.04 a 5.04 ± 0.09 a 4.00 ± 0.04 b 3.76 ± 0.09 b***++

PUFA (En%) 2.29 ± 0.02 a 2.37 ± 0.04 a 1.94 ± 0.02 b 1.90 ± 0.03 b***+

Protein (En%) 13.7 ± 0.04 b 14.1 ± 0.09 a 13.5 ± 0.04 c 13.4 ± 0.09 c***++

Dietary fiber (g) 6.92 ± 0.08 7.11 ± 0.16 7.16 ± 0.07 7.31 ± 0.15
Vitamin C (mg) 121 ± 2.17 b 126 ± 4.57 b 136 ± 2.09 a 141 ± 4.30 a***
Calcium (mg) 486 ± 5.86 481 ± 12.3 482 ± 5.63 477 ± 11.6

Sodium (g) 3.37 ± 0.04 a 3.39 ± 0.07 a 3.02 ± 0.03 b 3.03 ± 0.07 b***
Alcohol intake (g/day) 19.1 ± 0.35a 19.5 ± 0.80 a 1.29 ± 0.33 b 1.48 ± 0.73 b***

Smoking
Former smoker 166 (4.8) 33 (4.9) 46 (1.22) 13 (1.65)

Smoker 1567 (44.9) 298 (44.1) 86 (2.28) 19 (2.41)
Regular exercise (yes, %) 1043 (73.9) 144 (68.3) 933 (71.9) 213 (77.2)

EER, energy estimated requirement; CHO, carbohydrate; En%, energy percent. SFA, saturated fatty acids; MUFA,
monounsaturated fatty acids; PUFA, polyunsaturated fatty acids. *** Significantly different by genders at p < 0.001.
+ significant interaction between gender and HOMA-IR at p < 0.05 and ++ at p < 0.01. a,b,c Different superscript
letters of the means indicate significant differences among the groups by Tukey’s test at p < 0.05.

3.3. The Best Model for Explaining Insulin Resistance Using the Machine Learning
(ML) Approach

Before predicting the best model using the ML algorithm, the insulin resistance was
estimated with MetS and its components. The insulin resistance was weakly linked to MetS
and its components: The area of the ROC curve in the model was 0.806 (95% CI: 0.786–0.826),
including waist circumferences, BMI, serum glucose, HDL, triglyceride concentrations, and
blood pressure in the logistic regression model (Figure 2). The AUC of the ROC curve in
each feature ranged within 0.537–0.726, and waist circumferences showed the highest AUC
of the ROC curve among the features in the model. The Somer’s D (Gini) of this model was
0.613, giving it sufficient predictive power of a risk model, and the waist circumference and
fasting serum glucose concentrations met the criteria (Gini > 0.4).

Ninety-nine manually selected features were applied to train the seven ML algorithms
to find the optimal features for insulin resistance. The AUC of the ROC curves was 0.60–0.87,
and logistic regression and XGBoost showed the highest AUC. The random forest algorithm
was 0.84, and the other algorithms were less than 0.60 (Table 3). The accuracy and k-fold
of all the models except the decision tree were higher than 0.8. The top 15 features were
selected to predict insulin resistance from each model. The AUC with the 15 top features
selected was the highest (0.85) in XGBoost, and logistic regression was higher than 0.8 in
the random forest and ANN (Table 3). Furthermore, when the top important features were
reduced to nine features, the AUC of the ROC with ANN increased to 0.86 from the lower
AUC (0.82), while that with XGBoost and logistic regression was 0.85. The accuracy and
k-fold were higher than 0.8 in all algorithms of logistic regression, XGBoost, and random
forest of models with 15 and nine features (Table 3).
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drome components for the metabolic syndrome risk.

Table 3. The area under the curve (AUC) of the receiver operating characteristic (ROC) curve,
accuracy, and k-fold of prediction models generated from machine-learning algorithms in the
Ansan/Ansung cohort.

99 Features Logistic
Regression XGBoost Decision

Tree KNN SVM Random
Forest ANN

AUC of ROC 0.866
(0.865–0.867)

0.866
(0.865–0.867)

0.647
(0.646–0.647)

0.662
(0.661–0.663)

0.597
(0.596–0.597)

0.836
(0.835–0.836) 0.816

Accuracy 0.867
(0.867–0.868)

0.868
(0.868–0.869)

0.793
(0.792–0.793)

0.826
(0.825–0.827)

0.859
(0.858–0.859)

0.841
(0.840–0.841)

k-fold 0.858
(0.853–0.863)

0.859
(0.856–0.863)

0.786
(0.764–0.786)

0.821
(0.818–0.825)

0.851
(0.848–0.854)

0.833
(0.831–0.834)

Top 15 features

AUC of ROC 0.849
(0.848–0.850)

0.853
(0.853–0.854)

0.639
(0.638–0.640)

0.694
(0.693–0.695)

0.574
(0.574–0.575)

0.831
(0.830–0.832) 0.822

Accuracy 0.868
(0.867–0.868)

0.877
(0.876–0.877)

0.798
(0.797–0.798)

0.837
(0.836–0.837)

0.855
(0.854–0.856)

0.860
(0.859–0.860)

k-fold 0.856
(0.850–0.862)

0.861
(0.853–0.870)

0.777
(0.768–0.785)

0.827
(0.818–0.831)

0.850
(0.846–0.852)

0.856
(0.853–0.859)
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Table 3. Cont.

99 Features Logistic
Regression XGBoost Decision

Tree KNN SVM Random
Forest ANN

Top 9 features

AUC of ROC 0.849
(0.848–0.850)

0.853
(0.852–0.853)

0.636
(0.635–0.636)

0.691
(0.690–0.692)

0.561
(0.560–0.561)

0.836
(0.835–0.837) 0.862

Accuracy 0.867
(0.867–0.868)

0.868
(0.867–0.868)

0.791
(0.790–0.792)

0.834
(0.833–0.834)

0.853
(0.852–0.853)

0.862
(0.862–0.863)

k-fold 0.856
(0.851–0.861)

0.861
(0.857–0.864)

0.779
(0.764–0.795)

0.828
(0.824–0.835)

0.848
(0.843–0.853)

0.857
(0.853–0.859)

Prediction models were generated from the training set with 80% of the Ansan/Ansung cohort, and its 20% was
used as a test set. KNN, K-Nearest Neighbor; SVM, support vector machine; ANN, artificial neural network. The
top 15-feature prediction model generated from XGBoost included serum glucose, waist circumference, blood
HbA1c, serum total bilirubin, season to enroll the study, body fat, pulse, hip circumference, serum HDL, ALT,
and γ-GTP, gender, serum creatinine, residence area, and PRS for insulin resistance. The top 9-feature prediction
model generated from XGBoost contained serum glucose, waist circumference, body fat, serum ALT, serum total
bilirubin, pulse, serum HDL, and gender.

3.4. The Relative Importance of the Parameters in the Random Forest and XGBoost
Prediction Models

The AUC of the ROC curve using the XGBoost algorithm was the highest among the
seven algorithms and was similar to the logistic regression algorithm. Although the AUC
of the ROC was slightly lower in the random forest model than XGBoost, it met the optimal
model criteria. The prediction models with relatively important features from XGBoost
and random forest algorithms were obtained (Figure 3). The 15 feature models included
the fasting serum glucose concentrations, waist circumferences, blood HbA1c, residence
area, gender, serum creatinine, body fat, season to participate, serum total bilirubin, hip
circumferences, serum ALT, pulse, serum γ-GTP, serum HDL, and genetic impact for insulin
resistance in XGBoost (Figure 3a,b). In the random forest algorithms, 14 features were
selected, and they were similar to the XGBoost model. On the other hand, the serum CRP
concentrations, blood pressure, and muscle mass were included instead of the serum total
bilirubin and creatinine concentrations. The residence area was selected from the XGBoost
algorithm. Moreover, the relative importance of the features was different between the
XGBoost and random forest algorithms. In the XGBoost algorithm, fasting serum glucose
concentration and waist circumferences had a much larger impact on insulin resistance, but
the impact of the other factors was relatively high (0.044–0.071) (Figure 3a). In the random
forest algorithm, however, the fasting serum glucose concentrations, blood HbA1c, and
waist circumferences mainly explained the insulin resistance; the other factors had a low
impact (0.0082–0.047) on insulin resistance (Figure 3b). These differences contributed to the
AUC of ROC analysis in the XGBoost and random forest algorithms.

The relative importance from XGBoost and the random forest did not show a positive
and negative association of the selected features with insulin resistance (Figure 4). The
SHAP algorithm was used to show their association using the selected features from
XGBoost (Figure 4a) and random forest (Figure 4b). Most features were well separated
to show the positive or negative association with insulin resistance in the SHAP values
in both algorithms. However, the residential area was not separated in the positive and
negative impact on insulin resistance in random forest algorithm (Figure 4a). In contrast,
the serum γ-GTP concentrations and PRS for insulin resistance were not well discriminated
against insulin resistance in random forest algorithm (Figure 4b).
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Figure 3. The relative importance of the top 15 features for predicting insulin resistance (IR), as
determined by the XGBoost and random forest algorithms. (a) IR prediction model by the XGBoost
algorithm 3. (b) IR prediction model by the random forest algorithm. ALT, alanine aminotransferase;
HbA1c, hemoglobin A1c; γ-GTP, γ-glutamyl transpeptidase; HDL, high-density lipoprotein; CRP,
high-sensitive C-reactive protein; PRS, polygenetic risk scores.
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Figure 4. Positive and negative impact explanation of the top 15 features for predicting insulin
resistance (IR) using SHAP values. (a) Explanation of each feature impact on the IR in the prediction
model by the SHAP values in the XGBoost algorithm. (b) Explanation of each feature impact on
the IR in the prediction model by the SHAP values in random forest algorithm. ALT, alanine
aminotransferase; HbA1c, hemoglobin A1c; γ-GTP, γ-glutamyl transpeptidase; HDL, high-density
lipoprotein; CRP, high-sensitive C-reactive protein; PRS, polygenetic risk scores.
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The nine feature models from XGBoost and random forest algorithms were the same.
The model included the fasting serum glucose, ALT, total bilirubin, HDL concentrations,
waist circumference, body fat, pulse, season to participate, and gender (Figure 5a,b). On
the other hand, the relative importance of the selected features was different between the
XGBoost and random forest algorithms (Figure 5a,b). SHAP shows the association of each
feature to predict insulin resistance (Figure 5c).
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algorithm. (c) Explanation of each feature impact on the IR prediction model by SHAP values using
the XGBoost algorithm.

4. Discussion

Insulin resistance is a common etiology of MetS. On the other hand, waist circumfer-
ence (AUC of the ROC curve = 0.726) and serum glucose concentrations (AUC = 0.749) were
significant components to contribute to insulin resistance among the MetS components.
The other components (serum HDL and triglyceride concentrations and blood pressure)
did not significantly affect insulin resistance (AUC = 0.614–0.651). Therefore, better risk
factors are needed to explain insulin resistance. Furthermore, the genetic impact of insulin
resistance has not been studied, and its impact on insulin resistance was investigated in the
present study.

The ML approach is an excellent way to find the risk factors and generate a prediction
model. This study evaluated the best model for predicting insulin resistance using the ML
approach in Korean adults aged > 40 of the Ansan/Ansung cohort. This study assessed the
potential impact of the kidney and liver function in addition to obesity, glucose, and lipid
metabolism that influence insulin resistance risk. Genetic and environmental factors were
also considered to generate the prediction model for insulin resistance in the present study.
Although PRS as the genetic impact involved in the insulin resistance risk showed a minimal
impact, it was included in the 15 feature prediction model. However, environmental factors,
including lifestyles, were not included in the 15 feature prediction model. It suggests
that the potential genetic impact might be substantial for predicting insulin resistance risk
in early life before the environmental factors involved in the prediction are developed.
Therefore, people with PRS may be monitored to prevent insulin resistance in later life.

Lifestyles including nutrient intake, alcohol drinking, smoking, and physical activity,
have been reported to be associated with metabolic syndrome by the imbalance between
energy intake and expenditure favoring energy storage [27]. Although insulin resistance is
a common underlying mechanism of metabolic syndrome, a few studies have demonstrated
a direct relationship between lifestyles and insulin resistance, especially in Asians with
lower insulin secretion capacity. The present showed that energy intake was higher in the
high-IR group than the low-IR group in both genders, but it was not significantly different.
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Furthermore, nutrient intakes including carbohydrate, fat (SFA, MUFA, and PUFA), protein,
vitamin C, sodium, and calcium did not differ between the low-IR and high-IR groups, but
there was a gender interaction with carbohydrates, fat, and protein intake. Men tended to
have a higher intake of fat and protein and a lower carbohydrate intake, but women had
an opposite intake. Previous studies have demonstrated a similar result from KNHANES
2007–2009 [28]: the intakes of fat, protein, and carbohydrates (energy percent) do not differ
between low-IR and high-IR groups. Energy intake was significantly lower in the high-IR
group than in the low-IR group only in women [28]. In NHANES (1999–2014), vitamin C
and folate intakes are inversely associated with insulin resistance [29]. Therefore, lifestyles
may not be strongly and directly associated with insulin resistance to be selected as the top
features for the prediction model.

ML has been used in clustering, classification, dimensionality reduction, regression,
and other data mining. ML can generate a model by randomly and repeatedly learning
the data in a training dataset and validating the model from a test dataset. Therefore,
unlike traditional statistical programs, ML can generate a relatively accurate prediction
model. The critical factors related to various diseases have been explored using ML in
the medical field. In the present study, insulin resistance was divided into low- and high-
groups (classification) by the cutoff (2.31) determined by the ROC curve using logistic
regression. The AUC of the ROC in the prediction models might indicate good fitting. A
better model than logistic regression was explored using the ML approach. The random
forest and XGBoost are classification algorithms with many decision trees to generate one
optimal model. Both algorithms are generally suitable for making classification models.
On the other hand, they have some differences in finding the optimal models. The random
forest is considered to perform bagging first. It handles overfitting, reduces variants, and
uses independent classifiers [30]. By contrast, XGBoost uses the gradient boosting method
to reduce bias, variance, and sequential classifiers [31]. Although XGBoost can overfit
the data into the model, it reduces the disadvantages of random forest algorithms [31].
Thus, the XGBoost and random forest algorithms were used to optimize the prediction
model in the present study. XGBoost exhibited a higher AUC than the random forest
algorithm. The AUC of the ROC, accuracy, and k-fold in XGBoost was the highest among
the seven algorithms, including the random forest algorithm used in the present study.
The relative importance of the 15 features in the prediction models from XGBoost and
random forest algorithms differed, and the relative importance variations in the 15 features
were more considerable in the random forest algorithm than XGBoost. The top three
features explained approximately 73% in the random forest model and approximately
32% in XGBoost, suggesting that approximately ten features in a random forest make a
negligible contribution to the prediction model. Thus, the prediction model by the XGBoost
algorithm may predict insulin resistance better.

The nine feature models from the random forest and XGBoost algorithms included the
same features such as serum glucose, waist circumferences, body fat, serum ALT, serum
total bilirubin, pulse, gender, and season to enroll. The Ansan/Ansung cohort participants
used to predict the insulin resistance risk were middle-aged adults, and age was not
included in the prediction model. Interestingly, the nine-feature model included the season
to enroll in the cohort study. The SHAP algorithm explained that winter increased insulin
resistance in the present study. Hence, winter had a higher insulin resistance risk than
summer. Previous studies reported that the seasonality of insulin resistance is linked to age
and caused by impaired thermoregulation [32]. In the Rotterdam Study, the middle-aged
and elderly had seasonal variations for insulin resistance determined by the HOMA-IR, and
the elderly persons have higher seasonal variation for insulin resistance (0.29 units: 95% CI:
0.21, 0.37) than the middle-aged adults (0.11 units; 95% CI: 0.03, 0.20) [32,33]. In older men,
the seasonal variations for insulin resistance were also shown with a hyperinsulinemic-
euglycemic clamp [34]. Consistent with the present study, previous studies reported the
winter peak of insulin resistance in middle-aged and older adults [32,33].



Diagnostics 2022, 12, 212 16 of 19

As expected, the prediction model of insulin resistance included waist circumferences,
body fat, and serum HDL concentrations, but it did not contain the serum triglyceride
and blood pressure. Although blood pressure was not included in the prediction model,
the pulse might explain blood pressure status. The heart rate is positively associated with
the risk of blood pressure, hypertension, and cardiovascular disease [35]. Nevertheless,
the resting heart rate is linked to increased arterial stiffness, particularly in persons with
increased aortic stiffness, regardless of the blood pressure [36]. Furthermore, insulin
resistance, in addition to obesity, influences heart rate [37]. The prediction model with
15 features contained the blood pressure and pulse features. The pulse showed higher
relative importance scores in the random forest algorithm but not in the XGBoost algorithm.
Thus, the pulse can be an indicator of blood pressure. Because people can easily count their
pulse and measure waist circumference, they can be used to check insulin resistance in
daily life.

The nine feature-prediction models for insulin resistance risk included the serum ALT
and total bilirubin concentrations, indicating that insulin resistance was closely linked to a
liver function to induce NAFLD and NASH [38]. Reducing insulin resistance has shown
some alleviation of NAFLD [38]. The liver function is not included in the MetS definition,
but a liver dysfunction has emerging evidence associated with insulin resistance risk,
although it debates whether insulin resistance is a cause or effect of NAFLD [39]. Insulin
resistance is interrelated to develop and exacerbate NAFLD and NASH, and reducing
insulin resistance can alleviate the diseases [40]. In prospective studies, elevated serum
ALT and γ-GTP concentrations were independent predictors of MetS, type 2 diabetes,
and cardiovascular diseases [41]. Furthermore, the linking mechanism between insulin
resistance and liver disorder is related to the modulated rates of adipose tissue lipolysis
and de novo lipogenesis, changed fat distribution, impaired mitochondrial fatty acid β-
oxidation, modulated adipokines, and cytokines concentration. Thus, the liver dysfunction
represents the elevated liver enzymes, ALT, ALT/AST, and γ-GTP in the circulation [39].
However, liver enzyme concentrations alone should not be used as a surrogate marker for
NAFLD and NASH since some patients with these diseases have normal AST and ALT
concentrations in the circulation [42]. Therefore, the serum ALT concentration can be added
to predict the insulin resistance risk, but adults with normal serum ALT concentration also
need to be watched if they have other risk factors. The serum total bilirubin concentrations
in the present study were inversely associated with the insulin resistance risk. Previous
studies also reported that serum total bilirubin concentrations are inversely related to the
MetS risk in various ethnic groups [43–46]. It might be associated with the cholesterol
metabolism in the liver.

The strength of the study was novel to show that the poly-genetic variants belonged to
the 15-feature prediction model when the environmental factors, including nutrient intake
and lifestyles, were not included. Pulse and seasons with other medical health-checkup
were included in the 9-feature model, and they can be easily implicated into the smartwatch
to check insulin resistance and provide a health-related personal warning daily. This study
had some limitations. The data originated from a cross-sectional study, and hence, the
results cannot be explained as a cause-and-effect association. The study population was
Koreans aged ≥ 40 years, which cannot be extended to adolescents and young adults. This
study has the strength to generate an optimal prediction model to explain insulin resistance
by metabolic features and genetic factors. The metabolic features included the previously
designated ones with new ones added. The liver function index such as serum ALT and
total bilirubin concentrations should be considered to predict insulin resistance.

5. Conclusions

XGBoost, logistic regression, random forest, and ANN algorithms generated the
optimal prediction model for insulin resistance among seven ML-based approaches, sum-
marized in Figure 6. The prediction model with 15 features included metabolic and genetic
factors but not food intake and lifestyles in the XGBoost and random forest algorithms.
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Although they included different features, the prediction model with XGBoost and random
forest showed good validation. However, the nine feature prediction models included
the same, but their relative importance differed. The models included the fasting serum
glucose, ALT, total bilirubin, HDL concentrations, waist circumference, body fat, pulse,
season to participate, and gender. In conclusion, liver function, pulse, and seasonal vari-
ation in addition to MetS components should be considered to predict insulin resistance
in Koreans aged over 40. The ML algorithms, particularly XGBoost, logistic regression,
random forest, and ANN, can help find risk factors for various diseases and predict the
disease in a clinical setting.
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