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Abstract: Background: High-quality colonoscopy is essential to prevent the occurrence of colorectal
cancers. The data of colonoscopy are mainly stored in the form of images. Therefore, artificial
intelligence-assisted colonoscopy based on medical images is not only a research hotspot, but also
one of the effective auxiliary means to improve the detection rate of adenomas. This research has
become the focus of medical institutions and scientific research departments and has important
clinical and scientific research value. Methods: In this paper, we propose a YOLOv5 model based on
a self-attention mechanism for polyp target detection. This method uses the idea of regression, using
the entire image as the input of the network and directly returning the target frame of this position in
multiple positions of the image. In the feature extraction process, an attention mechanism is added
to enhance the contribution of information-rich feature channels and weaken the interference of
useless channels; Results: The experimental results show that the method can accurately identify
polyp images, especially for the small polyps and the polyps with inconspicuous contrasts, and the
detection speed is greatly improved compared with the comparison algorithm. Conclusions: This
study will be of great help in reducing the missed diagnosis of clinicians during endoscopy and
treatment, and it is also of great significance to the development of clinicians’ clinical work.

Keywords: colorectal cancer; polyp detection; YOLOv5; attention mechanism

1. Introduction

In China, the incidence rate of colorectal cancer (CRC) has been increasing year by
year. It has jumped to the top 3–5 of cancers with the greatest mortality. Colorectal cancer
is the third and second largest cause of cancer-related death in men and women [1]. This is
increasingly affecting people’s health and quality of life. According to statistics, by 2020,
nearly 150,000 people will have been diagnosed with CRC, and more than 50,000 people
will have died of the disease [2]. It must be mentioned that colorectal cancer has the fastest
rising cancer incidence rate in recent years. The number of new cases and deaths has
doubled in the past 10 years and is increasing at an annual average of 4–5%. In addition,
data from epidemiological studies show that the incidence of the CRC in adults under the
age of 50 is already significantly high and continues to rise [3]. Sedentary, obesity, high
protein foods, excessive intake of salted foods and high life pressure are all external causes
of colorectal cancer. In view of its high incidence rate and mortality, the prevention of
CRC is an urgent problem to be solved. Studies have found that most CRC cases evolved
gradually from colorectal polyps, especially adenomatous polyps. Timely resection of
polyps can effectively prevent the occurrence of CRC and reduce CRC-related mortality by
70% [4].

Studies have shown that colonoscopy is considered to be the gold standard for re-
ducing the incidence rate and mortality of colorectal cancers [5,6]. Adenoma detection
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rate (ADR) is the most common prevention for colorectal cancers. On the contrary, if
the adenoma is not found in time, it may lead to the occurrence and development of the
interphase cancer. However, due to the individual differences in the technical level of
endoscopists, the detection rate of adenoma ranges from 7% to 53%. Colonoscopy and
adenomatous polyps can reduce the incidence rate and mortality of CRC. It has been
reported that CRC mortality can be reduced by more than 50% [7–10]. In addition, there is
evidence that the risk of interphase CRC decreases by 3.0–6.0% for every 1.0% increase in
the detection rate of the adenoma [11]. However, due to the characteristics of polyps and
the individual differences in the technical level of endoscopists, polyps may be omitted.
It has been reported that the polyp omission rate is as high as 27% [12]. Studies have
shown that there is a significant correlation between the polyp detection rate (PDR) and
the ADR. The PDR can be used as an ADR alternative index for the quality of colonoscopy
in patients with gastrointestinal diseases [13]. Therefore, reducing the number of missed
adenomas/polyps by some effective means to standardize the quality of colonoscopy is a
hot issue in CRC prevention.

At present, the medical industry has integrated more emerging technologies such as
artificial intelligence and deep learning. In the field of gastroenterology, these technologies
can create an intelligent auxiliary system that can automatically detect and describe polyp
information for a large number of videos and imaging data generated in the colorectal
screening process, which helps to overcome the limitations of traditional colonoscopy
and improve the quality of colonoscopy screening. Therefore, they make medical ser-
vices intelligent in real sense and promote the prosperity and development of medical
undertakings [14,15].

In July 2021, Professor Bernal of Barcelona Autonomous University, Spain, a pioneer in
the field of the computer-aided detection and diagnosis of colorectal polyps, wrote the book
Computer-Aided Analysis of Gastrointestinal Videos, which is the first comprehensive
book in the world to compare and analyze different gastrointestinal image analysis systems.
It aims to assist clinicians to complete key tasks such as lesion detection in colonoscopy
images [16]. Barua et al. systematically searched the application of artificial intelligence
in polyp detection in colonoscopy on MEDLINE, EMBASE and Cochrane Central. By
calculating the relative risk, absolute risk and average difference of polyps, adenomas
and colorectal cancer, the differences between colonoscopy and colonoscopy without AI
were compared, summarized and analyzed. They found that an AI-based polyp detection
system can effectively increase the detection rate of non-advanced adenomas and smaller
polyps during colonoscopy [17].

However, in the process of polyp detection, the edge blur between adjacent tissues
will be caused by the inherent characteristics of the colorectal image, insufficient brightness,
noise, contrast and the technical limitations of the imaging equipment. In addition, because
the features of the polyp image are composed of a large number of pixels, the traditional
polyp detection methods do not preprocess the features of the original image, which may
lead to the inability to obtain better features in the later feature extraction, resulting in the
unsatisfactory detection effect in the later stage. In addition, in the process of colorectal
image sample frame feature generation, it is often difficult to achieve the expected results
with the traditional artificial image feature selection methods, and they cannot meet the
practical application requirements in medical image processing and analysis. Therefore,
to the process effectively extracting the global and local features of polyps and detecting
targets urgently needs further research and exploration.

This paper discusses how to improve the recognition accuracy and efficiency of polyp
detection from the perspective of artificial intelligence. This provides strong support for
the missed diagnosis, early diagnosis and prevention of colorectal cancers in the process of
polyp detection by clinicians. The main contributions of this article include: (1) In view of
the lack of data, the Mosaic method is used in the data preprocessing stage to enhance the
amount of training data in the data set; (2) CSPNet (Cross Stage Partial Networks) is used
as the backbone network to extract the information features in the image, which solves



Diagnostics 2021, 11, 2264 3 of 15

the problem of gradient disappearance; and (3) The feature pyramid architecture with
attention mechanisms is used to enhance the detection performance of varying-size polyps.

2. Related Works
2.1. Traditional Polyp Detection Algorithm

As we all know, the interpretation of endoscopic images is based on the experience of
endoscopists and has a certain subjectivity, which makes it difficult for non-endoscopists or
inexperienced endoscopists to make accurate judgments. Ideally, the real-time automatic
polyp detection system can approach or even exceed the ability of the endoscopists, attract
the eyes of the endoscopists to relevant lesions in real time, and help the endoscopists detect
the presence of polyps and adenomas in a more reliable way. Computer-aided diagnosis
(CAD) of colonoscopy has always been the focus of artificial intelligence research [18,19].
CAD can prompt the endoscopists to pay attention to the polyps that may be ignored
through real-time display, improve the detection rate of adenomas and speed up the
accurate optical biopsy characterization of colorectal polyps. If it is a non-neoplastic polyp,
it can reduce unnecessary polypectomy.

Traditional polyp detection algorithms usually use artificial features, such as texture,
shape and color features to detect polyps. Krishnan et al. used the curvature analysis
method to identify the possible region where the polyp is located according to the curve
direction and curvature [20]. Kang et al. divided the colonoscopy image into multiple
regions and used watershed segmentation algorithm to carry out binary classification oper-
ations for each region, so as to judge whether there are polyps in that region [21]. Bernal
et al. considered that the polyp surface has the property of three-dimensional protrusion,
and they used the valley detection algorithm to detect the polyps [22]. According to the
special texture features of polyp lesion areas, Wang et al. used G statistics and a neural
network to judge the category of the enteroscopy image block [23]. Tjoa et al. used princi-
pal component analysis to reduce the dimension of the features in the texture spectrum
and then used BP neural network to classify the features after dimension reduction [24].
Alexandre et al. first divided the polyp image into fixed size sub images, extracted the
pixel values and coordinate values of the image, and used a support vector machine to
classify the image [25]. Li et al. used a support vector machine to classify polyp images
with different scales and then integrated multiple classifier results to judge whether it was
a polyp [26].

However, because some polyps have a flat surface and similar shape and texture
characteristics to the normal inner wall, it is easy to miss the detection of such polyps with
the traditional algorithms; some of the inner walls of the colon have convex structures, so
it is easy to mistakenly detect the inner wall of the colon as the polyps with the traditional
algorithms. Therefore, the traditional polyp detection algorithm cannot complete the
detection task well.

2.2. Polyp Detection Algorithm Based on Deep Learning

A convolutional neural network has been applied to the automatic detection of polyps
under colonoscopy and achieved good results in improving the detection rate of polyps.
However, the complex colonic environment leads to too many false positives, which will
hinder the clinical application of the Cade system. Qadir et al. proposed an all-CNN
real-time polyp detection model based on two-dimensional Gaussian shape prediction.
The model is effective for flat and small polyps with unclear boundaries between the
background and polyps [27]. TASHK et al. proposed a new method for polyp detection in
colon capsule endoscopic images based on the new combination of RCNN and distance-
regularized level set evolution. This method can not only reliably detect polyps from still
images, but also predict and score the risk of malignant tumors [28]. Luo et al. proposed
a high-performance, real-time automatic polyp detection system, which can improve the
polyp detection rate in the actual clinical environment, especially on small polyps [29]. Yang
et al. proposed a colon polyp detection and segmentation algorithm based on an improved
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mrcnn. The algorithm first trained large-scale data sets, extracted the initial model, and
then retrained the small private data sets of patients [30]. In view of the large proportion of
small polyps in heterogeneous data sets, in order to enhance the generalization ability of
the model, Li et al. proposed a low-rank model by using the human resources network as
the backbone to realize the accurate segmentation of polyps [31]. Wang et al. combined
the classical vggnets and resnets models with the global average pooling and proposed
two new lightweight network structures, vggnets gap and resnets gap, which not only
had high classification accuracy, but also had fewer parameters [32]. Manouchehri et al.
first proposed a new convolutional neural network for polyp frame detection based on
the VGG network and then proposed a complete convolutional network and an effective
post-processing algorithm for polyp segmentation [33]. Patel et al. compared a series of
algorithms for polyp classification using CNN through self-built data sets and found that
the performance of the vgg-19 was higher than those of the RESNET, densenet, senet and
mnasnet [34].

In the preprocessing stage of polyp detection in colonoscopy image, a preprocessing
method for automatic polyp detection based on a super-resolution convolutional neural
network was proposed. Experiments show that this preprocessing method can achieve
excellent performance in polyp localization even if the image resolution increases [35].
Tang et al. proposed a polyp detection method based on transfer learning technology
for high-resolution colonoscopy images. The experimental results show that the polyp
detection model can have high accuracy for polyp detection, but it had no obvious effect on
polyp type classification [36]. Shen et al. proposed a transformer convolution network for
end-to-end polyp detection. In this network, firstly, CNN was used for feature extraction,
then the transformer encoder layer and convolutional layer were interleaved for feature
coding and recalibration. The transformer decoder layer was used for object query, and
finally, the feedforward network was used for target detection [37]. Liew et al. fused the
improved depth residual network, principal component analysis and AdaBoost ensemble
learning and proposed an automatic detection method of colon polyps based on depth
residual network to classify endoscopic images. In addition, in order to minimize image
interferences, the method used median filtering, image thresholding, contrast enhancement
and normalization techniques to train the classification model [38]. Mulliqi et al. studied
the importance of skip connection in the encoder–decoder structure of colorectal polyp
detection. They found that with the improvement of the skip connection utilization,
the segmentation results gradually improved, and the polyp segmentation architecture
also achieved a better performance when the number of model parameters decreased
significantly [39]. Mostafiz et al. first fused the color empirical mode decomposition
features with the convolutional neural network features extracted from video frames and
then classified the polyp images by support vector machine [40]. Hasan et al. extracted
the features of the image through the PCA, removed the less important features and
then diagnosed gastrointestinal polyps through the SVM and marked the detected polyp
regions [41].

In order to improve the detection efficiency, some target detection algorithms based on
the yolo series have been proposed [42]. Guo et al. proposed an automatic polyp detection
algorithm based on yolov3 structure and active learning, which can effectively reduce the
false positive rate in polyp detection [43]. Cao et al. designed a feature extraction and
fusion module and combined it with the yolov3 network. This method can integrate the
semantic information of a high-level feature map and low-level feature map and is superior
to other methods in the detection of small polyps [44]. Pacal et al. proposed a real-time
automatic polyp detection method based on Yolov4. They applied the cspnet network
to the whole architecture and added mish activation function, Diou loss function and
transformer block to the architecture. This method has higher accuracy and performance
than previous methods [45].

However, with the increasing resolution of the polyp image during colonoscopy, the
feature of polyp image is composed of a large number of pixels. The traditional polyp
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detection methods do not effectively preprocess the features of the original image. In
the process of polyp detection, due to the inherent characteristics of colorectal images,
insufficient brightness, noise, contrast and technical limitations of the imaging equipment,
and the edge between adjacent tissues can be blurred, which may lead to the inability
to obtain better features in future feature extraction. In addition, the requirements for
real-time polyp detection rate are becoming higher and higher. Although the automatic
polyp detection system has been comprehensively studied in the past decade, there is still
a lack of evidence about the ability of this technology to locate and track polyps in the
process of real-time colonoscopy in clinical practice.

3. Materials and Methods
3.1. Network Configuration

The proposed method was trained by stochastic gradient descent (SGD) and back-
propagation in an end-to-end way on a cloud-computing platform configured with eight
16 GB GPUs, a 16-core CPU, and a 64 GB memory.

3.2. Dataset

In order to evaluate the algorithm, we used the Kvasir-SEG data set, which is the
first multi-class data set for gastrointestinal (GI) disease detection and classification and
contains a total of 1000 pictures. In addition, we collected 1000 pictures from the endoscopy
center of the local hospital, each with 1–3 colon polyps, and constructed the WCY data
set. During the experiment, we used the five-fold cross-validation method to divide the
data set. Each time 800 pictures were randomly selected for training, and 200 pictures were
used for testing. Figures 1a and 2a are sample examples in the two different data sets, and
Figures 1b and 2b are the cases of using bounding boxes to label two different data. Among
them, when labeling the data set, we used the Labelme toolkit for labeling.
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red squares in the figure are the bounding boxes of the polyps.

In this paper, YOLOv5 based on an attention mechanism was mainly used for the
target detection of polyp images. This method uses the idea of regression, using the entire
image as the input of the network and directly returning the target frame of this position
in multiple positions of the image. It is mainly divided into five parts: Input, backbone
network, neck, attention mechanism and prediction.

3.3. Input

In the data preprocessing stage, due to the lack of polyp data, YOLOv5 uses Mosaic
data enhancement at the input to enhance the amount of training data in the two data sets.
Mosaic first reads four pictures and then performs operations such as flipping, zooming
and color gamut changes on the four pictures. Finally, they are placed in the four directions,
and the pictures and the frame are combined to form a new picture. Additionally, it obtains
the frame corresponding to this new picture. During the splicing process, each of the four
images are covered by the rest of the images, or the label frame in the image will be blocked
or covered by several other images. If the picture box appears beyond the edges of the
two pictures, we need to delete it. The mosaic data enhancement schematic is shown in
Figure 3.
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In addition, in network training, YOLOv5 outputs the prediction frame based on
the initial anchor frame and then compares it with the ground-truth of the real frame,
calculates the gap between these two and then updates it in the reverse direction to
adaptively calculate the best anchor frame in different training sets.

3.4. Backbone

When the artificial neural network is trained in back propagation, as the number of
hidden layers increases, when calculating the gradient of the loss function to the weight,
the gradient becomes smaller and smaller as it propagates backward. This means that
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the neurons in the front layers of the network are much slower than those trained later
and will not even change. In some cases, the gradient values almost disappear, that is, the
phenomenon of gradient disappearance.

YOLOv5 uses CSPNet (Cross Stage Partial Network) as the backbone network to
extract information features in the images. The backbone network replicates the feature
map of the base layer and uses a dense block to transfer the copied feature map to the next
stage, thereby separating the feature map of the base layer. This can effectively alleviate
the problem of gradient disappearance, support feature propagation and encourage the
network to reuse features, thereby reducing the number of network parameters. CSPNet
solves the problem of repeating the gradient information of network optimization in the
backbone network of other large-scale convolutional neural network frameworks and
integrates the changes of gradients into the feature map from the beginning to the end,
thus reducing the amount of model parameters and FLOPS (floating point operations per
second), which can ensure accuracy while reducing the amount of calculations.

3.5. Neck

YOLOv5 uses SPP (spatial pyramid pooling) to enhance the model’s detection of
objects with different scales and uses PANET (Path aggregation network) as the neck for
feature aggregation [46]. The feature extractor of the path aggregation network adopts
a new FPN (Feature Pyramid Networks) structure that enhances the bottom-up path,
which improves the propagation of low-level features. Each stage of the third path takes
the feature maps of the previous stage as the input and processes them with a 3 × 3
convolutional layer. The output is added to the feature map of the same stage of the top-
down path through the horizontal connection, and these feature maps provide information
for the next stage. An illustration of the Path aggregation network is as follows:

In this framework, Pi, Pi+1, Pi+2 and Pi+3 are the feature levels generated by the FPN.
The enhancement path gradually approaches the top Pi+3 from the lowest layer Pi, and
the space size is gradually down-sampled by a factor of 2. In addition, in the bottom-up
process, Qi, Qi+1, Qi+2 and Qi+3 are the newly generated feature maps for Pi and Pi+3,
respectively. The detailed process is shown in Figure 4: First, each feature map Qi uses
a 3 × 3 convolutional layer with a step size of 2 to reduce the space size. Then, each
element of the feature map Pi+1 is added to the down-sampling map through the horizontal
connection. The fused feature map is processed by another 3 × 3 convolutional layer to
generate Qi+1. This is an iterative process that ends after generating Qi+3.
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At last, adaptive feature pooling is used to restore the damaged information path
between each candidate area and all feature levels and aggregate each candidate area on
each feature level to avoid arbitrary allocation. Through this step, polyps of different sizes
and scales can be identified.
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3.6. Attention Mechanism

In the learning process of the model, the more parameters the model has, the richer
the amount of information stored, but it will bring about the problem of information
overload. To alleviate this issue, we integrated a self-attention module on the top layer of
each stage of the feature extraction backbone network. The model in this paper first obtains
important candidate target regions by scanning the global image and then strengthens
the contribution of the information-rich feature channel through the increased attention
mechanism and weakens the interference of useless channels. Through this mechanism,
limited attention resources can be used to quickly filter out high-value information from
a large amount of information. The architecture of the attention mechanism module is
shown in Figure 5.
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For the input of the attention module, first, we performed a global average pooling
operation on the channel and converted the input feature map into a channel descriptor.
In this way, the statistical characteristics of the channel could be obtained from a global
perspective. Then, we followed the two fully connected layers to further explore the de-
pendencies between the channels. Specifically, the two fully connected layers are activated
by the rectified linear unit (ReLU) and the sigmoid function, respectively. The second
probabilistic encoding fully connected layer constitutes an attention descriptor, and the
elements of the attention descriptor reflect the amount of information and saliency of
the corresponding channels of the input feature map. This attention descriptor acts as a
weight adjuster to recalibrate the input feature map. Finally, by multiplying the attention
descriptor with the input feature map, an information feature emphasizing feature map
was generated. Finally, we superimposed global features and local features and fused
the superimposed features through a 1 × 1 convolutional layer to complete the colorectal
image sample frame feature generation model and used the final generated depth features
as the input part of the target detection model.

3.7. Prediction

In the YOLOv5 model, the head model is the same as the previous Yolov3 and Yolov4,
which is mainly used in the final inspection part. It applies anchor boxes to the feature
map and generates the final output vector with class probabilities, object scores and
bounding boxes.

The choice of activation function is crucial for deep learning networks. In YOLOv5,
the Leaky ReLU activation function is used in the middle/hidden layer, and the Sigmoid
activation function is used in the final detection layer.

The Leaky ReLU activation function is as follows:

yi =

{
xi xi ≥ 0
xi
ai

xi < 0 (1)

in which ai ∈ (1,+∞).
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The Sigmoid activation function is as follows:

f (z) =
1

1 + e−z (2)

The loss function is an important indicator to measure the generalization ability of the
model. We trained this model by calculating the gap between the predicted value and the
true value of the data. The ultimate goal of optimizing the model was to reduce the loss
value as much as possible without fitting. YOLOv5 uses the following GIOU_Loss as the
loss function of the Bounding box.

IoU =
|A ∩ B|
|A ∪ B| (3)

GIoU = IoU − |C\(A ∪ B)|
|C| (4)

GIoU_Loss = 1− GIoU (5)

Among them, A and B are two arbitrary boxes, and C is the smallest closed shape
containing the two boxes A and B.

After calculating the loss value of the model, the next step was to use the loss value
to optimize the model parameters. YOLOv5 uses SGD as the optimization function by
default, but if the training set is small, then Adam (A method for stochastic optimization)
is selected as the optimization function. Adam is a first-order optimization algorithm that
can replace the traditional stochastic gradient descent process. It can iteratively update
neural network weights based on the training data. It requires less memory and is suitable
for solving problems containing very high noise or sparse gradients. The hyper-parameters
can be explained intuitively, and only a small amount of parameter adjustment is required.
Its calculation process is as follows:

Step 1: Initialization Vαw = 0, Sαw = 0, Vαb = 0, Sαb = 0.
Step 2: In the tth iteration, use the mini-batch gradient descent method to calculate dw

and db.
Step 3: Calculate the weighted average of Momentum index.

Vαw = β1Vαw + (1− β1)dw, Vαb = β1Vαb + (1− β1)db (6)

Step 4: Update with RMSprop.

Sαw = β1Sαw + (1− β2)dw2, Sαb = β2Sαb + (1− β2)db (7)

Step 5: Calculate the deviation correction of Momentum and RMSprop.

Vcorrect
dw = Vdw/(1− β1

t), Vcorrect
db = Vdb/(1− β1

t) (8)

Vcorrect
dw = Sdw/(1− β2

t), Scorrect
db = Sdb/(1− β2

t) (9)

Step 6: Update weight.

w = w− α
vcorrect

dw√
scorrect

dw + ε
, b = b− α

vcorrect
db√

scorrect
db + ε

(10)

Among them, α is the learning rate or step size factor that controls the update rate of
the weights. A larger value of α will result in faster initial learning before the learning rate
is updated, and a smaller value of α will make the training converge to better performance.
β1 and β2 are the exponential decay rates of the first and second moment estimates,
respectively. In order to avoid the denominator being 0, ε is a non-zero number.
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4. Results
4.1. Polyp Object Detection

In order to evaluate the performance of the algorithm for detecting polyps, this
paper uses precision, recall, F-score and detection time as four indicators to measure the
performance of the algorithm. The formulas are as follows:

precision =
TP

TP + FP
(11)

recall =
TP

TP + FN
(12)

F− score = 2× precision× recall
precision + recall

(13)

Among them, TP is the number of true positives, that is, the number of correctly de-
tected and labeled polyp instances. FN is the number of false negatives, that is, the number
of polyps that have not been correctly detected. FP is the number of false positives, that
is, the number of polyps that are not polyps. Therefore, precision measures the proportion
of correctly labeled polyps in all pictures predicted to be polyps and recall measures the
proportion of polyps detected in all polyp images. F-Score is the harmonic average of
precision and recall that provides an overall evaluation.

In order to visualize the detection results, Figures 6–9 show the detection effects of
polyps in different data sets.
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Figure 8. (a) A subset of the detection results of multiple target polyps showing low contrasts to the background in
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in WCY data set. The red squares in the figure are the bounding boxes of the polyps.
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4.2. Comparisons with State-of-the-Art Methods

In order to further evaluate the performance of the proposed polyp detection method,
we compared the algorithm proposed in this paper with some classic commonly used
models and analyzed the findings. Among them, CNN, R-CNN and the Faster R-CNN
method use a two-stage framework detection model. They first extract candidate regions of
polyp images and then classify the candidate regions with a deep learning method. Yolov4
is a regression method based on deep learning, which belongs to the detection model of a
one-stage framework. Table 1 shows the evaluation results of different algorithms in the
two data sets.
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Table 1. Performance of polyp detection between different algorithms. In the table, we bold the optimal results obtained by
each index.

Kvasir-SEG Dataset WCY Dataset

Methods Precision Recall F-score Time(s) Precision Recall F-score Time(s)

CNN 0.879 0.871 0.875 1.861 0.908 0.889 0.898 2.176
R-CNN 0.910 0.887 0.898 1.175 0.911 0.892 0.901 1.298
Faster

R-CNN 0.914 0.896 0.905 0.382 0.916 0.897 0.906 0.374

Yolov4 0.883 0.880 0.881 0.032 0.895 0.876 0.885 0.037
Ours 0.915 0.899 0.907 0.028 0.913 0.921 0.917 0.030

5. Discussion

In addition, in the polyp detection process, it may appear that the color of the polyp
and the background picture are similar. For handling this type of polyp pictures, the
experimental results are shown in Figure 8. It can be seen from the figure that in this
category of images, the color of the polyp is close to the background color, and the detection
algorithm in this article can accurately detect it.

Since, in polyp detection, there may be multiple polyps in an image, the algorithm in
this paper also achieved better results in this case. The experimental results are shown in
Figure 9. It can be seen from the figure that the method in this paper can detect polyps of
different sizes in a picture at the same time. Even if multiple polyps of small sizes appear
in a picture, the algorithm can accurately detect them. Therefore, in general, the algorithm
in this paper can achieve a promising performance no matter what type of polyp picture
is used.

As can be seen from Table 1, our method achieved excellent performance on the test set.
In the Kvasir-SEG data set, the precision was 0.915, the recall rate was 0.899 and the F-score
was 0.907. In the WCY data set, the precision was 0.913, the recall was 0.921 and the F-score
was 0.917. Specifically, this method uses full-image information when predicting the target
window using each network, which greatly reduces the false positive rate. Compared with
the one-stage deep learning model YOLO-v4, the overall performance of the F-score on
the two data sets improved by about 0.026 and 0.032, respectively. Compared with the
CNN, the overall performance of the F-score on the two data sets improved by about 0.032
and 0.019, respectively. This is mainly because the resolution of the polyp image is very
large, and there are many small targets in it that need to be detected. If it is directly input
to the detection network, the detection effect is not good enough. Although the precision
of Faster R-CNN algorithm is higher than our method, the recall and F-score are lower than
our method. Because there are multiple polyps in WCY dataset and the contrast between
polyps and background is not strong, the Faster R-CNN algorithm will miss labeling. The
method in this paper adopts the Mosaic data enhancement method at the input end and
performs splicing through random scaling and other methods. This has a better detection
effect on small targets, so the effect is better.

Furthermore, in the fields of polyp detection and cancer detection, we need to improve
the recall rate as much as possible, reduce the false negative rate and avoid missed detection
by ensuring the accuracy rate.

The training and prediction time of the model are other important evaluation criteria
to measure the performance of the algorithm. If the time complexity is too high, it leads to
a long duration of model training and prediction, which cannot quickly verify the idea and
improve the model and cannot achieve fast prediction.

It can be seen from Table 1, the polyp detection process of the R-CNN algorithm
takes a long time, and each photo takes about one second. A series of methods such as
CNN, RCNN, etc., first use the Selective Search algorithm by inputting image attribute
information to generate more reliable candidate regions on different color patches and then
use deep learning. The method of extracting features and classifying these regions can
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solve the problems caused by sliding windows in traditional detection methods. However,
in actual applications, each picture will have two thousand candidate frames. CNN feature
extraction is performed on each candidate frame, and then classification and regression are
performed. The amount of calculation is large, and the feature takes up a large amount of
memory space and overlaps. There will be a lot of repeated calculations in the convolution
operation, and the entire process requires a lot of time. These algorithms cannot meet the
real-time requirements in terms of speed.

Although the running speed of Faster RCNN has been greatly improved in traditional
methods, and it can process three pictures in about one second, Yolo series algorithms
convert the polyp detection problem into a single regression problem of directly extracting
bounding boxes and category probability from images. Yolo-v4 and other regression
methods based on deep learning, using the idea of regression, use the entire image as
the input to the network and directly return the target frame of this position in multiple
positions of the image and the category to which the target belongs, greatly speeding up
the speed of detection.

In contrast, the improved algorithm based on Yolov5 proposed in this paper is closer
to the two-level target detection algorithm in accuracy. In terms of detection time, it only
takes one-tenth of the Faster R-CNN algorithm to complete the detection of a picture, and it
only takes about 30 milliseconds to process a picture. Therefore, YOLOv5 algorithm based
on attention mechanism has a very fast detection speed while ensuring accuracy.

6. Conclusions

At present, artificial intelligence polyp detection technology is still in its infancy.
Compared with traditional statistics or expert systems, deep learning methods usually
improve the performance and detection accuracy of most image target detection. In
response to this problem, this article focuses on the fusion of the attention mechanism and
YOLOv5 for polyp target detection. On the basis of ensuring high detection accuracy, the
detection time was greatly improved, especially for the small targets and the polyp images
with weak contrasts. Therefore, the model designed in this article has a certain degree of
innovation and application value, and also has a certain guiding role for the clinical work
for the endoscopists. However, there are still some challenges in the application of artificial
intelligence in polyp detection. For example, the tagger of polyp image needs to have a
certain medical background, and the cost of obtaining high-quality medical image tagging
is even higher than that of obtaining medical images; there is a large gap in the amount of
data between different lesion types and normal medical images. Establishing an excellent
training data set is very important. In the future, we will carry out further research around
the existing problems.
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