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Abstract: Background: Feature extraction is an essential part of a Computer-Aided Diagnosis (CAD)
system. It is usually preceded by a pre-processing step and followed by image classification. Usually,
a large number of features is needed to end up with the desired classification results. In this
work, we propose a novel approach for texture feature extraction. This method was tested on larynx
Contact Endoscopy (CE)—Narrow Band Imaging (NBI) image classification to provide more objective
information for otolaryngologists regarding the stage of the laryngeal cancer. Methods: The main
idea of the proposed methods is to represent an image as a hilly surface, where different paths can be
identified between a starting and an ending point. Each of these paths can be thought of as a Tour
de France stage profile where a cyclist needs to perform a specific effort to arrive at the finish line.
Several paths can be generated in an image where different cyclists produce an average cyclist effort
representing important textural characteristics of the image. Energy and power as two Cyclist Effort
Features (CyEfF) were extracted using this concept. The performance of the proposed features was
evaluated for the classification of 2701 CE-NBI images into benign and malignant lesions using four
supervised classifiers and subsequently compared with the performance of 24 Geometrical Features
(GF) and 13 Entropy Features (EF). Results: The CyEfF features showed maximum classification
accuracy of 0.882 and improved the GF classification accuracy by 3 to 12 percent. Moreover, CyEfF
features were ranked as the top 10 features along with some features from GF set in two feature
ranking methods. Conclusion: The results prove that CyEfF with only two features can describe the
textural characterization of CE-NBI images and can be part of the CAD system in combination with
GF for laryngeal cancer diagnosis.

Keywords: texture feature extraction; classification; contact endoscopy; narrow band imaging; larynx

1. Introduction

Medical images contain crucial information that is analyzed by clinicians to find ab-
normalities and diagnose diseases. The level of tortuosity of anatomical structures such as
blood vessels is one type of information that can be useful for clinicians. Vascular networks
in tumors are irregular in size, shape, and branching pattern, lack the normal hierarchy,
and do not display the recognizable features of arterioles, capillaries, or venules [1]. For ex-
ample, in ophthalmology, retinal vascular tortuosity can be a potential indicator of diseases
such as hypertension, diabetes, or atherosclerosis [2]. The changes in the organization and
structure of the larynx vocal fold’s blood vessels are directly related to the development of
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benign and subsequent malignant laryngeal lesions. The manual assessment of vascular
structures can, however, result in significant inter-observer variability and with that in
subjective diagnosis [3,4].

Nowadays, Computer-Aided Diagnosis (CAD) systems use different feature extraction
methods in combination with classification algorithms to assist clinicians in solving such
problems. Features extraction is the process of generating features such as color, shape, and
texture to describe the content of an image [5]. The significance of these features for describ-
ing image characteristics are of great importance and essential for the good performance
of the CAD. There are several deep learning-based and hand-crafted feature extraction
methods for medical image analysis. The deep learning-based approaches include the
automatic features extraction and classification that mostly result in a high performance,
but the majority of these approaches are computationally expensive to train, need lots
of data and are known as the black art [6,7]. In the biomedical field, texture features
are often used for characterizing an image using several hand-crafted feature extraction
methods [8–14]. Although these methods have shown good performances for computing
features, they have some drawbacks. Usually, a large number of features is needed for
the classification, resulting in computationally expensive solutions. Moreover, most of the
proposed features in the literature have limited or no meaning for the clinicians [5,15].

In this work, we propose a novel approach for image texture characterization. The
main principle of the proposed approach is to consider an image as an irregular relief
surface where different paths can be traced between a starting and an ending point. Each
path can be thought of as a Tour de France course profile, where a cyclist needs to perform
a specific effort to arrive at the finish line. The effort performed by a large number of
cyclists following different paths in the hilly relief image can be representative of the image
texture. Using this concept, we have extracted two features that we dubbed the Cyclist
Effort Features (CyEfF).

The usability of the proposed approach was tested to classify larynx Contact En-
doscopy (CE)—Narrow Band Imaging (NBI) images into benign and malignant classes.
CE-NBI is an enhanced endoscopic imaging technique that allows a detailed examination
of laryngeal mucosa and provides more precise information about the structure of the
superficial capillary network and sub-mucosal vessels in comparison to other endoscopic
techniques. The visual evaluation of endoscopic images such as CE-NBI, is a subjective
process causing difficulty for clinicians to recognize malignant lesions [3,16,17]. Several
computer-based diagnosis approaches were applied to laryngeal endoscopic images to
overcome this issue and present complementary information about the state of the larynx
for clinicians [18]. Recent studies included a Deep Convolutional Neural Network (DCNN)
using laryngoscopic images for larynx cancer detection [19], a set of texture-based features
and Deep Learning-based descriptors extracted from endoscopic NBI images for laryn-
geal Squamous Cell Carcinoma (SCC) detection [20], a set of texture-based and first-order
statistical features [21] plus an ensemble of Convolution Neural Networks (CNN) with
texture and frequency domain based features [22] for larynx cancerous tissue classification
using endoscopic NBI images, a set of features combined with supervised Machine Learn-
ing techniques for vascular patterns’ assessment in CE-NBI images and laryngeal cancer
diagnosis [23–25].

With the primary goal of this work to show the significance of the CyEfF for classifica-
tion purposes, we have compared the proposed features with two other sets, including 24
Geometrical Features (GF) [24] and 13 Entropy Features (EF) [21] that have been proposed
in the literature for the larynx endoscopic image classification. The results showed that
the classification performance of the two proposed CyEfF is similar to the performance of
other feature sets that includes a greater number of features and indicated the significance
of the CyEfF set on improving the classification performance of GF.
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2. Method
2.1. Cyclist Effort Features Formulation

Figure 1 depicts the main idea behind the proposed feature extraction method. We
show in Figure 1a two CE-NBI images of vessels. A 2-Dimensional (2D) grayscale image
can be viewed as a 3-Dimensional (3D) surface by representing the intensity values of each
pixel (being located in the x-y plane) along the z-axis. With that, we can consider each
image as a hilly relief surface where a path can be traced between a starting and an ending
point (see Figure 1b). We can imagine each of these paths as a Tour de France bicycle
race stage. When a cyclist starts racing within an image, one trajectory of cyclist creates a
sort of Tour de France stage profile (see Figure 1c). The cyclist needs to make an effort to
accomplish each stage. This effort can be assessed by the energy that the cyclist spends
and the associated cyclist’s power. We can see in Figure 1c how these two trajectories can
involve profiles that require a different degree of effort of a cyclist.

When a large number of cyclists, randomly distributed over the whole image, are
performing different trajectories, an average effort of all cyclists can be obtained by com-
puting average energy and power. This average effort can be representative of the image
texture. As in the Tour de France, a stage can be classified as flat, mountainy or hilly.
Our main idea using this new concept (cyclist energy and power features) is to classify
texture in images since the average effort of cyclists in an image can vary according to its
characteristic patterns.
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Figure 1. (a): RGB 2D image. (b): 3D representation of image. (c) Stage profile of similar trajectory on two images.

There are three primary forces that a cyclist must overcome in order to move forward
[26]:

• Gravity Force (FG): is one of the critical factors in cycling because a cyclist needs
to fight against it cycling uphill. It can be calculated in metric units as FG = g ·
sin(arctan(S)) · m, where S is the percentage grade to measure the steepness of a hill.
g is the gravitational force constant and m is the combined weight of cyclist and bike.

• Rolling Resistance Force (FR): is the friction between the tires and the road surface and is
calculated in metric units as FR = g · cos(arctan(S)) · m · Cr, where Cr is a dimensionless
parameter that captures the bumpiness of the road and the quality of tires.

• Air Resistance Force (FA), which for the purposes of this work can be assumed to be a
constant.
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The total force resisting the cyclist is, therefore, FT = FG + FR + FA and is the key
parameter to calculate the cycling power and energy as:

P = FT · v and E = FT · v · t (1)

where v is the cycling velocity and t is the time duration of the cyclist’s effort. These two
parameters are used to compute the textural features proposed in this work.

2.2. Cyclist Effort Features Computation

The block diagram in Figure 2 shows the feature extraction process. Since the computa-
tion of cyclist power and energy requires the estimation of slopes in an image are known to
be sensitive to high-frequency noise, the image is first pre-processed using a Median filter.
For this filter, the kernel size was set empirically to 5 × 5 after visually evaluating the effect
of three different kernel sizes on some randomly selected CE-NBI images. Then, different
straight-line trajectories are generated inside the image between randomly selected starting
and ending coordinate points. The trajectories need to include sufficient data from the
image; hence each trajectory had at least 50-pixels length, equivalent to around 1% of the
image’s size. The pixel intensity values under each trajectory line are stored as vector
arrays that correspond to race profiles.

Let TPk(i) be the pixel value of the trajectory profile vector k (with k = 1, ..., Nk and Nk
corresponding to the total number of trajectories generated in an image) at the pixel index i
(i = 1, ..., Ni with Ni > 50 being the length of the vector TPk). For computing the cycling
power and the cycling energy features of a full image, the power and energy of these
individual TPk trajectories should be first calculated. For that, each trajectory vector TPk is
first divided into Ns non-overlapped sections of length L. Then the power and energy of
each one of these sections are computed using Equation (1). Figure 2 shows an example of
the calculation process for the section Ns = 15. The section’s slope percentage Sn and time
interval tn have to be estimated for each generated section n (n = 1, ..., Ns). A trajectory
can be seen as a curve in the 2-D plane, where the x-axis correspond to the pixel elements i
and the y-axis correspond to the value of the vector TPk(i). Following this representation,
let An = (Anx, Any) and Bn = (Bnx, Bny) being the starting and ending coordinate points,
respectively, of the trajectory in section n. Then, the time interval can be computed as a
simple ratio between a distance and the velocity as:

tn =
d(An, Bn)

v
(2)

where d(An, Bn) corresponds to the Euclidean distance between An and Bn and v to the
cyclist velocity. The section’s slope percentage Sn can be calculated as the ratio between
the y-axis jump between An and Bn and the length of the section n:

Sn =
Bny − Any

L
(3)

Using the estimated Sn and tn it is possible to compute the power Pn and energy En
of section n using the Equation (1). Then the power and energy of a trajectory TPk are
computed as:

Pk =
Ns

∑
n=1

Pn and Ek =
Ns

∑
n=1

En (4)

FP and FE of the full image are computed as the average values of Pk and Ek, respectively.
The approach was implemented in MATLAB R2019a and executed on a PC with a CPU

operating at 1.60 GHz resulting in an average execution time of 0.71 seconds per image.
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3. Experiments
3.1. Data Acquisition and Dataset Generation

The usability of the proposed method was evaluated in CE-NBI image classification.
An updated version of the Dataset IV in [24] including 48 patients and 2701 CE-NBI images
was used. Patients’ data were anonymized and the biopsy results were used to label images
into benign and malignant lesions according to the WHO classification [27]. The benign
group involved images of patients with Cyst, Polyp, Reinke’s edema, Papillomatosis and
Mild Dysplasia. The malignant group included patients diagnosed with Severe Dysplasia,
Carcinoma in situ and SCC.

For further parameter settings and feature evaluation procedure, 80% and 20% of CE-
NBI images of the whole dataset were assigned to the training and testing sets, respectively.
The images of patients were exclusively tied to separate sets in order to limit the chance of
possible over-fitting. Training set was used for hyperparameter optimization as well as
training process and testing set was used to evaluate the performance of the features.

3.2. Parameter Settings

Following the Equations (1) to (4) and their computation, six parameters needed to
be defined. CE-NBI images in the training set were used to find the optimum number
of trajectories Nk and the length of each section L. The values from 50 to 800 with step
size of 50 were set to find the Nk. As the CyEfF values of the selected images did not
change significantly for Nk > 500, the number of trajectories Nk was set to 500. L was
defined within the range of 1 to 10 pixels, with the step size was equal to one. The optimum
CyEfF values of the selected images were achieved at L = 2 pixels. To transform the
pixel to the meter unit, we assumed that the longest path in the image is equal to the
approximately longest path in Tour de France (200, 000 m). The gravitational force g, the
cyclist-bike weight m, and Cr related with tires and road characteristics are constant values
(g ≈ 9.8 (m/s2), m = 80 (Kg) [26], Cr = 0.005 [26]). For this work, the cyclist velocity v can
also be taken as a constant, and we have set this value to 11 (m/s), which corresponds to
the average velocity in the Tour de France.

3.3. Feature Evaluation Procedure

The performance of the proposed features was compared with two other feature sets
presented in the literature for classifying larynx endoscopic images: Geometrical Features
(GF) and Entropy Features (EF).

• The GF set describes the level of disorder of vascular patterns in CE-NBI images [23,24].
This set of features intended to take into account geometrical characteristics of vessels
including the consistency of gradient direction and the vessels’ curvature and showed
high performances on CE-NBI classification in different datasets [24,25].

• The EF set was used in combination with other types of features for classifying
laryngeal tissue in NBI images. We converted each image into a grey-scale level
and then divided it into seven different patch sizes of 50 × 50, 100 × 100, 150 × 150,
200 × 200, 250 × 250, 300 × 300 pixels and the whole image. In each patch, the entropy
was computed following [21] and stored in a matrix. The mean and variance were
computed as features for each image.

GF includes 24 features (F1 to F24), EF 13 Features (F25 to F37) and CyEfF two features
(F38 and F39). In order to reduce the very-low frequency trends in the image that can affect
the features computation, a homogenization filter was first applied to the image before the
features’ computation [24,28].

Two classification scenarios were conducted to evaluate the performance of the feature
sets for the classification of CE-NBI images into benign and malignant classes. For that, four
supervised classifiers including Support Vector Machine (SVM) with Polykernel and Radial
Basis Function (RBF) [29], k-Nearest Neighbours (kNN) [30], and Random Forests (RF) [31]
were used. First, each feature set was individually exposed to the classifiers to compare
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their ability in classifying CE+NBI images. Second, the combinations of feature sets were
created by adding EF and CyEfF to the GF. This scenario was performed to see how the
proposed features (CyEfF) and the already used features for texture characterization in
endoscopy images (EF) can improve the classification performance of the GF.

A 10-fold Cross-Validation with grid search method was used on training data and
all feature sets for hyperparameter optimization. Then, the optimized parameters were
applied to create the predictive model of classifiers for every feature sets. The features
calculated from the CE-NBI images in the testing set with 10-fold Cross-Validation was
used to evaluate these predictive models. A confusion matrix was computed in each testing
scenario and the accuracy, sensitivity and specificity were obtained from it.

The optimization was conducted to find the value of the regulation parameter (C) and
kernel parameter(γ) for the SVM classifier. The values within the range of 0.001 to 1000
with a ten-fold increment were assigned for both parameters. The SVM with Polykernel
demonstrated the highest performance with C = 1 and the SVM with RBF indicated the
best results with C = 1 and γ = 0.01.

For optimizing the kNN performance, the Euclidean distance was used as distance
metric. Also, values within the range of 1 to 1000 with step size equal to one were used
to select the optimum k. The optimum performance of the kNN classifier was obtained at
k = 10.

The values of depth of trees and the number of estimators were adjusted to reach the
optimized performance of RF. The number of estimators were defined within the range
of 1 to 1000, with an increase of five. For the depth of the trees, values from 1 to 50 with
step size equal to one were set. The classifier showed the highest overall performance at a
depth of 7 with 60 trees.

Two feature ranking methods, including t-test [32] and Wilcoxon signed-rank test [33],
were used to find the top-ranked features that have more influence on the classification
results. The t-test investigates how significant the differences between groups are. It
provides p-values as well. A p-value is the probability that the results from sample data
occurred by chance. In most cases, p-value of 0.05 is accepted to mean the data is valid.
Wilcoxon signed-rank test can be used to identify if samples from two independent yet
related distributions are significantly different.

4. Results and Discussion

Figure 3 shows a qualitative example of one trajectory on four different CE-NBI images
associated to benign and malignant lesions. Based on the Ek and Pk values in Figure 3c, the
energy and power of the trajectory is significantly different between benign and malignant
images. Furthermore, the FE and FP values as the two CyEfF show the variation between
two groups of images.

Table 1 shows the classification results of the first scenario described in the previous
section. The SVM classification results with Polykernel and RBF had the highest accuracy
of 0.882 and 0.875 using CyEfF. With the kNN and RF, GF showed the highest performance
with the accuracy of 0.885 and 0.920, respectively. According to the performed result, CyEfF,
with only two features, achieved comparable results than GF and EF, which used 24 and
13 features, respectively.

In studies [24,25], a subset of current CE-NBI image dataset were used for classification
of CE-NBI images into benign and malignant classes. In comparison to the results in [24],
the CyEfF set with Polykernel and RBF SVM showed a better classification accuracy. Fur-
thermore, CyEfF with Polykernel SVM and kNN showed higher sensitivity and specificity
than the results presented in [25].

Table 2 presents the results of the second classification scenario in which the combi-
nation of GF and CyEfF showed better performance than the combination of GF and EF.
The classification accuracy of four classifiers increased from 3 to 12 percent by adding the
two proposed features to the 24 GF, in which the highest accuracy of 0.966 was achieved
with the kNN classifier. The combination of GF and CyEfF with four classifiers showed
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higher accuracy, sensitivity and specificity in comparison to the results in [24,25] to classify
CE-NBI images into benign and malignant classes. Moreover, in comparison to the other
texture-based feature extraction methods such as local binary patterns (LBP) and gray-level
co-occurrence matrix (GLCM) that were applied to the laryngeal tissue classification in NBI
laryngoscopy [21], the combination of CyEfF and GE feature sets with Polykernel SVM
showed the higher performance. These results prove the significant effect of the CyEfF on
improving the classification of CE-NBI images with the already used GF set.
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Figure 3. (a): Original CE-NBI image, (b): Pre-processed image with one random trajectory, (c): The stage profile of the random
trajectory plus the cyclist’s energy and power values of the random trajectory and the 500 trajectories (whole image).

Table 1. Classification results of four classifiers using three features sets.

Classifiers Accuracy Sensitivity Specificity
GF EF CyEfF GF EF CyEfF GF EF CyEfF

SVM with Polykernel 0.820 0.739 0.882 0.818 0.792 0.845 0.822 0.596 0.924

SVM with RBF 0.806 0.761 0.875 0.817 0.802 0.826 0.821 0.515 0.920

kNN 0.885 0.781 0.874 0.911 0.812 0.834 0.836 0.531 0.911

RF 0.920 0.788 0.859 0.935 0.801 0.831 0.892 0.538 0.886

Table 2. Classification results of four classifiers using combination of feature sets.

Classifier Accuracy Sensitivity Specificity
GF+EF GF+CyEfF GF+EF GF+CyEfF GF+EF GF+CyEfF

SVM with Polykernel 0.782 0.944 0.816 0.942 0.738 0.947

SVM with RBF 0.773 0.897 0.813 0.981 0.702 0.818

kNN 0.795 0.966 0.837 0.959 0.718 0.973

RF 0.808 0.956 0.831 0.952 0.724 0.961
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In order to confirm the significance of the proposed CyEfF, Table 3 shows 10 top-
ranked features for each ranking method. Energy (F38) and power (F39) features are
ranked as the top 10 features along with some features from GF set in both ranking
methods. Figure 4a shows the box plot of energy and power features with the p-values
equal to 4.5654 × 10−35 and 1.4419 × 10−32, computed from the t-test, respectively. Based
on these values, the proposed features showed a statistically significant difference between
benign and malignant classes. Also, Figure 4a shows, that the range of energy and power
features for benign and malignant classes are distinguishable. Figure 1b presents that the
combination of energy and power features has a separation among benign and malignant
classes. These results prove the influence and significance of the proposed CyEfF on the
classification results.
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P-value = 4.5654 × 10−35 P-value =1.4419 × 10−32(a) (b)

Figure 4. (a): Box plot of energy and power features. (b): Projected data points of benign and malignant classes using CyEfF.

Table 3. Feature ranking results: F01-F24: GF, F25-F37: EF and F38, F39: CyEfF.

Method Ranking
#1 #2 #3 #4 #5 #6 #7 #8 #9 #10

t-test F38 F21 F39 F14 F24 F22 F09 F20 F17 F15

Wilcoxon signed-rank F14 F38 F39 F21 F24 F08 F09 F22 F15 F07

The very-low frequency trending characteristics of the image background are usually
highly problematic for extracting features since significant pixel values involve progressive
changes in the image plane that may affect the extraction of important texture information.
In order to study how this type of noise can affect the proposed features, we have computed
the method performances by removing the homogenization pre-processing stage. Results
show that the classification performance does not significantly vary with or without
the pre-processing stage. The accuracy of 0.868, 0.867, 0.850 and 0.872 using SVM with
Polykernel and RBF, kNN and RFC were achieved without the pre-processing, respectively.
In comparison to the results in Table 1, the accuracy varied only 1 to 2 percent.

5. Conclusions

CyEfF approach is an understandable and intuitive method that showed promising
results with less amount of data for training in comparison to other deep learning-based
feature extraction methods. According to the presented results, CyEfF can describe the
textural characterization of CE-NBI images with only two features, which is one of the main
advantages of this approach over other hand-crafted feature extraction methods. Moreover,
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removing the pre-processing stage related to attenuation of very low-frequency trending
characteristics of the image did not significantly affect the classification performance of
proposed features. However, further evaluation should be conducted for this matter in
future work.

As the focus of this paper is on the CE-NBI images, we compared only the perfor-
mance of the proposed features with other research works in the field of CE-NBI endo-
scopic imaging modality [23–25]. For this reason, comparative experiments to already
existing texture-based feature extraction methods on this dataset would be suggested for
further development.

Based on the recent advances and improvements in the field of CNN-based approaches,
there is a high probability that the application of these methods can result in better in
better performance in CE-NBI classification and can overcome the critical limitations of
the hand-crafted feature extraction methods. However, it will take a great amount of time
to collect and label the data to develop such a method in the medical field for real clinical
use. According to our knowledge, there is no CNN-based method for the classification
of CE-NBI images in the literature. Hence, the comparison between deep learning-based
and hand-crafted feature extraction methods for CE-NBI classification is necessary for
future developments.

In spite of the technological advancements, differentiation between malignant and
benign lesions in the larynx is difficult in reality, irrespective of the clinicians’ level of
experience. In addition, the subjectivity in laryngeal cancer diagnosis has been reported
several times, resulting in invasive surgical biopsy and subsequent histological examination.
CyEfF in combination with GF as part of a CAD system can potentially solve these problems
in CE-NBI image classification and help the clinicians to make final decisions about the
stage of laryngeal cancer in the routine and surgical procedures.

With the primary objective of this work to present the significance of the CyEfF for CE-
NBI image classification, testing the proposed set of features in other imaging modalities is
something that should be accomplished for future work. Based on the presented results,
the proposed approach can be used as a new texture-feature extraction method in medical
image analysis. For example, it can be applied to the fundus images, as the level of
tortuosity of vessels in these images is also crucial for clinicians.
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