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Abstract: Predicting clinically significant prostate cancer (csPCa) is crucial in PCa management.
3T-magnetic resonance (MR) systems may have a novel role in quantitative imaging and early
csPCa prediction, accordingly. In this study, we develop a radiomic model for predicting csPCa
based solely on native b2000 diffusion weighted imaging (DWIqq0) and debate the effective-
ness of apparent diffusion coefficient (ADC) in the same task. In total, 105 patients were retro-
spectively enrolled between January—-November 2020, with confirmed csPCa or ncsPCa based on
biopsy. DWlpp09 and ADC images acquired with a 3T-MRI were analyzed by computing 84 lo-
cal first-order radiomic features (RFs). Two predictive models were built based on DWI,5099 and
ADC, separately. Relevant RFs were selected through LASSO, a support vector machine (SVM)
classifier was trained using repeated 3-fold cross validation (CV) and validated on a holdout
set. The SVM models rely on a single couple of uncorrelated RFs (p < 0.15) selected through
Wilcoxon rank-sum test (p < 0.05) with Holm-Bonferroni correction. On the holdout set, while
the ADC model yielded AUC = 0.76 (95% CI, 0.63-0.96), the DWI}y5pg9 model reached AUC = 0.84
(95% CI, 0.63-0.90), with specificity = 75%, sensitivity = 90%, and informedness = 0.65. This study
establishes the primary role of 3T-DWIy,5g in PCa quantitative analyses, whilst ADC can remain the
leading sequence for detection.

Keywords: prostate cancer; radiomics; machine learning; tumor staging; cancer heterogeneity;
image processing

1. Introduction

Prostate cancer (PCa) is the most common malignancy diagnosed in men world-
wide [1]. This strongly impacts clinical management in terms of costs and resources, also
based on the PCa stage at the diagnosis that could suggest different clinical pathways [2].
Locating and discriminating clinically significant (csPCa) from non-significant cancer (nc-
sPCa) remain a challenge in PCa management. The definition of csPCa is a dynamic
process initiated many years ago, when there was the first evidence of a great population
of patients with a PCa diagnosed at autopsy without any clinical manifestations [3]. At
present, csPCa is defined as the presence of any of the following: Gleason score (GS) > 3 + 4,
volume > 0.5 mL, extraprostatic extension. ncsPCa is defined as a cancer GSof 3 +3 =6
involving fewer than two cores at biopsy and <50% of any given core and prostate-specific
antigen (PSA) density of <0.15 ng/mL per cm?; it generally has a favorable prognosis,
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with a high life expectancy at 10 years from diagnosis, and a low risk of biochemical recur-
rence [4]. Even if there is no consensus regarding the optimum management of localized
disease, ncsPCa was adopted as components of the “very low-risk category” of the National
Comprehensive Cancer Network guidelines in which active surveillance (AS) protocol is
supported as a management option. AS is a strategy of close monitoring, typically using
PSA, repeat biopsies and multiparametric magnetic resonance imaging (mpMRI), keeping
curative treatment for those with evidence of disease. It has been recommended for men
with low-risk disease. Instead, csPCa may be subjected to curative options that include
prostatectomy (RP), external beam radiotherapy (RT) or low-dose-rate brachytherapy [5].

PCa aggressiveness is conventionally assessed through biopsy, that can be random
or aimed at the most supposedly malignant areas, whether it is transrectal ultrasound
(TRUS)- or MRI-guided [6]. Frequently, biopsy outcomes are reported to differ from those
obtained after RP [7], and even between closely repeated examinations [8]. Moreover,
notable side effects are experienced by men undergoing biopsy, including bleeding, pain
and infection [9]. Therefore, the availability of non-invasive imaging approaches for
distinguishing ncsPCa from csPCa is a very attractive prospect to increase the detection
rate of csPCa and spare patients from unnecessary biopsies and overtreatment.

mpMRI is employed in the clinical routine, primarily for PCa detection because
it facilitates localization of PCa and can help in targeting prostate biopsy. The current
guidelines of Pi-RADS v2.1 underline the key role of morphological T2-weighted sequence
(T2w) and diffusion weighted imaging (DWI) to obtain functional information regarding
variations of tissue diffusivity.

DWI sequences are sensitive to microscopic water motion in biological tissue and help
differentiate normal from tumor tissue, where the structural change of the biological compo-
nents and the hypercellularization processes hamper the motion of the water molecules [10].
Water restriction yields a high DWI signal, detecting tumor changes towards malignancy,
progressively more emphasized in high b-value sequences (b > 1000 s/mm?), to the detri-
ment of the benign glandular components, where any morphological reference is lost.
However, there are some limitations to qualitative assessment on DWI. In particular, the
signal intensity (SI) depends on both water mobility and T2-relaxation time of tissue, so a
lesion with very long T2 may demonstrate high SI on the DWI (T2-shining thought artefact);
therefore, SI of different solid tumor may be similar [11]. In the clinical practice, a definite
confirmation of real hyperintense signal DWI areas is conveyed by the apparent diffusion
coefficient (ADC) maps. ADC maps are a reconstruction derived from a normalization
process of two or more DWI sequences acquired at different b-values. High signals in DWI
are converted into low signals in ADC maps, which recover the information related to the
apparent diffusion of water’s molecules, thus losing the specific measures contained in the
native DWI sequences, which arise directly from the tissue properties. Nevertheless, the
ADC normalization process also allows removing the misleading high signals in DWI and,
consequently, distinguishing the tumor boundaries more clearly, keeping the morphologi-
cal information of the gland [10], albeit motion artefacts can remain and could alter the ADC
map processing. Moreover, ADC maps implicitly have a higher signal to noise ratio (SNR)
than the individual parent b-value images and, as such, they are currently one of the most
effective sequences for PCa detection and localization [12]. Accordingly, ADC has been
predominantly exploited in quantitative imaging as well ([13,14]), eventually combined
with T2-weighted and native DWI sequences [9,15-17], and on several occasions, ADC
metrics have proved to correlate with the GS successfully. It is not surprising that good
results have been achieved by previous studies in classifying ncsPCa and csPCa [13,17].

At present, 3T-MRI systems enable the acquisition of high b-value DWI sequences
with higher SNR, more reduced noise and more limited artefacts than lower-field MRI
scanners. Consequently, with these systems, the motivations promoting the main use of
ADC, relegating the DWI to a secondary role, could decay. The present technology allows
exploiting the native 3T-DWI sequences at their best, both in the clinical practice and, above
all, in the quantitative imaging.
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It is widely debated in the literature what the best b-value for prostate cancer detection
could be in order to highlight the tumor tissue, reducing the signal from the surrounding
benign tissue. However, b = 2000 s/mm? of a 3T system is expected to be the most appropri-
ate [18,19] because it can embody quantitative information regarding tissue heterogeneity
and tumor functional properties with specificity and sensibility higher than ADC.

In our study, we investigate the effectiveness of DWl;9 sequences in quantitative
tissue characterization through a predictive radiomic model developed to detect csPCa in
patients with GS > 3 + 3, exploiting only image-based features, also compared with ADC
performing the same task.

2. Materials and Methods
2.1. Patient Cohort

This retrospective study enrolled patients between January—November 2020 with
a clinical confirmation of PCa undergoing mpMR]I, all having DWTI acquisition protocol
including DWlg09. All patients eligible for this study underwent TRUS biopsy performed
as part of standard-of-care [20] or due to recruitment into clinical trials at our institution.
Eighteen-core biopsy was performed six weeks before mpMRI. In a few cases, mpMRI was
performed before the term of six weeks due to urgent clinical need regarding preoperative
patients. In these cases, if a prominent hemorrhage was detected, patients were not
included in the study. In addition, patients with hip prosthesis were not included in the
study. Thus, 105 patients were enrolled, among which fifteen were excluded because of
previous administration of RT or focal therapies, eight underwent asynchronous execution
of TURP and six presented severe motion artefacts. Finally, 76 patients were included.
This retrospective study received IRB approval and written informed consent was waived.
Based on biopsy outcome, fifty patients with GS > 3 + 4 were referred to as csPCa and
twenty-six patients with GS = 3 + 3 were considered ncsPCa. Table 1 reports detailed
clinical parameters of patients included in this study, such as PI-RADS score, location of
PCa lesions and PSA level surveyed contextually to mpMRI.

2.2. mpMRI Protocols

Images were acquired with a 3T multicoil Ingenia MRI system (Philips). mpMRI
protocols include T2-weighted (T2w), DWI, ADC maps and dynamic contrast enhanced
MRI (DCE-MRI) sequences. In this regard, it is worth mentioning that, for scientific aims,
all DWI sequences were previously acquired employing nine different b-values and ADC
maps referred to all of them, accordingly. Patient preparation required fasting 6 h before the
examination, bowel preparation to be performed 2 h before the examination and emptying
of the bladder. To reduce peristaltic motion, 1 mL of scopolamine-butylbromide (Buscopan,
Boehringer Ingelheim, Ingelheim, Germany) was administered in a slow bolus infusion at
20 mg/mL, diluted in 10 mL of saline solution. Table 2 reports details of DWI protocols for
the seventy-six patients included in this study.

2.3. PCa Lesion Segmentation

MRI examinations were analyzed in consensus by two radiologists with twenty-five
(**) and seven-year (**) experience in urogenital pathologies. Axial T2w, DWI, DCE se-
quences and ADC maps were considered contemporarily for reporting and each detected
lesion was assigned a PI-RADS score [4]. Using cognitive fusion of all available MRI se-
quences, PCa lesions were manually segmented on DWI 599 using Aliza Medical Imaging
1.98.18 (Bonn, Germany—https://www.aliza-dicom-viewer.com/ (accessed on 11 Septem-
ber 2020) [21]). All PCa lesions having at least a PI-RADS 3 were outlined slice by slice
along the most emphasized internal boundaries. While PCa lesions in the peripheral zone
(PZ) were segmented directly on DWI sequences, for central and transitional zone, lesion
ROIs were outlined on DWI,5gg9 and refined using the cognitive fusion of parallel axial
T2w images. Figure 1 shows the lesion ROIs outlined on DW1},5gg for two representative
ncsPCa (Figure 1a) and csPCa (Figure 1b).
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Table 1. Clinical parameters of the study population, including age, PSA level surveyed contextually

to mpMRI, location of PCa lesions, PI-RADS score and GS.

Study Parameters ncsPCa csPCa
No. of patients 26 50
Mean =+ SD
Age (years) 65 +£88 66 £6.8
PSA (ng/mL) 5.30 £2.97 7.80 £7.48
Range
Age (years) [42+78] [48+79]
PSA (ng/mL) [0.80+12.20] [0.38=-37.00]
Lesions’ location
PZ 25 64
TZ - 1
cz 8 10
PZ-TZ! 2 1
PZ-Cz! 1 3
AFS - 1
No. of lesions per PIRADS score
PI-RADS 3 16 15
PI-RADS 4 16 34
PI-RADS 5 4 33
No. of lesions per GS
GS3+3 (ISUP 1) 26
GS 3 +4 (ISUP 2) - 22
GS 4 + 3 (ISUP 3) - 14
GS 4 + 4 (ISUP 4) - 8
GS 4 +5 (ISUP 5) - 4
GS 5+ 5 (ISUP 5) - 2
! Partial overlapping between zones.
(a) (b)
ncsPCa - DWigp2000 csPCa - DWlp2000

Figure 1. (a) ROIs of PCa lesions outlined on DW1j,( for a representative ncsPCa; (b) ROIs of PCa

lesions outlined on DWI,5g for a representative ncsPCa.
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Table 2. DWTI acquisition protocol for the seventy-six patients included in the study.
DWI Protocol
Coil Multicoil
TR ! (ms) [3000, 5804]
TE! (ms) [80, 87]
No. of slices ! [24, 33]
Slice thickness (mm) 3
Slice gap (mm) 3
b values (s/mm?) 0, 50, 100, 150, 200, 250, 800, 1500, 2000
No. of gradients 3
Field of view ! (mm?) [160, 260]
Acquisition matrix 1 [96, 176]
Pixel spacing 1 (mm) [1.41,1.67]

1 Range.

Then, the regions of interest (ROIs) were reported on ADC maps due to the natural
coregistration of ADC with its parent DW images.

2.4. Radiomic Feature Extraction

RFs were extracted from PCa ROls, from both ADC and DW1I,5q09 sequences. For
each slice with lesion, seven first-order RFs, including mean, median, skewness, kurtosis,
interquartile range, coefficient of variation [22] and entropy, were computed on a local tissue
patch based on the method proposed in [22,23], in order to account for the small changes
of tissue heterogeneity occurring between neighbor voxels. The smallest informative tissue
unit for radiomic analysis was chosen to be approximately 1 cm?. Hence, the size of
the local patch has been set stemming from the different resolutions of the examinations
(Table 2), to explore a minimum distance from the central pixel of 0.5 cm along the vertical
and horizontal directions, here corresponding to a square window with side varying from
five to seven pixels. In practice, for each ROI'’s pixel, seven distribution of first-order RFs
were first computed, considering the surrounding pixels of a square patch centered on the
pixel itself. Then, on each of these seven distributions, twelve global RFs were computed
(i.e., maximum value, standard deviation, median absolute deviation, mean and median
values of the last decile, besides the seven abovementioned RFs), thus finally yielding 84
RFs. The mathematical formulation of all RFs is provided in Electronic Supplementary
Material 1 (S1). RFs’ extraction together with the subsequent predictive model building
and data analysis were performed in MATLAB®® (R2019b v.9.7, The MathWorks, Natick,
MA, USA).

2.5. Predictive Model

A radiomic model was built to recognize csPCa (true positives, TPs), distinguishing
them from ncsPCa (true negatives, TNs), according to the process outlined in Figure 2.

All RFs (Figure 2a) were normalized and standardized, and redundant and irrelevant
RFs were removed through the least absolute shrinkage and selection operator (LASSO),
with the optimal tuning parameter (A) selected using 10-fold cross validation (CV, Figure 2b)
and the minimum CV error rule. To prevent overfitting, only two RFs were considered from
the subset of RFs selected from LASSO. First, the couples with a high Pearson correlation
(p > 0.15) were discarded. Second, the most discriminant couple of RFs (i.e., yielding the
lowest p-value according to the Wilcoxon rank-sum test, corrected with Holm—Bonferroni)
was selected from those surviving the previous step.
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(@) All data [m x n]
(b) Feature selection [m x 2]
©) Training data [(m-p) x 2] Holdout test [p x 2] )

3-fold CV repeated 100 times External validation

o I

Tuning
hyperparameters < [ . ] } 100" run

Internal validation

L(e) Model derivation ‘
Figure 2. Development of the radiomic model to predict csPCa. (a) RFs are normalized and stan-
dardized, and (b) selected through LASSO. (c) A linear SVM classifier is trained and (d) 3-fold CV is
performed for internal validation. (e) The final model is selected and (f) externally validated on the
holdout test set.

The entire data set was split into training and (holdout) test set, made up of 48 and
28 patients, respectively. The training set consisted of 18 ncsPCa and 30 csPCa, whilst
the test set comprised 8 ncsPCa and 20 csPCa. To preserve the representativeness of the
training set without degrading the generalization performance, the training set has been
derived from the entire dataset to include the patients’ candidate for representing the
support vectors (SVs) of an SVM classifier, according to the method described in [24],
based on their distance from the separating hyperplane. Then, the SVM classifier with
linear kernel was trained on the training set (Figure 2c) with a 100-time repeated 3-fold
CV, (Figure 2d) for tuning the SVM hyperparameters, that is, the kernel scale (y) and the
global misclassification cost (C). C was then scaled by the weight of the error occurring in
each class, which corresponded to its own prior probability [25]. Then, a binomial logit
function was used to compute, from each SVM trained model, the predicted class for each
patient and the corresponding probability score, this representing the final radiomic score.
Each CV-fold was made up of sixteen patients, six ncsPCa and ten csPCa. To prevent
any spurious solution, an internal validation procedure was performed by one hundred
repetitions of 3-fold CV. For each round, the receiving operating characteristic (ROC)
curve and the corresponding area under the curve (AUC) were computed for training and
validation sets. Then, for each run, the SVM models most prone to overfitting, yielding an
AUC on the validation set higher than that on the training one, were discarded, while the
highest F2-score computed on the validation sets of remaining models, if any, selected the
best one [26]. Finally, at most 100 SVM models survived and an early selection was carried
out by analyzing their performance on the training sets, discarding the models with a very
low C parameter (C < 1), more prone to overfitting and with F2-score < 0.80. At the end, the
model showing the highest F2-score on the validation set (Figure 2e) was selected as the
ultimate predictive model, to be externally validated on the holdout test set (Figure 2f). The
performance of the SVM classifier was assessed through AUC, and sensitivity, specificity
and informedness (I) were measured at the Youden cutoff. The positive predictive values
(PPV) and false detection rate (FDR) were computed accordingly.

The same procedures were carried out for building both the predictive models (based
on either ADC or DWlj; sequences).
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3. Results
3.1. ADC Model

LASSO yielded ten relevant RFs, which are reported in Figure 3a according to
their rank.

Features

-04 -0.2 0 0.2 0.4
Coefficients

()

Features

-0.2 0 0.2 0.4 0.6
Coefficients

Figure 3. (a) Coefficients of the ten RFs selected through LASSO for ADC and (b) their correlation matrix. (c) Coefficients of
the ten RFs selected through LASSO for DWI,5009 and (d) their correlation matrix. In (b,d), the white circles highlight the
uncorrelated couples (p < 0.15).

The correlation coefficients computed between all the ADC-based RF couples are
resumed in the matrix shown in Figure 3b, where the white-outlined circles highlight thirty-
four uncorrelated couples arising from the LASSO selection. Six significant RF couples
resulted significant in Wilcoxon rank-sum test, with p-value < 1.4-10~2 after considering
Holm-Bonferroni correction. The most discriminant RF couple (p-value~10~%) is composed
by the coefficient of variation of the median (Mcy) and the interquartile range of the
kurtosis (kiqr), whose LASSO coefficients are 0.367 and —0.388, respectively, corresponding
to the most powerful positive and negative RFs, respectively. Basically, the selected RFs
provide different measures of local variability of diffusivity restriction.
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sensitivity

In the training set, the couple Mcy-kiq, predicts csPCa according to the ROC reported
in Figure 4a, with AUC = 0.86 (95% CI, 0.74-0.91), and sensitivity and specificity at the
Youden cutoff (I = 0.58) equal to 63% and 94%, respectively.

(b)
1.0 _I_,_|—| o 10
08} | —— 08}
®
0.6 | 206 |
[ 2
B
@
04 » 04
0.2 ROCpoc(AUC = 0.86) |1 02} ROC aoc(AUC = 0.76)
— ROC DWl2000 (AUC = 0.86) — ROC DWls 2000 (AUC =0.84)
0.0 & : : : : 0.0 L : : : :
0.0 0.2 04 0.6 0.8 1.0 0.0 0.2 04 0.6 0.8 1.0
1-specificity 1-specificity

Figure 4. (a) ROC curve achieved on the training set for ADC and DWI5p99 models. (b) ROC curves achieved on the
holdout test set for ADC and DWTj,5pp models.

Hence, prediction of csPCa is achieved in the training set with 11 FN and 1-only FP,
thus yielding FDR = 0.05, PPV = 0.95, with F»-score = 68%. Figure 4b shows the ROC of the
couple of RFs Mcy-kiqr achieved for the holdout test set, with AUC = 0.76 (95% CI, 0.63,
0.96) and sensitivity and specificity at the Youden cutoff (I = 0.58) equal to 70% and 88%,
respectively. Hence, referring to the holdout test set, the prediction of csPCa is achieved
with 6 FN and 1-only FP, with FDR = 0.07, PPV = 0.93 and F;-score = 0.74.

3.2. DWIbZOOO Model

LASSO yields ten relevant RFs, whose coefficients are reported in Figure 3¢ according
to their rank. The correlation coefficients computed between all the RF couples are resumed
in the matrix shown in Figure 3d, where the white-outlined circles highlight fourteen
uncorrelated couples. Eleven of them resulted in significance at Wilcoxon rank-sum
test, with p-value < 0.0125, after considering Holm—-Bonferroni correction. The most
discriminant RF (p-value~10~7) is composed by the standard deviation of the mean, m,
and the median of the last decile of the skewness, spg0im, Whose LASSO coefficients are
0.405 and 0.310, respectively, corresponding to the second and the fifth RFs. The selected
RFs give information regarding the heterogeneity and the degree of asymmetry of local
cellularity values measured at DWI},(g0.

In the training set, the couple mgs-spopn can predict csPCa according to the ROC
reported in Figure 4a, with AUC = 0.86 (95% CI, 0.79-0.93) and sensitivity and speci-
ficity at the Youden cutoff (I = 0.71) equal to 77% and 94%, respectively. Figure 5a also
reports the waterfall plot of the radiomic score computed for each patient based on the
couple mg-sppo0th, Where ncsPCa and csPCa are highlighted with green and dark blue
bars, respectively.
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ncsPCa
0.2| |EEENcsPCa I—IIIII
. i . il

(a)

Radiomic score

-04

-06

ncsPCa
0.6 B csPCa

Radiomic score

Patients

Figure 5. (a) Waterfall plot achieved for the predictive model based on DWl, g on the training set. (b) Waterfall plot
achieved for the predictive model based on DWI},5gyy on the holdout test set.

Hence, in the training set there are 7 FN and 1-only FP, with FDR = 0.04, PPV = 0.96
and F2-score = 0.80. The separation between csPCa and ncsPCa performed by the trained
SVM classifier is also shown through the scatter plot in Figure 6, where the separation
hyperplane is highlighted in black.

Figure 4b shows the ROC of the couple of RFs mgs-sygom achieved for the holdout
test set, with AUC = 0.84 (95% ClI, 0.63, 0.90) and sensitivity and specificity at the Youden
cutoff (I = 0.65) equal to 90% and 75%, respectively. Figure 5b shows the waterfall plot
referring to the holdout test set, where prediction of csPCa is achieved with 2 FP and 2 FN,
FDR = 0.10, PPV = 0.90 and F2-score = 0.90. The boxplot of the separation between ncsPCa
(light green box) and csPCa (dark blue box) is shown in Figure 7 for the training (Figure 7a)
and the test sets (Figure 7b), respectively.
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10— . ;

ncsPCa P
I csPCa

08¢t

0.6

SM90TH

0.4)

0.2

0.0
0.0 : : { 0.8 1.0

Figure 6. Separation between csPCa and ncsPCa performed by the trained SVM classifier referring to
DW1,5000, with the separation hyperplane highlighted in black.

(a) (b}
Training set Test set
1.0Ff ' — ] 1.0f ‘ L
0.8 | . | 0.8 |
© @
g : : S I
8 0-6 B - 8 0.6 L
L : i3
= ? =
2 g O
T 047 1§ 04rf
i : id ;
0.2 : 0.2}
0.0 : : 0.0 .
ncsPCa csPCa ncsPCa csPCa
Group Group

Figure 7. (a) The boxplot of the separation between ncsPCa (light green box) and csPCa (dark blue box) for the training set
where the two groups are separated with a p-value~107°. (b) The boxplot of the separation between ncsPCa (light green
box) and csPCa (dark blue box) for the test set, where the two groups are separated with p-value = 7.1073.

In the training set the two groups are separated with a p-value~10~, this reflecting
the great difference between the median values of the radiomic score of the two groups,
0.39 for ncsPCa and 0.88 for csPCa. Similarly, in the holdout test set, the two groups are
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separated with p-value = 7-10~3, and the median values of the radiomic scores of ncsPCa
and csPCa are 0.20 and 0.68, respectively.

4. Discussion

Biopsy examination is presently the reference clinical tool for distinguishing csPCa
from ncsPCa, which allows for starting different clinical paths, that is, curative treatments
or active surveillance, watchful waiting and observation, respectively [27]. mpMRI has an
increasingly crucial role in prebiopsy patient management, to prevent patients undergoing
unnecessary operations [15] which are known to cause side effects in about 30% of men, 1%
of which requires hospitalization for observation [28]. A radiomic and quantitative mpMRI-
based imaging approach is frequently adopted in PCa study with the aim of enriching the
radiological assessment of medical images and providing additive information referring
to tumor aggressiveness and prognosis, for instance, to distinguish csPCa from ncsPCa
prior to biopsy. However, a “considerable overlap between csPCa and ncsPCa in mpMRI
parameter values” is known [14] and it represents the major limitation for mpMRI to
replace the biopsy in patient staging [14]. At present, ADC is still considered to be the
most promising sequence for quantitative image analysis. In particular, the ADC images
have been very successful in the clinical routine, mainly for two reasons. On the one hand,
they allow reconstructing the diffusion-weighed information, achieving an SNR much
higher than that of native DWI. On the other hand, they allow preserving the morphology,
especially if compared to high b values, and annulling the artefacts of DWI images, such as
the T2 shine artefact, which are known to mislead the assessments of suspicious malignant
areas. Consequently, the ADC sequences have become the reference ones for confirming
diagnosis of PCa and, as such, they have even been largely employed to extract information
as regards PCa prognosis. To this purpose, let us consider the scientific works from PubMed
database, published since 2015 and reported in Table 3, which implement a predictive
model of csPCa (independently of the lesion zone). It is clear that all these works except [29]
utilize the ADC sequence [13], sometimes coupled with T2w ([9,15-17]), whilst only one
work combines ADC with IVIM parametric maps [14]. However, also in this last case, the
best result reported refers to the mean value of the ADC map (ADCrean)-

Table 3. Comparison of our findings with the scientific works published since 2015 (from PubMed database) predicting csPCa

(independently of the lesion zone).

Year Author mpMRI Sequences Features AUC SE sp I

2015 Fehr et al. [15] T2w, ADC 18 RFs 0.83 - - -

2017 Barbieri et al. [14] ADC, IVIM ADCean (5[0-900]) 0.79 0.85 0.74 0.59
2018 Bonekamp et al. [17] T2w, ADC 10 RFs 0.88 0.97 0.58 0.55
2019 Cristel et al. [29] DCE-MRI Kitrans 0.75 0.95 0.61 0.56
2019 Min et al. [9] T2w, ADC, DWl1500 9 RFs 0.82 0.84 0.73 0.57
2020 Zhang et al. [16] T2w, ADC, DWI 10 RFs 0.81 0.80 0.73 0.53
2020 Hiremath et al. [13] ADC ADCean (b[0-1300]) 0.85 0.77 0.81 0.58
2021 Our study ADC 2 RFs 0.76 0.70 0.88 0.58
2021 Our study DWIy2000 2 RFs 0.84 0.90 0.75 0.65

The comparison is based on mpMRI sequences adopted, number of RFs, AUC values, sensitivity (SE), specificity (SP) and informedness (I).

As a matter of fact, high b-value DWI has already proved to increase both reader’s sen-
sitivity [30] and radiomic accuracy in distinguishing PCa from non-cancerous lesions [31],
albeit a limited success is reported in recognizing csPCa and ncsPCa so far. The authors
in [14] even state that DWI sequences are not feasible yet for reliable clinical indications
of tumor prognosis and, besides that, they cannot bring any added value with respect to
the ADC sequence in identifying csPCa. On the contrary, the predictive model developed
in this study on the basis of DWIj099 only notably improves the prediction of csPCa,
with PPV = 96% in the training set and PPV = 90% in the holdout test set, with respect
to the clinical mpMRI used in triage prebiopsy setting reaching at most PPV = 51% [32].
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At the same time, our radiomic model substantially bounds the risk of overtreatment,
which results in it being only 4% in the internal validation sets and 10% in the external
one, thus confirming the high potential role of radiomic MRI in clinical decision making.
In fact, overtreatment of ncsPCa is reported as being the major side effect of the high-
sensitivity tests used for revealing the tumor malignancy degree [33]. Moreover, boxplots in
Figure 7 show that our results based on one RF couple extracted from DWI,5g9 yield a
wide separation between the two groups of ncsPCa and csPCa. The primacy of DWI,»g09
in extracting quantitative information correlating with tumor aggressiveness is confirmed
when analyzing the outcomes of the predictive model developed using the ADC. In fact,
the performance of the ADC model is significantly lower than that of DWly(g, albeit being
in line with the results of the literature, detailed in Table 3. In practice, with the coming
of the 3T MR systems there is no further need to limit the quantitative analysis of tissue
diffusivity to ADC sequences only, and above all, quantitative information extracted by
DW1,5000 is much more effective to characterize PCa than that derived by ADC.

Comparing in detail the performance of our model with the works reported in Table 3,
one can see that the work of [14], where the classification is performed exclusively with
ADCmean, computed between b = 0 and b =900 s/ mm?, reports almost the worst values of
AUC (AUC =0.79) with I = 0.59.

Analogously, [29], the only work using the DCE-MRI, reaches at most AUC = 0.75,
the worst considered, with I = 0.56, substantially confirming the direction of the present
guidelines PI-RADS v2.1, where “DCE-MRI has become secondary to DWI and T2w
images”, also considering that prostate DWI has “ease of acquiring and processing the
images in comparison with other functional MR techniques” [30]. In fact, two of the
works considered, the first one employing ADCpean [13] and the second one a radiomic
signature where 7 out of 10 RFs are extracted by the ADC map [17], achieve quite high
AUC values. In fact, AUC = 0.85 in [13] and AUC = 0.88 in [17], albeit with low I's,
I=0.58 and I = 55, respectively, somewhat lower than ours (I = 0.65). Two works only
include some native DWI sequences for extracting the radiomic signature, with b = 1500
in [9] and b = 0, 1000 in [16]. However, although the work in [9] reports a good AUC = 0.82
value, but I = 0.57, only one out of the nine features composing the signature is extracted
from the DWI sequence, and it is not even the most important one. In addition, in [16],
where the signature is made by ten RFs, and only five of them are extracted from DWI,
a quite high AUC = 0.81 value is coupled with the worst I result (I = 0.53). Finally, [15]
seems to achieve a result quite similar to ours in terms of AUC = 0.83, but no other metric
is provided to perform a deep comparison. On the whole, it seems that ADC, although
being largely employed, cannot offer the performance of DWI in detecting csPCa. This is
due to the ADC parametric maps arising from a normalization procedure between DWI
images at different b-values. In fact, normalization implicitly yields a low-pass (average)
filtering of the local value differences between adjacent structures, thus weakening the
native information conveyed by the original DWI sequences. In many works, DWI has
been reported as “the best monoparametric component of prostate MRI assessment” [17],
where “quantitative analysis at high b-value DWI” (from b = 1000 to b = 2000 s/mm?)
“suggests” the highest sensitivity of DWI in both detecting PCa [30] and staging high-
grade diseases [34], but it has had a limited diffusion in radiomic studies so far. We agree
that visual-based tumor detection and segmentation can be performed with much higher
accuracy on the ADC sequences, and these should remain the reference tool for visual
assessments and ultimate confirmation of cancer diagnosis. Nonetheless, our results and
some literature strongly suggest that they cannot be the best tool for quantitative imaging,
since the information extracted is far beyond what even expert eyes can visually detect.
Accordingly, the native DWI information can have a higher specificity, from a quantitative
point of view, in detecting/catching the cellular differentiation degree needed to distinguish
csPCa from ncsPCa. The authors of [17] report that the good performance of the radiomic
model and of the ADCyean are equivalent. Furthermore, based on our results, this suggests
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that a radiomic analysis carried out on DWI images rather than on ADC maps can yield a
marked advantage, whether the original information is either visual or semi-quantitative.

One final consideration is worth being reported. Often, the signal restriction in ADC
has been attributed to the hypercellularity process associated, in its turn, with a progression
in terms of tumor aggressiveness. In fact, the work of [10] shows how the ADC signal
restriction is only weakly correlated to the main cell metrics (nuclear count, nuclear area),
but the stronger correlation is reported with the variation of gland component volumes
(epithelium, stroma and lumen). The tumor progression attributed to a higher GS results
in being associated with an increasing volume of low-diffusivity epithelial cells and de-
creasing volumes of high-diffusivity stroma and lumen space. Accordingly, Gleason grade
definitions rely on changes of tissue architecture, which make the tumor progressively more
heterogeneous and less differentiated as malignancy increases. Thus, it is worth noting
that our two RFs extracted from DWIj,(gg are two direct measures of tissue asymmetry
and local variability in tissue diffusivity. DWI}500 seems to catch with high specificity the
asymmetry gradients found between the local property of tissue diffusivity, following the
disproportion between the gland components [10].

The main limitation of the study is inquiring into the role of DWlggo only in predict-
ing csPCa, while other b values (e.g., b = 1200 or 1400 s/mm?) could also work, this being
a matter for further investigations. Second, no clinical parameter (e.g., prostate volume,
PSA, PSA density) has been addressed, since this requires a wider dataset, besides being
beyond the scope of this research. Third, only PCa lesions with PI-RADS > 3 have been
included; in order to have mpMRI examinations showing PCa suspicions clear enough
to train a predictive model. However, inclusion of PI-RADS 2 lesions would be useful in
the first-line triage test in men with suspected cancer, worthy to be considered for a future
study design.

5. Conclusions

In conclusion, our findings, to be confirmed in more extensive studies, assign the
3T-DWlp000 sequence a primary role in quantitative analyses of PCa, useful for prognosis
and targeting biopsy, while confirming the ADC as the leading sequence for detection. The
ability to identify men with csPCa early remains a hot topic under active investigation.
Accordingly, our study promoting a wider employment of 3T-DWI},5qo represents a marked
step forward.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/diagnostics11050739/s1, Electronic Supplementary Material 1: Radiomic Features Generation.

Author Contributions: M.M. is co-first author. Conceptualization, A.B., M.M. and D.B.; methodology,
A.B. and M.M,; software, M.M.; validation, A.B., M.M. and EF,; formal analysis, A.B. and M.M.;
investigation, M.M., FEF. and A.R.; resources, A.B. and D.B.; data curation, M.M., G.G. and EF,;
writing—original draft preparation, A.B. and M.M.; writing—review and editing, A.B., G.G., A.R.
and D.B.; visualization, A.B. and M.M.; supervision, A.B., G.G.; project administration, A.B. All
authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: The study was conducted according to the guidelines of the
Declaration of Helsinki and approved by Ethics Committee of IRST IRCCS (n°3301/2010, 9 Novem-
ber 2010).

Informed Consent Statement: Written informed consent was waived due to the retrospective nature
of the study.

Data Availability Statement: The data are not available because of patients’ privacy.

Conflicts of Interest: The authors declare no conflict of interest.


https://www.mdpi.com/article/10.3390/diagnostics11050739/s1
https://www.mdpi.com/article/10.3390/diagnostics11050739/s1

Diagnostics 2021, 11, 739 14 of 15

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

Paschalis, A.; de Bono, J.S. Prostate Cancer 2020: The Times They Are a’Changing. Cancer Cell 2020, 38, 25-27. [CrossRef]
[PubMed]

McClintock, T.R.; Cone, E.B.; Marchese, M.; Chen, X.; Nguyen, PL.; Sun, M.; Trinh, Q.-D. Prostate cancer management costs vary
by disease stage at presentation. Prostate Cancer Prostatic Dis. 2020, 23, 564-566. [CrossRef]

Matoso, A.; Epstein, J.I. Defining clinically significant prostate cancer on the basis of pathological findings. Histopathology
2018, 74, 135-145. [CrossRef] [PubMed]

Turkbey, B.; Rosenkrantz, A.B.; Haider, M.A.; Padhani, A.R,; Villeirs, G.; Macura, K.J.; Tempany, C.M.; Choyke, PL.; Cornud, F;
Margolis, D.J.; et al. Prostate Imaging Reporting and Data System Version 2.1: 2019 Update of Prostate Imaging Reporting and
Data System Version 2. Eur. Urol. 2019, 76, 340-351. [CrossRef] [PubMed]

Parker, C.; Castro, E.; Fizazi, K.; Heidenreich, A.; Ost, P.; Procopio, G.; Tombal, B.; Gillessen, S. Prostate cancer: ESMO Clinical
Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2020, 31, 1119-1134. [CrossRef] [PubMed]

Noureldin, M.; Eldred-Evans, D.; Khoo, C.C.; Winkler, M.; Sokhi, H.; Tam, H.; Ahmed, H.U. Review article: MRI-targeted biopsies
for prostate cancer diagnosis and management. World J. Urol. 2021, 39, 57-63. [CrossRef] [PubMed]

Epstein, J.I; Feng, Z.; Trock, B.]J.; Pierorazio, PM. Upgrading and downgrading of prostate cancer from biopsy to radical
prostatectomy: Incidence and predictive factors using the modified Gleason grading system and factoring in tertiary grades.
Eur. Urol. 2012, 61, 1019-1024. [CrossRef] [PubMed]

Berglund, R.K.; Masterson, T.A.; Vora, K.C.; Eggener, S.E.; Eastham, J.A.; Guillonneau, B.D. Pathological Upgrading and Up
Staging with Immediate Repeat Biopsy in Patients Eligible for Active Surveillance. J. Urol. 2008, 180, 1964-1968. [CrossRef]
[PubMed]

Min, X,; Li, M.; Dong, D.; Feng, Z.; Zhang, P; Ke, Z.; You, H.; Han, F; Ma, H,; Tian, J.; et al. Multi-parametric MRI-based
radiomics signature for discriminating between clinically significant and insignificant prostate cancer: Cross-validation of a
machine learning method. Eur. J. Radiol. 2019, 115, 16-21. [CrossRef]

Chatterjee, A.; Watson, G.; Myint, E.; Sved, P.; McEntee, M.; Bourne, R. Changes in Epithelium, Stroma, and Lumen Space
Correlate More Strongly with Gleason Pattern and Are Stronger Predictors of Prostate ADC Changes than Cellularity Metrics.
Radiology 2015, 277, 751-762. [CrossRef]

Donners, R.; Blackledge, M.; Tunariu, N.; Messiou, C.; Merkle, E.M.; Koh, D.-M. Quantitative Whole-Body Diffusion-Weighted
MR Imaging. Magn. Reson. Imaging Clin. N. Am. 2018, 26, 479-494. [CrossRef]

Bajgiran, A.M.; Mirak, S.A.; Sung, K.; Sisk, A.E.; Reiter, R.E.; Raman, S.S. Apparent diffusion coefficient (ADC) ratio versus
conventional ADC for detecting clinically significant prostate cancer with 3-T MRI. Am. J. Roentgenol. 2019, 213, W134-W142.
[CrossRef]

Hiremath, A.; Shiradkar, R.; Merisaari, H.; Prasanna, P; Ettala, O.; Taimen, P.; Madabhushi, A. Test-retest repeatability of a deep
learning architecture in detecting and segmenting clinically significant prostate cancer on apparent diffusion coefficient (ADC)
maps. Eur. Radiol. 2021, 31, 379-391. [CrossRef]

Barbieri, S.; Bronnimann, M.; Boxler, S.; Vermathen, P.; Thoeny, H.C. Differentiation of prostate cancer lesions with high and with
low Gleason score by diffusion-weighted MRI. Eur. Radiol. 2017, 27, 1547-1555. [CrossRef]

Fehr, D.; Veeraraghavan, H.; Wibmer, A.; Gondo, T.; Matsumoto, K.; Vargas, H.A; Sala, E.; Hricak, H.; Deasy, ].O. Automatic
classification of prostate cancer Gleason scores from multiparametric magnetic resonance images. Proc. Natl. Acad. Sci. USA
2015, 112, E6265-E6273. [CrossRef]

Zhang, Y.; Chen, W.; Yue, X,; Shen, J.; Gao, C.; Pang, P,; Cui, F; Xu, M. Development of a Novel, Multi-Parametric, MRI-
Based Radiomic Nomogram for Differentiating Between Clinically Significant and Insignificant Prostate Cancer. Front. Oncol.
2020, 10, 888. [CrossRef]

Bonekamp, D.; Kohl, S.; Wiesenfarth, M.; Schelb, P; Radtke, ]J.P.; Gotz, M.; Kickingereder, P.; Yaqubi, K.; Hitthaler, B.;
Gahlert, N.; et al. Radiomic Machine Learning for Characterization of Prostate Lesions with MRI: Comparison to ADC Val-
ues. Radiology 2018, 289, 128-137. [CrossRef]

Manenti, G.; Nezzo, M.; Chegai, F,; Vasili, E.; Bonanno, E.; Simonetti, G. DWI of Prostate Cancer: Optimal b-Value in Clinical
Practice. Prostate Cancer 2014, 2014, 1-9. [CrossRef]

Agarwal, HK.; Mertan, EV,; Sankineni, S.; Bernardo, M.; Senegas, J.; Keupp, J.; Daar, D.; Merino, M.; Wood, B.J.;
Pinto, P.A ; et al. Optimal high b-value for diffusion weighted MRI in diagnosing high risk prostate cancers in the peripheral
zone. J. Magn. Reson. Imaging 2016, 45, 125-131. [CrossRef]

Mottet, N.; Bellmunt, J.; Bolla, M.; Briers, E.; Cumberbatch, M.G.; De Santis, M.; Fossati, N.; Gross, T.; Henry, A.; Joniau, S.; et al.
EAU-ESTRO-SIOG Guidelines on Prostate Cancer. Part 1: Screening, Diagnosis, and Local Treatment with Curative
Intent. Eur. Urol. 2017, 71, 618-629. [CrossRef]

Aliza 1.98.18, Aliza Medical Imaging & DICOM Viewer. Available online: https://www.aliza-dicom-viewer.com/ (accessed on
11 September 2020).

Gibaldi, A.; Barone, D.; Gavelli, G.; Malavasi, S.; Bevilacqua, A. Effects of Guided Random Sampling of TCCs on Blood Flow
Values in CT Perfusion Studies of Lung Tumors. Acad. Radiol. 2015, 22, 58-69. [CrossRef]

Bevilacqua, A.; Barone, D.; Baiocco, S.; Gavelli, G. A novel approach for semi-quantitative assessment of reliability of blood flow
values in DCE-CT perfusion. Biomed. Signal Process. Control. 2017, 31, 257-264. [CrossRef]


http://doi.org/10.1016/j.ccell.2020.06.008
http://www.ncbi.nlm.nih.gov/pubmed/32663466
http://doi.org/10.1038/s41391-020-0239-x
http://doi.org/10.1111/his.13712
http://www.ncbi.nlm.nih.gov/pubmed/30565298
http://doi.org/10.1016/j.eururo.2019.02.033
http://www.ncbi.nlm.nih.gov/pubmed/30898406
http://doi.org/10.1016/j.annonc.2020.06.011
http://www.ncbi.nlm.nih.gov/pubmed/32593798
http://doi.org/10.1007/s00345-020-03182-3
http://www.ncbi.nlm.nih.gov/pubmed/32253585
http://doi.org/10.1016/j.eururo.2012.01.050
http://www.ncbi.nlm.nih.gov/pubmed/22336380
http://doi.org/10.1016/j.juro.2008.07.051
http://www.ncbi.nlm.nih.gov/pubmed/18801515
http://doi.org/10.1016/j.ejrad.2019.03.010
http://doi.org/10.1148/radiol.2015142414
http://doi.org/10.1016/j.mric.2018.06.002
http://doi.org/10.2214/AJR.19.21365
http://doi.org/10.1007/s00330-020-07065-4
http://doi.org/10.1007/s00330-016-4449-5
http://doi.org/10.1073/pnas.1505935112
http://doi.org/10.3389/fonc.2020.00888
http://doi.org/10.1148/radiol.2018173064
http://doi.org/10.1155/2014/868269
http://doi.org/10.1002/jmri.25353
http://doi.org/10.1016/j.eururo.2016.08.003
https://www.aliza-dicom-viewer.com/
http://doi.org/10.1016/j.acra.2014.08.009
http://doi.org/10.1016/j.bspc.2016.08.015

Diagnostics 2021, 11, 739 15 of 15

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

Li, M.; Chen, F; Kou, J. Candidate Vectors Selection for Training Support Vector Machines. In Proceedings of the Third
International Conference on Natural Computation (ICNC 2007), Haikou, China, 24-27 August 2007; pp. 538-542.

Vabalas, A.; Gowen, E.; Poliakoff, E.; Casson, A.]. Machine learning algorithm validation with a limited sample size. PLoS ONE
2019, 14, €0224365. [CrossRef]

von Neumann, J. Model selection and overfitting. Nat. Methods 2016, 13, 703-704.

Schulman, A.A.; Sze, C.; Tsivian, E.; Gupta, R.T.; Moul, ].W,; Polascik, T.]. The Contemporary Role of Multiparametric Magnetic
Resonance Imaging in Active Surveillance for Prostate Cancer. Curr. Urol. Rep. 2017, 18, 52. [CrossRef]

Rosario, D.J.; Lane, J.A.; Metcalfe, C.; Donovan, J.L.; Doble, A.; Goodwin, L.; Davis, M.; Catto, ] W.E; Avery, K.; Neal, D.E.; et al.
Short term outcomes of prostate biopsy in men tested for cancer by prostate specific antigen: Prospective evaluation within
ProtecT study. BMJ 2012, 344, d7894. [CrossRef]

Cristel, G.; Esposito, A.; Damascelli, A.; Briganti, A.; Ambrosi, A.; Brembilla, G.; Brunetti, L.; Antunes, S.; Freschi, M.;
Montorsi, E; et al. Can DCE-MRI reduce the number of PI-RADS v.2 false positive findings? Role of quantitative pharma-
cokinetic parameters in prostate lesions characterization. Eur. J. Radiol. 2019, 118, 51-57. [CrossRef]

Rosenkrantz, A.B.; Hindman, N.; Lim, R.P; Das, K.; Babb, J.S.; Mussi, T.C.; Taneja, S.S. Diffusion-weighted imaging of the prostate:
Comparison of b1000 and b2000 image sets for index lesion detection. J. Magn. Reson. Imaging 2013, 38, 694-700. [CrossRef]
Litjens, G.J.S.; Elliott, R.; Shih, N.N.C.; Feldman, M.D.; Kobus, T.; De Kaa, C.H.-V.; Barentsz, ].O.; Huisman, H.J.; Madabhushi, A.
Computer-extracted Features Can Distinguish Noncancerous Confounding Disease from Prostatic Adenocarcinoma at Multipara-
metric MR Imaging. Radiology 2016, 278, 135-145. [CrossRef]

Ahmed, H.U,; Bosaily, A.E.-S.; Brown, L.C.; Gabe, R.; Kaplan, R.; Parmar, M.K.; Collaco-Moraes, Y.; Ward, K.; Hindley, R.G.;
Freeman, A.; et al. Diagnostic accuracy of multi-parametric MRI and TRUS biopsy in prostate cancer (PROMIS): A paired
validating confirmatory study. Lancet 2017, 389, 815-822. [CrossRef]

Loeb, S.; Bjurlin, M.A.; Nicholson, J.; Tammela, T.L.; Penson, D.E; Carter, H.B.; Carroll, P; Etzioni, R. Overdiagnosis and
Overtreatment of Prostate Cancer. Eur. Urol. 2014, 65, 1046-1055. [CrossRef] [PubMed]

Grant, K.B.; Agarwal, HK; Shih, ].H.; Bernardo, M.; Pang, Y.; Daar, D.; Merino, M.].; Wood, B.J.; Pinto, P.A.; Choyke, PL; et al.
Comparison of calculated and acquired high b value diffusion-weighted imaging in prostate cancer. Abdom. Imaging
2015, 40, 578-586. [CrossRef] [PubMed]


http://doi.org/10.1371/journal.pone.0224365
http://doi.org/10.1007/s11934-017-0699-2
http://doi.org/10.1136/bmj.d7894
http://doi.org/10.1016/j.ejrad.2019.07.002
http://doi.org/10.1002/jmri.24016
http://doi.org/10.1148/radiol.2015142856
http://doi.org/10.1016/S0140-6736(16)32401-1
http://doi.org/10.1016/j.eururo.2013.12.062
http://www.ncbi.nlm.nih.gov/pubmed/24439788
http://doi.org/10.1007/s00261-014-0246-2
http://www.ncbi.nlm.nih.gov/pubmed/25223523

	Introduction 
	Materials and Methods 
	Patient Cohort 
	mpMRI Protocols 
	PCa Lesion Segmentation 
	Radiomic Feature Extraction 
	Predictive Model 

	Results 
	ADC Model 
	DWIb2000 Model 

	Discussion 
	Conclusions 
	References

