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Abstract: The aims were to profile the DNA methylation in colorectal cancer (CRC) and to explore
cancer-specific methylation biomarkers. Fifty-four pairs of CRCs and the adjacent normal tissues were
subjected to Infinium Human Methylation 450K assay and analysed using ChAMP R package. A total
of 26,093 differentially methylated probes were identified, which represent 6156 genes; 650 probes
were hypermethylated, and 25,443 were hypomethylated. Hypermethylated sites were common in
CpG islands, while hypomethylated sites were in open sea. Most of the hypermethylated genes were
associated with pathways in cancer, while the hypomethylated genes were involved in the PI3K-AKT
signalling pathway. Among the identified differentially methylated probes, we found evidence of
four potential probes in CRCs versus adjacent normal; HOXA2 cg06786372, OPLAH cg17301223,
cg15638338, and TRIM31 cg02583465 that could serve as a new biomarker in CRC since these probes
were aberrantly methylated in CRC as well as involved in the progression of CRC. Furthermore,
we revealed the potential of promoter methylation ADHFE1 cg18065361 in differentiating the CRC
from normal colonic tissue from the integrated analysis. In conclusion, aberrant DNA methylation is
significantly involved in CRC pathogenesis and is associated with gene silencing. This study reports
several potential important methylated genes in CRC and, therefore, merit further validation as novel
candidate biomarker genes in CRC.

Keywords: colorectal cancer; DNA methylation; adjacent normal colon; Infinium Human Methylation
450K; microarray

1. Introduction

Colorectal cancer (CRC) is a leading cause of morbidity and cancer death world-
wide. In Malaysia, CRC is identified as the most common cancer in men and the second
most common cancer in women [1]. This disease is highly heterogeneous, with varying
responses to cancer therapy and prognosis. The heterogeneity of CRC evolved from multi-
ple pathways, including Chromosomal Instability (CIN), Microsatellite Instability (MSI),
and CpG Island Methylator Phenotype (CIMP) [2]. Unlike other pathways, CIMP is an
epigenetic mechanism that is more dynamic [3] and often reversible in the presence of

Diagnostics 2022, 12, 198. https://doi.org/10.3390/diagnostics12010198 https://www.mdpi.com/journal/diagnostics

https://doi.org/10.3390/diagnostics12010198
https://doi.org/10.3390/diagnostics12010198
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/diagnostics
https://www.mdpi.com
https://orcid.org/0000-0003-4953-7354
https://orcid.org/0000-0002-9960-4888
https://orcid.org/0000-0002-8589-7456
https://orcid.org/0000-0001-6914-2224
https://doi.org/10.3390/diagnostics12010198
https://www.mdpi.com/journal/diagnostics
https://www.mdpi.com/article/10.3390/diagnostics12010198?type=check_update&version=1


Diagnostics 2022, 12, 198 2 of 22

inducing factors such as demethylating agents. The concept of CIMP was first introduced
by Toyota et al. in 1999 and defined as widespread methylation in the CpG island of the
genes [4]. The methylation process was described by the addition of the methyl group
(CH3

−) at the carbon 5 of the cytosine ring to form 5-methylcytosine, and the process is
catalysed by the enzyme DNA methyltransferase (DNMT) in which S-adenosyl-methionine
(SAM) acts as a methyl donor [5,6]. Aberrant methylation in CRC has correlated with
the inactivation of tumour suppressor genes [7] and the activation of oncogenes [8] that
function to control a variety of cellular processes, including apoptosis, proliferation, inva-
sion, and migration [9]. Aberrant DNA methylation is a hallmark of cancer that occurs
early in cancer development [10], increases with the progression of the disease, and is
involved in the treatment response [11,12]. Therefore, DNA methylation may serve as a
potential biomarker for cancer diagnosis, predicting patient prognosis, and monitoring
response towards therapy. Several studies have been conducted to identify a methylation
biomarker with high specificity and sensitivity to be used in the diagnosis of CRC. For
instance, Freitas and his colleagues discovered promoter methylation of the three-genes
panel (MGMT, RASSF1A, and SEPT9) in accurately diagnosed CRC with 96.6% sensitivity
and 74% specificity of detection [13]. Furthermore, a meta-analysis from 38 studies has
offered the potential diagnostic markers of hypermethylation SFRP1, SFRP2, NDRG2, and
VIM genes in CRC patients [14].

As previously stated, the methylation status of specific genes may also predict the
prognosis of the patients. An interesting study by Maija et al. 2013, discovered that
the activation of oncogene KRAS along with promoter methylation of CDKN2A leads to
more aggressive rectal cancers [15]. In addition, CHFR is another promising prognostic
marker whereby promoter methylation of this gene indicates poor prognosis in stage II
microsatellite stable CRC [16]. Numerous investigations have identified a therapeutic
response mediated by DNA methylation [17–19]. In our previous research, we identified
the aberrant methylation of five potential therapeutic targets, CCNE1, CCNDBP1, PON3,
CHL1, and DDX43, involved in CRC chemoresistance [20]. Moreover, CRC patients with
the hypermethylation of NKX6.1 [21], TFAP2E-DKK4 [22], and IGFBP3 genes [23] were
unresponsive to 5-FU chemotherapy treatment. Patients with unmethylated RASSF1A [24]
and SRBC [18] were highly responsive to oxaliplatin chemotherapy drugs than patients
who exhibited aberrant methylation of these genes. However, the methylation of GPX3
was associated with oxaliplatin sensitivity [25]. The hypermethylation of BNIP3 reduces
the sensitivity of CRC towards irinotecan chemotherapeutic drugs [26].

DNA methylation has been recognised as a potential biomarker in CRC; however, only
a few methylation markers are currently used in cancer diagnostics. DNA methylation-
based biomarkers are still relatively new, hence, careful assessments of the potential
biomarkers are required to further validate them prior to being used in clinical diag-
nostics. Therefore, in this study, we aim to profile the DNA methylation in CRC and
explore cancer-specific methylation biomarkers to provide evidence that can support their
use in clinical practice.

2. Materials and Methods
2.1. Clinical Specimens

Fifty-four pairs (n = 108) of CRC and the respective adjacent normal tissues were
collected from the UKM Medical Center, Malaysia. This study was conducted following
the recommendations and approval of the Universiti Kebangsaan Malaysia Research Ethics
Committee (Reference number: UKM 1.5.3.5/244/UMBI-004-2012). All subjects gave
written informed consent for their participation following the Declaration of Helsinki. The
tissues were dissected, snap-frozen and stored in liquid nitrogen prior to sectioning. All
sectioned tissues were stained with Hematoxylin and Eosin (H&E). Only cancer tissues
that contained more than 80% cancerous cells and normal adjacent tissues with less than
20% necrosis were subjected to the next step. Genomic DNA from frozen tissues was
extracted using the QIAamp DNA mini kit according to the manufacturer’s instructions.
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The quantification and purity of DNA for each sample were assessed using Qubit 2.0
fluorometer and Nanodrop 2000c Spectrometer (Thermo Fisher Scientific, Inc., Wilmington,
DE, USA), respectively. Only samples with purity from 1.8 to 2.0 were selected for the
microarray study.

2.2. DNA Methylation Profiling

Methylation profiling was performed on 108 samples (54 paired tumour–adjacent
normal colon) using the Infinium Human Methylation 450K BeadChip, which covers
485,577 CpG dinucleotide sites distributed over the whole genome according to the man-
ufacturer’s specification (Illumina, Inc., San Diego, CA, USA). Genomic DNA under-
went bisulfite treatment to convert all unmethylated cytosine to uracil using EZ DNA
methylation—Gold kit (Zymo Research, Inc., Irvine, CA, USA) following the manufac-
turer’s protocol prior to being subjected to profiling. Scanning of the BeadChips was
performed on the iScan scanner (Illumina, Inc., San Diego, CA, USA).

2.3. Human Methylation 450K Data Analysis

The raw IDAT files were exported from the scanner, and quality control was performed
using Genome Studio software version 2.0.4 (Illumina Inc.). The passed IDAT files from
108 samples were further analysed using the ChAMP R package [27] in a single analysis,
and filters were applied to all datasets where CpG sites that had a detection p-value > 0.01
in each probe were excluded from further analysis. The data were normalised using
the Peak-Based Correction (PBC) method [28] prior to the batch effect correction using
ComBat [29]. The β-values were extracted, and statistical analysis was performed. The
limma Bioconductor package was used to determine the differentially methylated CpG
sites [30,31], and we applied Benjamini–Hochberg (BH) p-value < 0.05 to identify significant
differentially methylated probes. Then, to determine the methylation status of the probes,
we conducted further filtering based on the ∆β value of tumour versus normal, where ≥0.2
was considered hypermethylated and ∆β ≤ −0.2 was hypomethylated. The heatmap was
generated using the online Morpheus tool from the Broad Institute [32].

2.4. Functional Enrichment Analyses of Differentially Methylated Genes

The DMGs were then subjected to gene ontology enrichment analysis using the
bioinformatics analysis tool, DAVID Bioinformatics Resources 6.8 [33,34], to identify
the pathways involved in the hypermethylated and hypomethylated genes. Adjusted
p-values < 0.05 were used as the cut-off criterion.

2.5. Gene Expression Profile Analysis

The gene profiling analysis was performed using the level 3 IlluminaHiSeq RNAseqV2
mRNA dataset in patients diagnosed with CRC from The Cancer Genome Atlas (TCGA)
data portal. A total of 157 samples were available for gene expression data, with 13 matched
normal and tumour samples. The normalised RNAseq by Expectation-Maximization
(RSEM) data was input into R programming software, and the limma Bioconductor pack-
age was subsequently used for the calculation of differentially expressed genes. The
Benjamini–Hochberg (BH) [35] procedure was applied to identify significantly differen-
tially expressed genes between CRC and normal colon tissues with the cut-off criterion of
adjusted p-values < 0.05 and log2 fold change (FC) ≥ |1|.

2.6. Integrated Promoter Methylation and Gene Expression Profiling

In order to identify a set of genes whose expression is primarily and causally reg-
ulated by promoter DNA methylation in CRC, we performed an integrated analysis of
genome-wide DNA methylation and a gene expression profile. The promoter region was
defined as the genomic interval that begins 1500 bp upstream and 200 bp downstream of
the transcription start site in the CG-rich region. Additionally, the gene expression data
were classified into two groups according to their expression level in which differentially ex-
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pressed genes were exhibited, log2 FC > 1 were considered upregulated, and log2 FC < −1
in CRC, compared to the normal colon, were considered downregulated. The promoter
methylation mediated silencing genes were determined by overlapping the methylated
promoter genes with the downregulated genes.

2.7. Protein-Protein Interaction

The interaction between the proteins encoded by top promoter methylated-silencing
genes were determined using the Search Tool for the Retrieval of Interacting Genes
(STRING) v11 database [36]. All parameters were set to defaults. In the search for the
candidate biomarker, a few criteria were utilised, such as genes that posed a high level of
methylation and low expression, genes that have strong interaction that can regulate other
genes, as well as genes associated with predisposition to CRC.

2.8. Receiver Operating Characteristics (ROC) Curve of Genes

The diagnostic performance of the candidate biomarker was evaluated by the ROC
curves. The area under the ROC curve (AUC) was constructed with a 95% confidence
interval (95% CI) as an accuracy criterion for the examination of the candidate biomarker.
The methylation value of candidate biomarkers in CRC cases was plotted against their
corresponding control, and a perfect diagnostic marker had an AUC value of 1. All the
analyses were generated using GraphPad Prism 8.0.2.

3. Results
3.1. Demography

Demography data of the 54 patients are presented in Table 1. The majority of the
patients were female and above the age of 50 years old. Most of the patients were diagnosed
with Duke’s B and positioned on the left side of the colon. Moreover, the majority of the
tumour tissues were moderately differentiated.

Table 1. Demographic data of the 54 CRC patients.

Characteristics Number of Patients

Gender
Female 31
Male 23
Age (years)
≤50 8
>50 46
Ethnicity
Malay 26
Chinese 24
Indian 4
Duke’s Staging
A 5
B 31
C 18
Tissue differentiation
Well 21
Moderately 27
Poorly 3
Unknown 3
Location of the tumour
Right 24
Left 30
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3.2. Locations of Differentially Methylated Probes

We compared the differential methylation status of 54 CRC tissue samples with the
54 adjacent cancer-free colonic tissue samples. In order to explore epigenome-wide methy-
lation profiles, probe filtering was performed to identify the differentially methylated
probes with a detection adjusted p-value < 0.01 after FDR correction. This resulted in
157,846 probes for the downstream analysis. These probes were further classified as hyper-
methylated or hypomethylated based on the absolute average β value difference (∆β) at
≥0.2 between CRC and normal adjacent tissues. This value represents 20% change in the
methylation level. A total of 26,093 probes were identified (Figure 1A). Of these, 650 probes
were hypermethylated and 25,443 probes were hypomethylated. Then, we stratified the
probes into CpG island, shores, shelves, and open sea regions. From the 650 differentially
hypermethylated probes, 331 probes (50.92%) were located in the island region, accounting
for half of the total number of probes, 145 probes (22.31%) were located on the shore,
112 probes (17.23%) were in the open sea, and the remaining 62 probes (9.54%) were located
in the shelf region (Figure 1B). In contrast, most of the hypomethylated probes were in the
open sea area of the genome (n = 16,749; 65.83%), followed by the shore, shelf, and island
region with 4022 (15.81%), 3657 (14.37%), and 1015 (3.99%) probes, respectively (Figure 1C).
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Figure 1. Differentially methylated probes in CRCs relative to its adjacent normal. (A) Distribution
of significantly differentially methylated probes in a genomic region. (B) Hypermethylated probes
and (C) Hypomethylated probes in genomic region. (D) Distribution of differentially methylated
probes, (E) hypermethylated probes, (F) Hypomethylated probes with respect to genomic features,
(G) distribution of methylation CpG sites in the human genome. The CpG island is surrounded by
shores (within 2 kb sequence neighbouring the islands) with shelves flanked further from the shores.
The open sea area is outside of the shelf region.

Meanwhile, categorization based on genomic features revealed that most differentially
methylated probes did not belong to any gene. The majority of these probes were in the
intergenic region (IGR) (n = 10,150; 38.90%), closely followed by the gene body (n = 9211;
35.30%), TSS1500 (n = 2888; 11.07%), 5′UTR (n = 1524; 5.84%), 3′UTR (n = 1047; 4.01%),
TSS200 (n = 762; 2.92%), and 1st exon (n = 511; 1.96%), as illustrated in Figure 1D. On closer
inspection, the majority of the significantly hypermethylated loci were in the body (n = 250;
38.46%), followed by 5′UTR (n = 107; 16.46%), the intergenic region (n = 80; 12.31%), closely
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followed by TSS200 (n = 78; 12%), TSS1500 (n = 72; 11.08%), 1st exon (n = 35; 5.38%), and
lastly 3′UTR (n = 28; 4.31%) (Figure 1E). On the contrary, the significant hypomethylated
loci were not associated with any genes (n = 10,150; 39.58%) or in the gene body (n = 9211;
35.22%), while the rest were mainly located in TSS1500, 5′UTR, 3′UTR, TSS200, and 1st
exon (Figure 1F).

3.3. Methylation Level of Differentially Methylated Probes

Significant methylation differences of the 50 topmost significant differentially methy-
lated probes were generated and illustrated through the heatmap in Figure 2. The five
hypermethylated probes with the highest ∆β values were SEPT9 cg17300544 (∆β = 0.353),
HOXA2 cg06786372 (∆β = 0.342), HOXA3 cg27539480 (∆β = 0.330), OPLAH cg17301223
(∆β = 0.317), and cg16179589 (∆β = 0.315). The list of the top 10 hypermethylated probes
is displayed in Table 2, and information on the top 50 is provided in Supplementary
Table S1. On the other hand, the five hypomethylated probes with the highest reduc-
tion of methylation were ZBTB46 cg20267897 (∆β = −0.497), cg15638338 (∆β = −0.497),
MATN4 cg01268752 (∆β = −0.496), cg08550523 (∆β = −0.495), and TRIM31 cg02583465
(∆β = −0.495). The list of the top 10 hypomethylated probes is displayed in Table 3, and
information on the top 50 hypomethylated probes is provided in Supplementary Table S2.

Table 2. Top 10 significant hypermethylated loci in CRC versus normal tissues.

Gene Probes ∆β Genomic Feature Genomic Region

SEPT9 cg17300544 0.353 TSS200 Island
HOXA2 cg06786372 0.342 Body Shore
HOXA3 cg27539480 0.330 3′UTR Shore
OPLAH cg17301223 0.317 Body Island

na cg16179589 0.315 IGR Shore
IRF4 cg17228900 0.314 5′UTR Island

ADHFE1 cg20912169 0.311 5′UTR Island
PRKAR1B cg18601167 0.310 5′UTR Shore

ZFHX3 cg02973693 0.308 5′UTR Shelf
HOXA2 cg00188704 0.307 Body Shelf

na = not available. The probes in the IGR region were not annotated with a gene name.

Table 3. Top 10 significant hypomethylated loci in CRC versus normal tissues.

Gene Probes ∆β Genomic Feature Genomic Region

ZBTB46 cg20267897 −0.497 5′UTR Shore
na cg15638338 −0.497 IGR Open sea

MATN4 cg01268752 −0.496 Body Shore
na cg08550523 −0.495 IGR Open sea

TRIM31 cg02583465 −0.495 Body Open sea
na cg17400812 −0.493 IGR Open sea
na cg25506686 −0.483 IGR Open sea
na cg12297066 −0.477 IGR Open sea

TM4SF19 cg05445326 −0.476 TSS1500 Open sea
OC90 cg03344782 −0.470 Body Open sea

na = not available. The probes in the IGR region were not annotated with a gene name.
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Figure 2. Heatmap of 50 differentially methylated genes, consisting of 25 hypermethylated and
25 hypomethylated genes in CRCs in comparison to the adjacent normal tissues with a p-value < 0.05.
Every row represents individual genes, and the column represents individual samples. The horizontal
bars indicate the patient’s age at diagnosis and tumour information, such as the tumour’s location
and stage. The colour in each small box constitutes the methylation level of the genes in which
red boxes indicate genes with a high methylation level while blue boxes display genes with a low
methylation level.

Of the 26,093 differentially methylated CpGs identified from the probe-level test, 15,943
(61.1%) represented 6156 genes. There were 156 genes with overlapping methylation status;
5781 were uniquely hypomethylated, and 219 were uniquely hypermethylated (Figure 3A,
Supplementary Table S3). The HOXA5 gene had the highest number of differentially
methylated loci (n = 21), followed by HOXA3 (n = 13) and HOXA2 (n = 12), in which all
loci were hypermethylated (Figure 3B). Twenty loci were in the HOXA5 islands, and one
locus was at the shore. On the contrary, less than one-third of the hypermethylated loci in
HOXA3 were at the island; almost half (46%) were at the shore. HOXA2 followed an almost
similar trend, with the hypermethylated loci mainly at the shore and only one locus at the
island. Another member of the HOX gene family, HOXA6, was also identified with three
hypermethylated loci (data not shown). Other than these three genes, the majority (n = 284;
75.7%) of the genes had only one hypermethylated site.
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Figure 3. Overview of the methylation status identified in 6156 genes. (A) A total of 156 genes with
overlapping methylation status and 5781 genes exhibit hypomethylation; in contrast, 219 genes were
hypermethylated. (B) Bar chart displaying genes that had the highest differentially hypermethylated
loci. (C) The bar chart details the genes that had the highest differentially hypomethylated loci.

There were more hypomethylated genes as compared to the number of hyperme-
thylated genes. SDK1, PTPRN2, and TNXB were the genes with the highest number of
hypomethylated loci (n = 116, 83, and 83, respectively) (Figure 3C). As expected, the major-
ity of the hypomethylated loci in SDK1 were at the open sea (81.8%), with PTPRN2 and
TNXB following a similar pattern.
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3.4. Pathway Enrichment Analysis of DMG

Next, the list of hypermethylated and hypomethylated genes were subjected to path-
way enrichment analysis using DAVID Functional Annotation Bioinformatics Microarray
Analysis. We discovered ten enriched pathways of hypermethylated genes that could be
potentially associated with CRCs. The top five most enriched pathways were pathways in
cancer, the PI3K/Akt signalling pathway, signalling pathways regulating the pluripotency
of stem cells, Proteoglycans in cancer, and Melanoma (Table 4). However, none of the listed
pathways was statistically significant. Most of the genes that were hypermethylated in the
pathways in cancer were APC, CTBP2, NFKBIA, SMAD2, COL4A1, CDK6, DAPK2, FGF12,
FGF14, FGF21, IGF1R, LAMB3, as well as PIK3R1.

Table 4. Five top pathways regulated by the hypermethylated genes in CRCs compared to adjacent
normal tissues.

Pathway No. of Genes p-Value Fold Enrichment

Pathways in cancer 14 0.6873 1.9923

PI3K/Akt signalling pathway 13 0.6873 2.1073

Signalling pathways regulating
pluripotency of stem cells 10 0.1544 3.9947

Proteoglycans in cancer 9 0.6960 2.5167

Melanoma 6 0.6873 4.7262

Conversely, the top five significantly enriched pathways associated with hypomethy-
lated genes were the PI3K/AKT signalling pathway, pathways in cancer, focal adhesion,
cell adhesion molecules, and the RAS signalling pathways (Table 5). Hypomethylated genes
were observed in the PI3K/AKT signalling pathways, namely CHRM2, TNXB, LAMA2,
COL11A2, PIK3CD, PIK3CG, COMP, RPTOR, MYC, GNG7, PDGFD, AKT3, PDGFC, TNR,
SYK, ANGPT1, ITGA4, IGF1, NGF, PTK2, RBL2, FGF14, CDK6, COL1A2, COL4A2, COL5A1,
COL4A1, COL5A2, FGF18, COL6A3, COL6A6, SOS1, FGFR1, and CREB5.

Table 5. Five top pathways regulated by the hypomethylated genes in CRCs compared to adjacent
normal tissues.

Pathway No. of Genes p-Value Fold Enrichment

PI3K/Akt signalling pathway 34 2.89 × 10−5 2.6902

Pathways in cancer 28 0.0254 1.9448

Focal adhesion 23 3.73 × 10−4 3.0477

Cell adhesion molecules (CAMs) 21 2.89 × 10−5 4.0369

Ras signalling pathway 19 0.0314 2.2949

3.5. Integrated Analysis of Promoter Methylation and Gene Silencing

The hypermethylation of the promoter region has been associated with the silencing
of the genes; meanwhile, cancer-linked DNA hypomethylation has received little attention
due to the association with repeated DNA elements. We analysed the relationship between
promoter hypermethylation and gene expression by integrating the differentially methy-
lated genes (DMGs) and differentially expressed genes (DEGs). We identified a total of
105 hypermethylated genes in the promoter regions (comprised of transcription start sites;
TSS1500 and TSS200 within the CG rich region).

To address whether the promoter methylation plays a role in the regulation of the
gene expression, we observed the expression level of promoter hypermethylated genes
using RNAseq data from The Cancer Genome Atlas (TCGA) of 134 CRCs and 23 normal
colon samples. Out of 105 promoters hypermethylated, only 31 genes overlapped with



Diagnostics 2022, 12, 198 10 of 22

DEGs from the TCGA datasets. The list of the promoter methylated genes, ∆β value, and
corresponding expression level are displayed in Supplementary Table S4.

Then, from 31 overlapped genes, 28 genes exhibited hypermethylation associated
with gene silencing in CRCs as compared to normal, whereas the three remaining genes
displayed expression levels directly proportional to the methylation level.

The top ten hypermethylated-induced silencing of genes in the promoter region
were ADHFE1 (∆β = 0.299, log2 fold change = −3.531), HOXA5 (∆β = 0.271, log2 fold
change = −1.419), ZNF542 (∆β = 0.261, log2 fold change = −1.675), ZNF334 (∆β = 0.259,
log2 fold change = −1.887), ZNF135 (∆β = 0.258, log2 fold change = −1.720), USP44
(∆β = 0.255, log2 fold change = −1.225), SFMBT2 (∆β = 0.249, log2 fold change = −1.634),
ADARB2 (∆β = 0.248, log2 fold change = −1.158), ZNF582 (∆β = 0.244, log2 fold change =
−1.577), and ZNF132 (∆β = 0.244, log2 fold change = −1.379). This is illustrated in Figure 4.
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Figure 4. The methylation and expression level of the top ten hypermethylated genes are associated
with gene silencing. The (A) ADHFE1, (B) HOXA5, (C) ZNF542, (D) ZNF334, (E) ZNF 135, (F) USP44,
(G) SFMBT2, (H) ADARB2, (I) ZNF582 and (J) ZNF132 genes were significantly hypermethylated and
downregulated in CRC tumours versus normal tissues. The box plot displays the average methylation
level of each gene across 56 pairs of CRC tissues and their adjacent normal tissues from our microarray
analysis. The green box plot represents the methylation level of the respective genes in CRC tumour
tissues, while the yellow box plot represents normal colon tissues. The expression level of the genes in
CRC tissues versus normal is shown on the right side of the methylation box plot graph, using 134 CRC
tissues and 23 normal colon tissues from the TCGA dataset. The green box plot graph indicates the level
of expression of the corresponding genes in CRC tissues, whereas the yellow box plot graph indicates
the level of expression of the genes in normal tissues. The statistical analysis between tumour versus
normal was determined using a two-sided Student’s t-test (**** p-value < 0.0001).
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3.6. Protein-Protein Interaction of Promoter Hypermethylated Genes

To explore the potential function of each protein encoded by the top ten promoter
hypermethylated-silencing genes, we constructed a protein-protein interaction network
using the STRING database Version 11.0 based on the homo sapiens association model.
In this network, each node represents a protein, and each edge represents a physical
interaction between two proteins.

The protein-protein interaction network of ADHFE1 resulted in 10 nodes and 18 edges
with the enrichment p-value of 0.0181. The biological process of this protein is mainly
involved in alcohol dehydrogenase activity, the retinol metabolism process, as well as
ethanol oxidation.

Next, HOXA5 consisted of 10 nodes and 55 edges. The strong interaction of HOXA5
with other proteins provided the most significant enrichment p-value of 1 × 10−16. This
protein is involved in DNA binding transcription activator activity, embryonic skeletal
system morphogenesis, and development. The following protein, SFMBT2, was connected
to 10 proteins and 13 edges. The protein-protein interaction enrichment p-value of SFMBT2
was 0.224, and it is involved in chromatin binding, histone binding, as well as transcription
corepressor activity.

The zinc-finger (ZNF) proteins ZNF135, ZNF582, ZNF132, and ZNF334 consisted of
11 nodes and 15 edges, 11 nodes and 14 edges,11 nodes 12 edges with an enrichment p-value
of 0.112, 0.15, 0.337, respectively. Among the zinc-finger families, ZNF334 displayed the
least interaction with neighbouring proteins with 6 nodes and 5 edges, and the enrichment
p-value of this protein was 0.572. ZNF families are involved in transcriptional regulation,
ubiquitin-mediated protein degradation, signal transduction, and other cellular processes.

Another protein, namely USP44, is involved in regulating ubiquitin-protein ligase
activity and cell division, specifically in the G2/M transition phase. USP44 protein was
connected to 10 different proteins with 12 edges with an enrichment p-value of 0.353. On top
of that, the protein interaction network of ADARB2 and ZNF542 could not be retrieved from
the STRING database. Eight protein-protein interactions of promoter hypermethylated-
silencing genes are displayed in Figure 5.

3.7. Receiver Operating Characteristics (ROC) Curve Analysis of Promoter Hypermethylated Genes

Next, to evaluate the diagnostic power of the genes as a biomarker, we performed the
ROC analysis on the top ten promoter hypermethylated genes by measuring the specificity
and sensitivity performance of the biomarkers (p-value < 0.0001) (Table 6). Among the
top ten promoter hypermethylated genes, ADHFE1 had the highest discriminative power
(AUC = 0.9088, 95% CI = 0.847 to 0.971), followed by SFMBT2 (AUC = 0.880, 95% CI = 0.818
to 0.942), and ZNF135 (AUC = 0.859, 95% CI = 0.879 to 0.933).
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Figure 5. Interaction network of eight selected proteins from promoter hypermethylated-gene
silencing. STRING Database Version 11.0b was used to construct the functional protein association
networks based on the homo sapiens association model. Medium confidence was set to 0.400, and the
max number of interactors was no more than 10. (A) The ADHFE1 protein is significantly connected
to 10 neighbouring proteins with 18 edges, (B) The HOXA5 is strongly connected to 10 neighbouring
proteins with 55 edges, (C) The ZNF 334 protein has the least interaction with neighbouring proteins
with 6 nodes and 5 edges, (D) The SFMBT2 protein is connected to 10 neighbouring protein with
13 edges, (E) The ZNF135 protein shows interaction with 11 neighbouring proteins and 15 edges,
(F) The USP44 protein is connected to 10 neighbouring proteins with 12 edges, (G) The ZNF582
interacts with 11 neighbouring proteins with 14 edges, (H) The ZNF132 protein interacts with
11 neighbouring proteins with 12 edges.

Table 6. Receiver operating characteristics (ROC) curve analysis between CRCs and normal samples
of promoter hypermethylated genes.

Gene Probes AUC 95% Confidence Interval p-Value

ADHFE1 cg18065361 0.909 0.8470–0.9706 <0.0001

HOXA5 cg19643053 0.776 0.6876–0.8639 <0.0001

ZNF542 cg27477373 0.844 0.7656–0.9230 <0.0001

ZNF334 cg10140114 0.826 0.7432–0.9090 <0.0001

ZNF135 cg06454760 0.859 0.7855–0.9326 <0.0001

USP44 cg13879483 0.829 0.7445–0.9140 <0.0001

SFMBT2 cg02866454 0.880 0.8180–0.9420 <0.0001

ZNF582 cg13916740 0.809 0.7198–0.8982 <0.0001

ZNF132 cg03735888 0.842 0.7654–0.9184 <0.0001

ADARB2 cg02899206 0.79 0.7055–0.8810 <0.0001
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In the previous analysis, we discovered HOXA5 exhibited a strong protein-protein in-
teraction network; however, the ROC analysis for HOXA5 showed the lowest discriminative
power with an AUC value of 0.776 to differentiate the CRC from normal mucosa tissues.

3.8. Methylation Level of ADHFE1 in Various Cancers

From the ROC analysis, we identified the potential of the ADHFE1 gene as a diagnostic
marker in CRC. All probes identified in the promoter region of the ADHFE1 gene were
hypermethylated, with cg18065361 exhibiting the highest methylation level in colorectal
tumours versus normal tissues. The methylation status of the ADHFE1 gene in each probe
in the promoter region is illustrated in Figure 6.
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Figure 6. The methylation level of each probe in the promoter region of the ADHFE1 gene in colorectal
tumours and normal tissues. All probes were significantly hypermethylated in tumour versus normal,
with cg18065361 (bold in red) having the highest methylation levels.

Then, we performed an in silico methylation analysis of this gene in various cancers
using Wanderer software [37] to compare the diagnostic potential of this gene in CRC as well
as other cancers. This software provides the methylation level of all the Human Methylation
450K probes in the ADHFE1 gene. Twenty-seven CpG loci in ADHFE1 were found to be
significantly aberrant methylated in 308 CRCs versus 38 normal tissues, including our CpG
locus of interest; cg18065361.

The methylation of ADHFE1 cg18065361 was also significantly hypermethylated in
esophageal carcinoma and head and neck squamous cell carcinoma. However, among
these two cancers, CRC showed a significant difference in the methylation level of ADHFE1
between tumours and normal tissues. Thus, based on our results and from the TCGA
dataset, we concluded that the methylation of the ADHFE1 gene occurs more frequently in
CRC than in other malignancies. Figure 7 presents the methylation status of the ADHFE1
gene in tumours versus normal tissues from various cancers using TCGA datasets.
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Figure 7. In silico validation of ADHFE1 methylation in the TCGA dataset of selected cancers.
The red box indicates the potential hypermethylated locus identified in our study. We displayed a
concordant result with the TCGA dataset. Green probes indicate CpG island location, and the figure
was generated using Wanderer software [36].

4. Discussion

We analysed the global methylation status of 54 paired CRC and the corresponding
normal tissue samples. Our demographic data showed that most patients were diagnosed
over 50 years of age. Many studies have reported an increase in the incidence rate of CRC
among individuals aged more than 50 years old [1,38]. To the best of our knowledge, this
study provides the largest epigenome-wide DNA methylation profiles in CRC–adjacent
normal colon tissue pairs using the 450K BeadChip. The Cancer Genome Atlas [39] has data
on the DNA methylation status in 308 CRCs; however, only 38 matched tumour–adjacent
normal samples were included. In 2013, Naumov and colleagues performed genome-
wide methylation profiling in 22 paired CRC and adjacent normal tissues in addition to
19 colon tissue samples from cancer-free donors [40]. Recently, Gu et al. analysed 12 pairs
of CRC and adjacent normal tissues using the newest version of methylation chip; the
MethylationEpic Beadchip [41].

Our study revealed 26,093 differentially methylated probes that were distributed over
the CpG sites of the genome. The CpG sites were comprised of several regions such as
CpG island, shores (2 kb upstream from the island), shelves (2 kb upstream from the
shores), and open sea, which make up for the remaining genomic region [42]. Notably,
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we discovered that most of the identified CpG sites were hypomethylated rather than
hypermethylated, contrasting with previous findings in other cancers [43,44]. Our findings
corroborated recent research by Gu and colleagues, which revealed that approximately
87% of differentially methylated CpG sites were hypomethylated, whereas just 13% were
hypermethylated [41]. This may be explained by the genomic distribution of the Human-
Methylation 450K microarray, which identified more probes in the open sea region (36.3%)
than in CpG islands (30.9%), shores (23%), and shelves (9.7%) [45,46].

The CpG island is a region that is rich in CG sequences and often associated with
the transcription start site. Our results showed that half of the hypermethylated probes
were in the CpG island which is associated with promoter regions. This finding is sup-
ported by Sproul et al. where they showed that most of the cancers frequently exhibit
hypermethylation at the CpG rich regions [47]. Conversely, hypomethylation often occurs
in the open sea area of the genome. A similar pattern has been observed in another study
where hypomethylation of CpG sites was enriched at the open sea area and intergenic
region [48–50].

Various studies have reported septin 9 gene (SEPT9) methylation in CRC, highlighting
the relevance of SEPT9 methylation in cancer [51–56]. SEPT9 is one of the widely studied
hypermethylated genes in CRC, and our finding also supported its role in this cancer. We
also uncovered many potential genes with interesting profiles. For instance, a group of
Homeobox A (HOXA) cluster genes, the members of the HOX family, and an important
gene in normal organ development was found to be significantly hypermethylated in
CRC compared to the normal adjacent tissues. On top of that, four genes in this family,
namely HOXA5, HOXA3, HOXA2, and HOXA6, were hypermethylated at multiple loci.
Our discovery is supported by a recent study by Li and colleagues, who reported the hyper-
methylation of HOXA5, HOXA2, and HOXA6 [57]. Furthermore, HOXA5 methylation was
shown to be associated with age, stage, and tumour status, while HOXA6 methylation was
linked to age and KRAS mutation [57]. The HOXA family has been the subject of substantial
research in cancer. Numerous clinical trials have been conducted on the HOXA genes,
but none have focused exclusively on the HOXA2 gene. Recently, the methylation level
of HOXA1 was used to accurately differentiate between cholangiocarcinoma and benign
biliary stricture from brushed biliary samples in clinical trial NCT04568512 [58]. HOXA9
is among the biomarkers studied in the myeloid leukaemia clinical trial NCT03701295.
The expression level of HOXA9 was measured in myeloid leukaemia after treatment with
chemotherapeutic drugs, including Pinometostat and Azacitidine [59]. Despite the fact that
several HOXA family genes have been translated into clinical trials, none have focused
entirely on the HOXA2 gene. The relationship of HOXA2 with cancer progression is limited,
and the role of HOXA2 in cancer prognosis and response to treatment is unknown. In 2019,
Li and colleagues established a link between HOXA2 and age, cancer staging, lymphovas-
cular invasion, and lymph node involvement in CRC [57]. However, this is the only study
within the last decade that revealed the significance of HOXA2 in the clinicopathological
characteristics of CRC. The identification of hypermethylation of the HOXA2 gene as a
biomarker for CRC in our study adds to the evidence of HOXA2′s association with cancer.
Hence, our research may aid in the clinical development of HOXA2. In addition, it will
be interesting to assess the clinicopathological correlation with the methylation status of
HOXA2 genes in our patients, which will be a subject for future research.

Human 5-oxoprolinase, OPLAH, was shown to be hypermethylated in our study,
which had a significant impact on the gene’s downregulation, suggesting a possible con-
tribution to CRC through the dysregulation of gene expression. Numerous investigations
have also revealed that OPLAH is frequently hypermethylated in CRC versus normal
tissues [40,60]. Despite a paucity of information on OPLAH methylation in cancer, several
patents have been filed for its applicability in cancer detection. Recently, OPLAH was
identified as one of the biomarkers that have been patented for the diagnosis of lung
cancer (patent number: US 11028447 B2) [61] and CRC (patent number: US 11078539
B2) [62]. Taken together, our findings suggest that hypermethylated OPLAH has a role in
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the identification of CRC in the Malaysian population. In the future, the methylation status
of OPLAH can be determined in blood, urine, and saliva, thereby establishing OPLAH
as a non-invasive biomarker and accelerating the translation of molecular evidence to
clinical practice.

Next, we discovered that TRIM31 displayed a global loss of DNA methylation in CRC
tissues. DNA hypomethylation is a common epigenetic alteration observed in human
oncogenes. TRIM31 is an oncogene that has been shown to be overexpressed in different
types of cancer, including pancreatic [63], acute myeloid leukaemia [64], hepatocellular
carcinoma [65], breast [66], and CRC [67]. Whilst TRIM31 is commonly overexpressed in
cancers, the mechanism by which TRIM31 is overexpressed remains unknown. Our study
is the first to demonstrate that TRIM31 is hypomethylated in CRC. DNA hypomethylation
may enhance gene expression by allowing transcription factors to bind to the promoter
region of the gene. Therefore, we postulated that the overexpression of TRIM31 in CRC
is mediated by a global loss of DNA methylation. Nonetheless, additional research is
necessary to confirm the association between DNA hypomethylation and TRIM31 over-
expression. In addition, increased TRIM31 expression was associated with an aggressive
phenotype and poor prognosis in pancreatic cancer. Moreover, this gene lowered the
chemosensitivity of pancreatic cancer to gemcitabine, a commonly used chemotherapy
treatment for pancreatic cancer [63]. In CRC, the high expression of TRIM31 promotes can-
cer invasion and metastasis [67]. According to the findings presented, the overexpression
of TRIM31 had a role in the development, invasion, and metastasis of cancer, as well as
resistance to chemotherapy.

Barrow and colleagues [68] performed an epigenome-wide analysis of DNA methy-
lation in CRC patients with different smoking statuses, and among the significant hy-
pomethylated genes were the SDK1, PTPRN2, and TNXB genes. In our study, we identified
116 hypomethylated SDK1 loci and 83 hypomethylated loci in each of the PTPRN2 and
TNXB genes. These three genes also contained the highest number of hypomethylated loci.
Sidekick cell adhesion molecule 1 (SDK1) hypomethylation was also reported in sporadic
colorectal cancer [69] and is concordant with our findings. Receptor-type tyrosine-protein
phosphatase N2 (PTPRN2) hypomethylation, on the other hand, has been rarely reported.
The TNXB (tenascin XB) gene was first implicated in Ehlers–Danlos syndrome [70], but
its role in several human cancers have been established, including nasopharyngeal [71]
and mesothelioma [72]. Recent evidence further supports its role in malignancy, whereby
TNXB is indicated as one of the triple-evidenced genes, which exhibit aberrant methyla-
tion, differentially expressed and associated with somatic mutation, hence, displaying the
superior predictive ability in cancer diagnosis and prognosis [73].

The relationship between DNA methylation and gene expression is highly complex,
and traditionally, DNA methylation-silenced gene expression was primarily affected in
the CpG island promoter region [74–76] since the regulation of expression is controlled by
transcription factors that bind to the promoter [77]. To gain further insight into the role of
promoter methylation in silencing the gene expression, we performed an in silico analysis
of gene expression profiles of normal and CRC samples from the TCGA datasets. We
focused on the methylation profile of the promoter methylated genes and the association
with the gene expression. Our analysis showed supporting evidence that genes associated
with hypermethylated promoters display reduced gene expressions in CRC patients [78,79].
The addition of a methyl group at the promoter of the genes inhibits the binding of the
transcription factor to the promoter region, hence, initiating the activation of genes [80].

A protein-protein interaction network was constructed to identify the regulator protein
among the selected promoter hypermethylated. HOXA5 and ADHFE1 had strong protein-
protein interactions with neighbouring proteins to form a regulatory network. The strong
regulatory protein may influence the expression of neighbouring proteins, which contribute
to the pathogenesis of CRC. Furthermore, the strong connection among the proteins is likely
to form a protein complex and often direct the biological processes [81,82]. Our findings
discovered the interaction of HOXA5 with HOXB6 and HOXB7. The downregulation of
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HOXA5 increased the expression of HOXB6 and HOXB7, which were associated with poor
clinical outcomes in cancer patients [83–85]. On the other hand, the hypermethylation of
ADHFE1 further reduced the expression of neighbouring proteins, ADH6, ADH7, as well
as ADH1A, in which the genes were associated with the patient’s prognosis and cancer
pathogenesis [86–88].

Taken together, this summarises the potential of HOXA5 and ADHFE1 as promising
biomarkers in CRC. However, when we performed ROC analysis for the top ten hyperme-
thylated promoters mediating gene silencing, ADHFE1 showed the highest discriminative
values that significantly differentiated the CRCs from the normal colonic tissues. Com-
pared with HOXA5, the better discrimination of normal and cancer tissues by ADHFE1
signifies the great potential for this gene as a methylation marker to indicate pathological
changes. ADHFE1, known as Alcohol Dehydrogenase Ion Containing 1, is a member of
the iron-activated alcohol dehydrogenase family [89]. Consistent with previous studies,
we observed that the CpG island methylation status of the ADHFE1 promoter was higher
in CRC tissues in contrast to their adjacent normal mucosa, and the loss expression of
ADHFE1 in CRC was associated with promoter methylation [90,91].

Our additional methylation analysis using the Wanderer database further strengthens
the diagnostic potential of hypermethylated ADHFE1 in detecting CRC as we observed
that the methylation of ADHFE1 displayed significant differences in CRCs versus nor-
mal tissues as compared to other cancers, for instance, glioblastoma multiforme (GBM),
breast-invasive carcinoma, esophageal carcinoma, lung adenocarcinoma, head and neck
squamous cell carcinoma, prostate adenocarcinoma, and thyroid carcinoma. The potential
of ADHFE1 as early detection of CRC was also discovered by Fan and his colleagues,
whereby they observed hypermethylated ADHFE1 in colorectal adenoma [92]. According
to Moon et al., the hypermethylation of the ADHFE1 gene promotes cell proliferation in
CRC [91]. This finding was supported by Hu and colleagues, who demonstrated that the
hypermethylation of the ADHFE1 gene enhances CRC proliferation via altering cell cycle
progression [89]. ADHFE1 acted as a tumour suppressor gene in esophageal squamous
cell carcinoma and was reported to be hypermethylated in a Chinese Han population [93].
More recently, the downregulation of the ADHFE1 gene has been linked to decreased
cancer survival [94]. Additionally, this study discovered that ADHFE1 might contribute
to cancer progression through its interactions with signalling pathways such as energy
metabolism, DNA replication, and the cell cycle. With the evidence provided, we believed
the promoter methylation-mediated downregulated gene of ADHFE1 could be one of the
potential DNA methylation biomarkers in detecting CRC. However, the diagnostic roles of
ADHFE1 will be subjected to further validation in a larger patient cohort in our country. It
will be interesting if the methylation of ADHFE1 can be detected in the blood for an early,
accurate, and non-invasive blood-based biomarker.

5. Conclusions

This relatively extensive methylation study has revealed several potentially impor-
tant genes in CRC that may be potential biomarker candidates. The hypomethylated
and hypermethylated genes reported in this study are relevant to carcinogenesis and are
in concordance with other studies. We also offer the first evidence for the potential of
HOXA2 cg06786372 OPLAH cg17301223, cg15638338, and TRIM31 cg02583465 as diag-
nostic biomarkers for CRC. On top of that, we also discovered the potential of promoter
methylation ADHFE1 as a biomarker for CRC diagnosis. This is also the first insight into
the epigenome-wide methylation profile of the cancer-adjacent normal colon in Malaysian
CRC patients to complement the majority of data available from other populations. The
new knowledge from this study can be utilised to advance our understanding of CRC
methylomics; however, some of the findings need further investigations to confirm the
involvement of the candidate genes in CRC.
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