
diagnostics

Article

Prediction of Neoadjuvant Chemotherapy Response in
Osteosarcoma Using Convolutional Neural Network of Tumor
Center 18F-FDG PET Images

Jingyu Kim 1,†, Su Young Jeong 2,†, Byung-Chul Kim 3, Byung-Hyun Byun 3, Ilhan Lim 3, Chang-Bae Kong 4,
Won Seok Song 4, Sang Moo Lim 3 and Sang-Keun Woo 1,3,*

����������
�������

Citation: Kim, J.; Jeong, S.Y.; Kim,

B.-C.; Byun, B.-H.; Lim, I.; Kong,

C.-B.; Song, W.S.; Lim, S.M.; Woo,

S.-K. Prediction of Neoadjuvant

Chemotherapy Response in

Osteosarcoma Using Convolutional

Neural Network of Tumor Center
18F-FDG PET Images. Diagnostics

2021, 11, 1976. https://doi.org/

10.3390/diagnostics11111976

Academic Editor: Hee-Cheol Kim

Received: 31 August 2021

Accepted: 20 October 2021

Published: 25 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Radiological & Medico-Oncological Sciences, University of Science & Technology, Seoul 34113, Korea;
jingyu8754@kirams.re.kr

2 College of Medicine, University of Ulsan, Seoul 05505, Korea; x-ppul@hanmial.net
3 Department of Nuclear Medicine, Korea Institute of Radiology and Medical Sciences, Seoul 01812, Korea;

xikian@kirams.re.kr (B.-C.K.); nmbbh@kirams.re.kr (B.-H.B.); ilhan@kirams.re.kr (I.L.);
smlim328@kirams.re.kr (S.M.L.)

4 Department of Orthopedic Surgery, Korea Institute of Radiology and Medical Sciences, Seoul 01812, Korea;
cbkongmd@gmail.com (C.-B.K.); wssongmd@gmail.com (W.S.S.)

* Correspondence: skwoo@kirams.re.kr
† These authors contributed equally to this work.

Abstract: We compared the accuracy of prediction of the response to neoadjuvant chemotherapy
(NAC) in osteosarcoma patients between machine learning approaches of whole tumor utilizing
fluorine−18fluorodeoxyglucose (18F-FDG) uptake heterogeneity features and a convolutional neural
network of the intratumor image region. In 105 patients with osteosarcoma, 18F-FDG positron
emission tomography/computed tomography (PET/CT) images were acquired before (baseline PET0)
and after NAC (PET1). Patients were divided into responders and non-responders about neoadjuvant
chemotherapy. Quantitative 18F-FDG heterogeneity features were calculated using LIFEX version 4.0.
Receiver operating characteristic (ROC) curve analysis of 18F-FDG uptake heterogeneity features was
used to predict the response to NAC. Machine learning algorithms and 2-dimensional convolutional
neural network (2D CNN) deep learning networks were estimated for predicting NAC response
with the baseline PET0 images of the 105 patients. ML was performed using the entire tumor image.
The accuracy of the 2D CNN prediction model was evaluated using total tumor slices, the center
20 slices, the center 10 slices, and center slice. A total number of 80 patients was used for k-fold
validation by five groups with 16 patients. The CNN network test accuracy estimation was performed
using 25 patients. The areas under the ROC curves (AUCs) for baseline PET maximum standardized
uptake value (SUVmax), total lesion glycolysis (TLG), metabolic tumor volume (MTV), and gray
level size zone matrix (GLSZM) were 0.532, 0.507, 0.510, and 0.626, respectively. The texture features
test accuracy of machine learning by random forest and support vector machine were 0.55 and
0. 54, respectively. The k-fold validation accuracy and validation accuracy were 0.968 ± 0.01 and
0.610 ± 0.04, respectively. The test accuracy of total tumor slices, the center 20 slices, center 10 slices,
and center slices were 0.625, 0.616, 0.628, and 0.760, respectively. The prediction model for NAC
response with baseline PET0 texture features machine learning estimated a poor outcome, but the
2D CNN network using 18F-FDG baseline PET0 images could predict the treatment response before
prior chemotherapy in osteosarcoma. Additionally, using the 2D CNN prediction model using a
tumor center slice of 18F-FDG PET images before NAC can help decide whether to perform NAC to
treat osteosarcoma patients.

Keywords: 18F-FDG heterogeneity; convolutional neural network; chemotherapy response; osteosar-
coma; machine learning
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1. Introduction

Osteosarcoma is the most common primary malignant bone tumor, typically occurring
in the metaphysis of the long bones and occurs mainly between the ages of 15 and 25,
and occurs more frequently in men than in women [1]. For most of the 20th century, the
5-year survival rate of osteosarcoma was as low as 20% [2]. Application of neoadjuvant
chemotherapy (NAC) therapy significantly improves long-term survival in patients with
high-grade osteosarcoma. Recently, the NAC protocol has been included before and after
surgery for osteosarcoma patients [3]. However, NAC for osteosarcoma has a toxicity
and ineffective problem [4–6]. Ineffective chemotherapy can cause drug resistance [7] and
delayed tumor removal surgery can compromise clinical outcomes [8]. Therefore, predict-
ing the histological response to NAC and determining whether to maintain treatment is
important for managing osteosarcoma patients.

Tumor necrosis rate is a criterion for evaluating the chemotherapy response evalua-
tion [9] and has been evaluated as the most important prognostic factor in osteosarcoma [10],
but it has a limitation that was hard to predict before NAC and can be evaluated only in the
resected specimen after completing NAC. To overcome this limitation, the evaluation of the
chemotherapy response for osteosarcoma using computed tomography (CT) [11], magnetic
resonance imaging (MRI) [7,12,13], and 18F-fluoro-2-deoxy-D-glucose positron emission
tomography (18F-FDG PET) [14–16] has been studied. For prediction of the histological re-
sponse to NAC before surgery, assessing the tumor volume changes in sequential MRI was
used [7,12]. However, in these studies, regression and cystic degeneration of the tumor os-
teoid matrix by prior chemotherapy occurred slowly in the responding group. The change
in tumor volume and histological results in MRI before and after prior chemotherapy was
inconsistent. Nuclear medicine imaging using 18F-FDG PET is mainly used to determine
the diagnosis and staging of cancer patients [17]. Standard uptake value (SUV) is a quantifi-
cation factor that can be applied in various ways in various cancers. In addition, metabolic
tumor volume (MTV) and total lesion glycolysis (TLG) are used to diagnose cancer patients
and predict prognosis [18,19]. 18F-FDG PET is a functional imaging method based on
increased glucose usage of malignant cells, so it can detect changes in tissue metabolism
that precede structural changes, so it has been reported to be useful for predicting clinical
outcomes or evaluating chemotherapy responses in osteosarcoma [14,15]. Recent studies
with osteosarcoma patients reported that metabolic tumor volume (MTV) and total lesion
glycolysis (TLG) obtained from 18F-FDG PET after one cycle of chemotherapy can predict
the response of chemotherapy [16,20]. However, in these studies, metabolic tumor volume
(MTV) and total lesion glycolysis (TLG) obtained from 18F-FDG PET prior to chemotherapy
could not predict the response of chemotherapy.

Image texture features from 18F-FDG PET contain information about the cell conditions
or behaviors. Each image texture feature represents the cell volume, cell size, cell surface
texture, glucose uptake, and so on. The prediction models with these image texture
features can predict more accuracy than the prediction model with images without any
pre-analysis [21].

The deep learning techniques have been used to estimate the prediction model with a
DNA sequence promoter binding site and amino acid embedding representation [22,23].
Research results of applying a 2-dimensional convolutional neural network (2D CNN),
one of these deep learning techniques, to MRI images of brain tumor patients have been
published [24,25]. Additionally, a study that predicted the response of prior chemotherapy
in esophageal cancer by applying the deep learning to 18F-FDG PET images has also been
published [26].

In previous studies, it was confirmed that the use of intertumoral heterogeneity factors
(such as MTV and TLG) extracted from 18F-FDG PET images obtained after one cycle of
NAC improves the prognostic performance of NAC in osteosarcoma patients [16,20].
However, these studies did not analyze MTV and TLG, which are heterogeneous factors in
tumors extracted from 18F-FDG PET images obtained before NAC. According to previous
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reports, 18F-FDG tumor heterogeneity holds promise for predicting chemotherapy response
and 2D CNN is a state-of-the-art method for this prediction.

In this study, the NAC prediction model was estimated using image texture features of
18F-FDG PET images from osteosarcoma patients before and after NAC with the machine
learning and deep learning algorithm. The performance of predictive models according
to the intratumor region was estimated with various intratumor regions as input in a 2D
CNN network.

2. Materials and Methods

2.1. 18F-FDG PET/CT

The retrospective study was conducted in a cohort of 81 osteosarcoma patients who
were diagnosed at the Korea Institute of Radiology and Medical Sciences from June 2006
to May 2014. Each 18F-FDG PET image was obtained before and after the first NAC. The
duration of 18F-FDG PET before treatment (baseline PET0) and the onset of the first NAC
was less than two weeks. An 18F-FDG PET image was taken within two to three weeks at
the end of the first NAC (after NAC) [15].

All osteosarcoma patients received NAC (during four weeks) involving a combination
of methotrexate (a dose of 8–12 g/m2), adriamycin (a dose of 60 mg/m2), and cisplatin (a
dose of 100 mg/m2) at intervals of three weeks. The surgery was performed three weeks
after the end of the second NAC [15]. The NAC response was evaluated based on the tumor
by a pathologist. Tumor necrosis percentages of Grades III and IV (necrosis of 90% or more)
indicated a good response, and Grades I and II (less than 90% necrosis) indicated a poor
response [9]. A total of 105 osteosarcoma patients were classified as responders (n = 47)
and non-responders (n = 58). The detailed research subject information is presented in
Table 1.

Table 1. Information on training and validation subjects with osteosarcoma who responded to
neoadjuvant chemotherapy.

Characteristics Value

Sex, n (%)
Female 30 (29.50%)
Male 75 (70.50%)

Age, n (%)
years ≤ 19 80 (77.14%)
years >19 25 (22.86%)

Location of primary tumor, n (%)
Femur 59 (56.19%)
Tibia 35 (33.33%)

Fibula 5 (4.76%)
Humerus 4 (3.80%)

Pelvis 2 (1.92%)

AJCC stage, n (%)
IIA 37 (35.23%)
IIB 64 (60.95%)
III 2 (1.91%)
IV 2 (1.91%)

Pathologic subtype, n (%)
OB (Osteoblastic) 78 (74.28%)

CB (Chondroblastic) 13 (12.38%)
FB (Fibroblastic) 7 (6.67%)

Others 7 (6.67%)

Histologic response, n (%)
Responder 47 (45.76%)

Non-responder 58 (54.24%)
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For each patient, a 18F-FDG PET/CT scan was acquired before NAC and after NAC
using a Biograph 6 PET/CT scanner (Siemens Medical Solutions, Erlangen, Germany).
PET scan was performed at 3.5 min/frame in the 3-dimensional (3D) model, 60 min after
7.4 MBq/kg 18F-FDG was injected intravenously. PET/CT images were reconstructed us-
ing CT for attenuation correction (field-of-view, 680 m × 680 m; voxel size, 4 m × 4 m × 3 m)
and 3D ordered subset expectation maximization algorithms. The information on image
texture features is presented in Table 2.

Table 2. Index of textural features in global, local, and regional areas.

Feature Family Features

Intensity histogram

SUVmax
SUVmean

Standard deviation (SUV_SD)
Total lesion glycolysis (TLG)

Metabolic tumor volume (MTV)
1st entropy

Gray level co-occurrence matrix (GLCM)

Energy
Contrast
Entropy

Homogeneity
Dissimilarity

Neighboring gray level dependence matrix
(NGLDM)

Contrast
Coarseness
Busyness

SNE (Small number emphasis)

Gray level run length matrix (GLRLM)

SRE (Short run emphasis)
LRE (Long run emphasis)

GLNU (Gray level non-uniformity)
RLNU (Run length non-uniformity)

SRLGE (Low gray level run emphasis)
SGHGE (High gray level run emphasis)

Gray level size zone matrix (GLSZM)

SAE (Small zone emphasis)
LAE (Large zone emphasis)

GLN (Gray level non-uniformity)
SZN (Zone size non-uniformity)

LGLZE (Low gray level zone emphasis)
HGLZE (High gray level zone emphasis)

2.2. Quantitative Analysis of 18F-FDG Uptake Heterogeneity

The 18F-FDG uptake heterogeneity features were calculated using the Local Image
Features Extraction (LIFEx) version 4.0 software package [27]. To include all tumor regions
in the 18F-FDG PET, we defined the region growing method based on SUV ≥1.5 [28].

We computed the quantitative texture features (i.e., gray-level co-occurrence matrix,
gray level run-length matrix, gray-level neighborhood intensity-difference matrix, and
gray level size-zone matrix) to investigate the 18F-FDG heterogeneity within the tumor.
Additionally, we calculated the conventional 18F-FDG features (i.e., the SUVmax, MTV, and
TLG). Quantitative texture features and conventional 18F-FDG features were calculated
using LIFEx.

Random forest and support vector machine (SVM) algorithms were used to classify
the treatment response of osteosarcoma patients. To achieve this goal, the ratio of machine
learning training data to test data was set as 7:3. Cross-validation was performed 10 times
to increase the statistical reliability of the performance measurements.
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2.3. Convolutional Neural Network

A 2D CNN assumes that the inputs have a geometric relationship such as rows and
columns in images [23]. PyTorch 1.9.0+cu102 was used for deep learning and the whole
scripts were written in Python 3.8.6. The input layer of the 2D CNN produces a convolution
of a small image, known as a feature map. The feature map is generated by a filter that is
moved across the input image. From this feature map, values are extracted and used as
input for the pooling layer. In this study, we designed the 2D CNN as shown in Figure 1.

Figure 1. The 18F-FDG 2D CNN model for predicting the response to neoadjuvant chemotherapy. The 2D CNN model
consisted of two convolution layers and two fully connected layers.

The 2D CNN worked in 2D convolutional layers with numerous slices of tumor
volume in the 18F-FDG PET images. The convolutional layer filter size was 5 × 5, and the
numbers of filters were 32 in both the first and second convolutional layers as well as in the
max-pooling method, using a 2 × 2 filter in the pooling layer. In the activation function, we
used the rectifier linear unit (ReLu); we calculated the loss based on softmax, cross-entropy
and used adaptive moment estimation (Adam) for loss optimization. To avoid overfitting
with the training dataset, we implemented the dropout technique after both the first and
second fully connected layers [29].

To evaluate the accuracy of the 2D CNN prediction model, slides from the tumor
were used. Eighty patients for k-fold validation were separated into five groups, each
group containing 16 patients, and consisting of the training and validation set. Four groups
were used for training and one group was used for the validation test dataset. The k-fold
cross-validation was performed five times with the group of separated patients. A total
of 640 slices from 64 patients (10 slices from tumor center, 64 patients from four groups)
were used for the training set and 160 slices from 16 patients (10 slices from tumor center)
were used for the validation set. Deep learning test processing consisted of 640 slices of
the training dataset from 10 slices of 64 patients, and we added 25 slices of the test dataset
from center 10 slices and center slice.

2.4. Statistical Analysis

Significant quantitative features of 18F-FDG homogeneity for the prediction of the
NAC response were assessed using receiver operating characteristic (ROC) curve analysis
with 95% confidence intervals (95% CIs). Statistical significance was confirmed using
logistic regression analysis, with p-values < 0.05. To compare the AUCs between the 2D
CNN and 18F-FDG heterogeneity, we performed independent t-tests. All statistical analysis
was performed in MedCalc version 18.6 (MedCalc Software bvba, Mariakerke, Belgium).

3. Results

3.1. 18F-FDG Quantitative Analysis
18F-FDG PET images of the responder and non-responder are shown in Figure 2. Based

on quantitative feature analysis, PET1 features had a higher ROC-AUC value loss optimizer
than the baseline PET0 (Table 3). The highest AUC for 18F-FDG uptake heterogeneity in
baseline PET0 was obtained using the gray level size zone matrix (GLSZM), a feature
reflecting the intensity size zone matrix in 18F-FDG PET images. The highest AUC in PET1
was obtained for the standardization of SUV (SUV_SD).
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Figure 2. Representative 18F-FDG PET image of osteosarcoma in a responder and non-responder to
neoadjuvant chemotherapy. Responder had SUVmax values of 11.33 and 4.43 at baseline PET0 and
after neoadjuvant chemotherapy (PET1), respectively. Non-responder had SUVmax values of 5.62
and 3.21 at baseline PET0 and after neoadjuvant chemotherapy (PET1), respectively.

Table 3. Random forest and support vector machine accuracy performed on total image texture
features from 105 osteosarcoma patients in baseline PET0.

Chemotherapy Response Random Forest Support Vector Machine

Sensitivity 0.53 0.75
Specificity 0.61 0.83
Precision 0.54 0.57

Dice coefficient 0.49 0.48
AUC 0.55 0.52

Accuracy 0.55 0.54

3.2. Quantitative 18F-FDG Heterogeneity Features

Forty-seven features in the T-SNE plot of 105 patients in Figure 3 are shown for
the identification of the distribution of non-responder/responder osteosarcoma patients.
The accuracy of the prediction model with random forest and support vector machine
was calculated using the total image texture features. The ROC-AUC values of baseline
PET0 maximum standardized uptake value (SUVmax), total lesion glycolysis (TLG), and
metabolic tumor volume (Volume) were 0.532 (p-value: 0.622), 0.507 (p-value: 0.918), and
0.510 (p-value: 0.881), respectively (Table 4). Analysis of baseline PET0 18F-FDG uptake
heterogeneity features yielded a ROC-AUC for GLSZM of 0.626 (p-value: 0.045) (Figure 4).

The ROC-AUC values of PET1 SUVmax, TLG, and Volume were 0.793, 0.764, and
0.741, respectively (Table 4). These values were significantly different between responders
and non-responders (all p-values < 0.001). Analysis of PET1 18F-FDG uptake heterogeneity
features demonstrated a ROC-AUC for GLSZM of 0.741 (p-value: < 0.001) (Figure 5).
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Figure 3. T-SNE plot using image texture features of osteosarcoma patients. In the plot, 0 represents
the chemotherapy non-responder and 1 represents the chemotherapy responder.

Table 4. The area under the receiver operating characteristic curve for 18F-FDG uptake hetero-
geneity features.

Features Discrimination
Baseline PET0 PET1

AUC p-Value AUC p-Value

SUV_max Intensity 0.532 0.622 0.793 <0.001
SUV_SD Intensity 0.505 0.940 0.802 <0.001

TLG Intensity 0.507 0.918 0.764 <0.001
Volume Shape 0.510 0.881 0.741 <0.001

GLRLM_SGHGE Voxel-alignment 0.614 0.073 0.766 <0.001

NGLDM_SNE Neighborhood
intensity difference 0.548 0.462 0.757 <0.001

GLSZM_HGLZE Intensity size zone 0.626 0.045 0.741 <0.001

GLCM_entropy Normalized
Co-occurrence matrix 0.588 0.165 0.744 <0.001

SUVmax, maximum standardized uptake value; TLG, total lesion glycolysis; MTV, metabolic tumor volume;
GLRLM_SGHGE, Gray level run length matrix_High gray level run emphasis; NGLDM_SNE, Neighboring gray
level dependence matrix_Small number emphasis; GLSZM_HGLZE, Gray level size zone matrix_High gray
level zone emphasis; GLCM_entropy, Gray-level co-occurrence matrix_Entropy; AUC, area under the receiver
operating characteristic curve.

The sensitivity, specificity, AUC, train accuracy, and test accuracy of the prediction for
chemotherapy response in Table 3 were calculated using the random forest algorithm and
the SVM algorithm. The random forest algorithm prediction and support vector machine
for test accuracy using a total of 47 text features were 0.55 and 0.54, respectively.

3.3. Predictive Accuracies of 18F-FDG PET 2D CNN

As shown in Figure 6, after dimension reduction, the fully connected layers were
separated into two classes. In the two cases, the classes were clearly separated. We obtained
a relatively high precision rate for the chemotherapy response.

The training set accuracy of fold1, fold2, fold3, fold4, and fold5 in k-fold validation
was 0.968 ± 0.01. The test validation set accuracy was 0.610 ± 0.03. The loss function and
train/test accuracy graph in k-fold validation were estimated by each step. The results of
the test set accuracy for the neoadjuvant chemotherapy response prediction deep learning
model are presented in Table 5. The training accuracy of total tumor slices, the center
20 slices, center 10 slices, and center slices were 0.984, 0.983, 0.966, and 0.988, respectively.
The validation accuracy of training accuracy of total tumor slices, the center 20 slices, center
10 slices, and center slices were 0.625, 0.616, 0.628, and 0.760, respectively. The loss function
and train/test accuracy graph in the test set were estimated.
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Figure 4. Area under the receiver operating characteristic curves (AUC) for 18F-FDG heterogeneity
features in baseline PET0. Conventional parameters (i.e., maximum standardized uptake value
(SUVmax), total lesion glycolysis (TLG), and metabolic tumor volume (MTV)), cannot predict the
response to neoadjuvant chemotherapy before treatment. In contrast, the 18F-FDG intensity size zone
feature (gray-level size zone matrix: GLSZM) heterogeneity can predict this response.

Figure 5. Area under the receiver operating characteristic curves (AUC) for 18F-FDG heterogene-
ity features in PET1. Maximum standardized uptake value (SUVmax), total lesion glycolysis
(TLG), and metabolic tumor volume (MTV) as well as 18F-FDG uptake heterogeneity features
such as image voxel alignment heterogeneity (GLRIM_HGHGE), image neighborhood intensity
difference (NGLDM_SNE), and image intensity size zone (GLSZM) can predict the response to
neoadjuvant chemotherapy.
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Figure 6. Deep features T-SNE plot using patients of osteosarcoma baseline PET0. In the plot,
0 represents the chemotherapy non-responder and 1 represents the chemotherapy responder.

Table 5. The accuracy of test set for neoadjuvant chemotherapy response prediction deep
learning model.

2D CNN Total Tumor Slices Center 20 Slices Center 10 Slices Center Slice

Train accuracy 0.984 0.983 0.966 0.988
Test accuracy 0.625 0.616 0.628 0.76

4. Discussion

In this study, we investigated and validated the accuracy of using a 2D CNN trained on
18F-FDG data or using FDG uptake heterogeneity features for predicting response to NAC. Be-
fore NAC, only GLSZM (AUC = 0.626, sensitivity = 0.579, specificity = 0.721, p-value = 0.045),
an 18F-FDG uptake heterogeneity feature reflecting the image intensity size zone, could pre-
dict the NAC response, while SUVmax (AUC = 0.532, sensitivity = 0.842, specificity = 0.302,
p-value = 0.622), TLG (AUC = 0.507, sensitivity = 0.763, specificity = 0.395, p-value = 0.918),
and MTV (AUC = 0.510, sensitivity = 0.816, specificity = 0.349, p-value = 0.881) could not;
this prediction result is similar to the results of previous studies [16,20]. 18F-FDG PET
heterogeneity features of data collected after NAC could predict the chemotherapy re-
sponse (see Tables 3 and 4). Likewise, the 2D CNN had good predictive accuracy before
NAC (AUC = 0.920, sensitivity = 0.965, specificity = 0.881), which increased after NAC
(AUC = 0.955, sensitivity = 0.983, specificity = 0.927). There were no statistically significant
differences in the predictive accuracies of the 18F-FDG PET 2D CNN before and after NAC
(p-value = 0.158). Since the accuracy of using a 2D CNN trained on 18F-FDG data for
predicting a response to NAC was much better than the accuracy of using FDG uptake
heterogeneity features, we verified these results using validation data from 25 patients.

Recently, machine learning and deep learning techniques have been applied to pattern
recognition in medical images [30]. With the development of computer hardware and the
growth in medical imaging data, the application of deep learning technology for computer-
aided diagnosis (CAD) in medical imaging has recently been a popular research topic. This
technique uses deep artificial neural networks to learn the image shape patterns of the
objects of interest based on a large training dataset. Deep learning has a better performance
than existing machine learning methods in object detection and classification. In addition,
the use of deep learning is increasingly being used for medical image analysis [31].

Machine learning and deep learning techniques have been applied in various studies
by developing technologies of machine learning and deep learning. Deep learning ap-
proaches have most commonly been applied in MR studies [32]. This preliminary study had
several important findings. A total of 47 image features were extracted from the 18F-FDG
PET/CT images. Imaging features related to the chemotherapy response were identified
using the AUC value. The AUC values of all the image texture features were similar to
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about 0.5. The test accuracy of the prediction model using the total image texture features
and random forest and support vector machine was similar at 0.55 and 0.54, respectively.
A t-SNE plot analysis was performed to identify the distribution of image texture features
and images from patients. As a result, it was determined that the prediction model using
the AUC of image texture features, machine learning model, and t-SNE plot could not
distinguish between the responders and non-responders.

18F-FDG heterogeneity features, gray-level co-occurrence matrix, gray-level run-length
matrix, gray level neighborhood intensity-difference matrix, gray level size zone matrix as
well as intensity features were calculated using Lifex software [20,32]. This quantitative
analysis method was used in a previous study to predict the NAC response in breast
cancer patients [33,34], and survival in oropharyngeal cancer [35] and pancreatic ductal
adenocarcinoma patients [36].

Previous studies have reported that a 2D CNN based on 18F-FDG had a higher
accuracy for predicting response, but did not compare this predicting response with the
accuracy of using FDG heterogeneity features [26,37], which made it difficult to understand
the source of the increased accuracy obtained using the 2D CNN. Cheng et al. showed that
the diagnosis prediction model with 18F-FDG PET/CT image texture features from lung
cancer was 0.87–0.92 with AUC as a classical method and 0.91 with the CNN model [35] and
Ypsilantis et al. showed the accuracy of predicting response to neoadjuvant chemotherapy
with PET image texture features from esophageal cancer was 73.4 ± 5.3 with 3S-CNN and
66.4 ± 5.9 with 1S-CNN [24,26].

Another previous study visually represented the convolutional layers of the feature
map in a 2D CNN. This 2D CNN revealed that the first convolutional layer extracted edge
and blob features, which are relatively simple image features. The second convolutional
layer extracted the related texture features [38–40].

Based on the convolutional layer characteristics, we assessed the correlation between
the accuracy of using a 2D CNN and that of using 18F-FDG heterogeneity features. We
found that the NAC prediction accuracy of the 2D CNN model depended on the AUCs
of the intensity and heterogeneity features; the change in accuracy for baseline PET0 and
PET1 was 1.47- and 1.29-fold, respectively. According to the ROC curve analysis, the
sensitivity of the 2D CNN model, before and after NAC, did not significantly change (0.965
to 0.983). However, the specificity significantly changed from 0.881 to 0.927. This is because
it is possible to predict the non-response to response more accurately after observing the
effect of NAC. The prediction model using 2D CNN showed a more accurate result in
the prediction model to predict responders and non-responders, although the prediction
model using machine learning and AUC showed poor prediction results.

The predictive accuracy of the 2D CNN was affected by its deep learning architecture.
Before training the 2D CNN, we optimized the 2D CNN architecture using the grid-
search technique [39]. Based on the optimized 2D CNN architecture, we confirmed two
convolutional layers with a 5 × 5 filter. Consequently, the 2D CNN architecture included
two convolutional and two fully connected layers, which were similar to a previously
reported 18F-FDG PET 2D CNN architecture [26]. In this study, we performed the k-fold
cross-validation and included a dropout layer in the 2D CNN model to avoid overfitting
the training data; this approach is widely used in applied deep learning techniques [41].

It was identified that the accuracy was higher using 10 center slices than a single-center
slice by comparing the accuracy of the 2D CNN prediction model using 10 center slices
and a single-center slice obtained from tumors. The accuracy of 10 slices and single slice
were 0.628 and 0.760, respectively. In this study, the 2D CNN predictive model using a
single slice was higher than that of 10 slices, but was not completely reliable due to the
small size of the patient group in the experiment. In the future, it is necessary to study the
relationship between the number of tumor slices and the accuracy of the predictive model
by analyzing tumors obtained from more patients.

It is difficult to apply this to clinical practice because many patients are required for an
accurate deep learning prediction model, although the test accuracy of the deep learning
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prediction model is high. Applying gene expression factors to machine learning predictive
models can yield higher test accuracy. Radiogenomics is a field of study that explores and
uses the relationship between nuclear image analysis and gene expression. In many studies,
the relationship between gene expression and image texture features has been found using
radiogenomics techniques, and predictive models were estimated. If the radiogenomics
technique is applied to the predictive model to discriminate chemotherapy responders,
improved test accuracy could be obtained.

This study had some limitations. First, only patients who met the criteria were selected
from the cohort of consecutively treated patients and retrospectively analyzed. Second, data
from a small group of patients collected from one institution were analyzed for this study.
To achieve reliability of the results, multi-center cross-validation should be performed
using large patient datasets from various institutions.

5. Conclusions

The prediction model using the machine learning algorithm has been used to estimate
poor outcome for NAC in osteosarcoma, but the 2D CNN prediction model using 18F-
FDG PET images before NAC can predict the treatment response prior to chemotherapy
in osteosarcoma. Additionally, the performance of a prediction model evaluation was
different depending on the intratumor region applied to the 2D CNN network. The 2D
CNN prediction model using tumor center 18F-FDG PET images before NAC can be helpful
in deciding whether to perform NAC in the treatment of osteosarcoma patients.
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