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Abstract: In recent years, with the gradual development of medicine and deep learning, many
technologies have been developed. In the field of beauty services or medicine, it is particularly
important to judge the degree of hair damage. Because people in modern society pay more attention
to their own dressing and makeup, changes in the shape of their hair have become more frequent, e.g.,
owing to a perm or dyeing. Thus, the hair is severely damaged through this process. Because hair
is relatively thin, a quick determination of the degree of damage has also become a major problem.
Currently, there are three specific methods for this purpose. In the first method, professionals engaged
in the beauty service industry make a direct judgement with the naked eye. The second way is to
observe the damaged cuticle layers of the hair using a microscope, and then make a judgment. The
third approach is to conduct experimental tests using physical and chemical methods. However,
all of these methods entail certain limitations, inconveniences, and a high complexity and time
consumption. Therefore, our proposed method is to use scanning electron microscope to collect
various hair sample images, combined with deep learning to identify and judge the degree of hair
damage. This method will be used for hair quality diagnosis. Experiment on the data set we made,
compared with the experimental results of other lightweight networks, our method showed the
highest accuracy rate of 94.8%.

Keywords: hair damage; image classification; deep learning; damaged cuticle layers; SEM image

1. Introduction

Hair quality inspection and damage determination in beauty salons rely only on
the judgment of professionals such as beauticians, which is mostly based on the tactile
experience of beauticians and observations with the naked eye. However, in the absence
of excessive professional experience, errors can occur when judging the quality of the
hair. The current methods of judging hair damage are to determine the hair damage by
detecting the moisture content, cystine content, coagulation, and/or relaxation; apply a dye
absorption method, the alkali solubility, copper absorption method, or lithium bromide
method [1]; or consider the absorbance and tensile strength. Ref. [2] Using these methods,
we need to test the composition of many aspects in a chemical or physical experiment.
Compared with our proposed method, this type of chemical and physical method for
detecting hair is complicated and time-consuming. Therefore, we need a faster and simpler
approach to determine the degree of hair damage. This method will be applied to portable
devices in the future, and everyone can easily judge the degree of damage to one’s hair
anytime and anywhere, and then decide whether to receive a perm, dye, or other beauty
services. To better observe cuticle layers in the hair, we used a scanning electron microscope
(SEM) and observed it at ×800. Thus, according to the form of cuticle layers (Figure 1),
damaged cuticle layers (the white part) accounts for the proportion of hair. We define a
lifting up of the cuticle edge and an irregular overlay of cuticles without cracks or holes as
weak damage; cracks or holes due to severe lifting up of cuticle layers as damage; exposure

Diagnostics 2021, 11, 1831. https://doi.org/10.3390/diagnostics11101831 https://www.mdpi.com/journal/diagnostics

https://www.mdpi.com/journal/diagnostics
https://www.mdpi.com
https://orcid.org/0000-0001-9566-9951
https://orcid.org/0000-0003-0184-7599
https://doi.org/10.3390/diagnostics11101831
https://doi.org/10.3390/diagnostics11101831
https://doi.org/10.3390/diagnostics11101831
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/diagnostics11101831
https://www.mdpi.com/journal/diagnostics
https://www.mdpi.com/article/10.3390/diagnostics11101831?type=check_update&version=3


Diagnostics 2021, 11, 1831 2 of 12

of cortical cells and complete disappearance of cuticles as high damage. Regarding the
analysis of the SEM image, the segmentation method was developed using the watershed
segmentation algorithm, the global–local threshold method, Laplacian of Gaussian filter,
and non-maximum suppression in [3].
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Figure 1. Image of degree of hair damage under SEM microscope ×800; from left to right: damage,
high damage, and weak damage. The bottom image shows damaged cuticle layers.

We, therefore, judged that the degree of hair damage directly seen in the hair images
was too simple to understand. Thus, we need to recognize and judge the degree of
hair damage in the hair images obtained through observations under a microscope. In
this study, we combine deep learning image classification technology for recognition
and classification.

The main contributions of this study through the use of a lightweight Convolutional
Neural Network (CNN) [4] are as follows:

• Decreases the number of free parameters.
• Achieves a high classification accuracy using small datasets.
• Reduces the training time required for convergence.
• Decreases the complexity of the network, thus, enabling mobile applications.

Establishes a future research direction that will extend the applicability of the method
to digital microscopy devices (for example:SVBONY SM401 Microscope Wireless Digital
Microscope 50×–1000×).

Weak damage
Damage
High damage
Damaged cuticle layers

2. Materials and Methods
2.1. Datasets of SEM Images (DHI Dataset)

For deep learning, it is important to choose a dataset. To identify and judge the
degree of hair damage, we need to identify and classify cuticle layers in the hair images.
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However, according to our investigation, there are very few datasets on microscopic images
of hair that clearly show the cuticle layers. For this reason, we collected and produced
a dataset directly, called the damage hair image (DHI) dataset, as shown (Figure 2). The
DHI dataset was collected through our own observation using SEM. During the process
of data collection, we collected various hair samples for observation and image collection.
The dataset contains hair samples from young to old people, from 19 to 55 years old, as
well as perm and non-perm processed hair samples. Using distance from the scalp less
than 1 cm, from 3 to 5 cm, and over 5 cm, we sectioned the upper, middle, and lower parts
of the hair to be hair image data sample (from the root to the tip), and then contrasted
and observed them under SEM. After the observation, the cuticle layers in the sample
were arranged in an orderly manner. A small amount of the middle part of the cuticle
layers is generally missing, whereas the cuticle layers in the lower part is largely missing,
and in some areas is completely gone. However, the perm hair samples were irregularly
distributed, and cuticle layers were shown to be shedding from the center. After a long
period of time, we collected images through SEM, and then analyzed and organized them.
The final sample data images of minor, moderate, and severe injuries numbered 286 in total.
However, this number of datasets is still too low for deep learning. Therefore, we applied
data expansion technology [5] including rotation, blur, and a noise increase to expand the
dataset to 2900 images. The original image resolution was 640 × 480, and to make the data
training of the neural network faster and more convenient, the resolution was adjusted
to 224 × 224.
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parts, (c) is the data collected on scanning electron microscope, (d) is the SEM image of hair, (e) is the many SEM hair images
made into a DHI dataset.



Diagnostics 2021, 11, 1831 4 of 12

2.2. Methodology
2.2.1. Convolutional Neural Networks

A convolutional neural network (CNN) is a type of feedforward neural network
that includes convolution calculations and has a deep structure and is a representative
deep learning algorithm [6]. CNNs have representation learning capabilities and can
classify input information according to their structure, and in recent years, recognition
and classification networks in deep learning have become increasingly mature, including
MobileNet, Googlenet, and VggNet. These networks have demonstrated a high accuracy
in the recognition and classification of animals, plants, faces, and other fields. However,
we need a small network for experimentation, which can be applied to mobile phones or
portable devices in the future, and because our dataset is small, it is prone to a poor training
and easy overfitting on large networks. We, therefore, need a smaller model than a VGG or
ResNet. For greater accuracy in the classification and recognition results of hair damage,
we propose a network suitable for hair classification, i.e., Hair-Diagnosis-Mobilenet (HDM-
NET). In addition, we use HDM-NET to extract and select the features, and finally use an
SVM [7] to classify hair damage images (Figure 3). In this study, we used an SVM for a
single experiment and HDM-NET combined with multilayer perceptron (MLP) [8], random
forest (RF) [9], k-nearest neighbor (KNN) [10], and the original MobileNet model combined
with the classification methods to conduct multi-group control experiments. Finally, we
discuss the advantages and disadvantages of the proposed method.
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2.2.2. Select Features

When the feature vector is generated from the image information, we choose the
attributes. The significance of this choice is to eliminate unnecessary features when ana-
lyzing the image, and then reduce the computational complexity, thereby optimizing the
prediction model, obtaining better results.According to [11], attribute selection technology
is mainly used to identify basic information. Herein, we use the gain ratio [12] algorithm
for selection. When calculating the information gain, entropy is used to measure the com-
plexity and decision trees [13] to observe the vector attributes. In this way, the information
gain is improved. It, therefore, provides a higher accuracy when spanning the tree. The
dataset (D) consists of data samples with different categories (T). Equation (1) presents the
classification calculation information for a given sample.

Inca(D) = −
t

∑
i=1

pi log2(pi) (1)
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where pi is the probability of that the sample belongs to class Ci. The entropy calculation of
a given attribute At having ν values is shown in Equation (2),

Entropy(At) = −
t

∑
i=1

Inca(D)
S1i + S2i + . . . + Sti

s
(2)

where Dij represents the number of samples belonging to class Ci of subset Di. The attribute
gain At is represented through Equation (3):

Gain(At) = Inca(D)− Entropy(At) (3)

Equation (4) presents the information value generated by dividing the dataset of D
into ν partitions:

SInca(D) = −
v

∑
i=1

(
|Si|
|S|

)
log2

(
|Si|
|S|

)
(4)

Finally, the gain ratio is defined as the result of dividing the solution into Equation (3)
by solving Equation (4). The attributes are ranked according to the values of their gain
ratios, and n attributes with highest values are selected.

2.2.3. MobileNet

We selected and improved MobileNet [14], which can be used in mobile devices and
small microscopes or mobile cameras to obtain and diagnose hair images. MobileNet
is based on depthwise separable convolutions, which consist of two core layers: depth-
wise [15] and pointwise [16] convolutions. A depthwise convolution is the step of filtering
the input without creating new features. Thus, the process of generating new features,
called a pointwise convolution, was also applied. Finally, the combination of the two layers
is called a depthwise separable convolution. This model uses depthwise convolutions to
apply a single filter for each channel of input, and then uses a 1× 1 convolution (pointwise)
to create a linear combination of output from the depthwise layer. Batch normalization
(BN) [17,18] and a rectified linear unit (ReLU) [19,20] were used after each convolution.
(Figure 4) shows the architecture of MobileNet, which consists of a convolution layer, a
depthwise convolution layer followed by a BN layer and an ReLU layer, a pointwise convo-
lution layer, a BN and ReLU layer, a global average pooling layer, a reshape layer, a dropout
layer, a convolutional layer, a softmax layer, and a reshape layer. This model contains
approximately four million parameters, which is a much smaller number than those of the
other models. The structure of MobileNet (depthwise + pointwise convolutions).
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2.2.4. Hair-Diagnosis Mobilenet (HDM-NET)

Because our dataset is relatively small, when testing the original MobileNet model,
the classification results were unsatisfactory. Therefore, we made some improvements
based on the MobileNet model. We removed three layers from the five layers of depthwise
convolution in MobileNet. The purpose here was to reduce the redundant parameters of
the model with almost no effect on the results. We then changed the final average pooling
to global pooling [21] and added batch normalization. Relu will cause some neurons to
output a 0, resulting in a sparsity of the network, reducing the interdependence between
parameters, and alleviating the occurrence of an overfitting. We, therefore, used Relu.
Finally, the output [22,23] applies an SVM (Figure 5). After such changes, this model
achieved good results in our DHI dataset. Because there is no new structure, the number
of parameter calculations of the improved model [24] is slightly lower than that of the
original MobileNet model. A standard convolutional layer inputs the feature map F of
DF × DF ×M, and obtains an output feature map G of DG × DG ×N, where DF represents
the width and height of the input feature map, M is the number of input channels (input
depth), DG is the width and height of the output feature map, N is the number of output
channels (output depth), and K is the size of the depth convolution kernel. The table
of parameters distributed in HDM-NET with classifier is (Table 1). The expression is
as follows:
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Table 1. Parameters distributed in HDM-NET with classifiers (SVM), dw means depthwise.

Layer Type Stride Kernel Feature Map

Conv. Layer 2 3 × 3 3 × 32
Depthwise Conv. 1 3 × 3 32 dw

Conv. Layer 1 1 × 1 32 × 64
Depthwise Conv. 2 3 × 3 64 dw

Conv. Layer 1 1 × 1 64 × 128
Depthwise Conv. 1 3 × 3 128 dw

Conv. Layer 1 1 × 1 128 × 128
Depthwise Conv. 2 3 × 3 128 dw

Conv. Layer 1 1 × 1 128 × 256
Depthwise Conv. 1 3 × 3 256 dw

Conv. Layer 1 1 × 1 256 × 256
Depthwise Conv. 2 3 × 3 256 dw

Conv. Layer 1 1 × 1 256 × 512
2×Depthwise 1 3 × 3 512 dw

2×Conv. Layer 1 1 × 1 512 × 512
Depthwise Conv. 2 3 × 3 512 dw

Conv. Layer 1 1 × 1 512 × 1024
Depthwise Conv. 1 3 × 3 1024 dw

Conv. Layer 1 1 × 1 1024 × 1024
Global AvgPool 1 7×7 1024 × 1024

BN — — 1024 × 1024
ReLU — — 1024 × 1024

Classifier (SVM) — — 3

Depthwise convolutional parameters,

DK × DK ×M× DF × DF. (5)

Pointwise convolutional parameters,

M× N × DF × DF. (6)

Thus, all parameters are expressed as follows:

PT = DK × DK ×M× DF × DF + M× N × DF × DF. (7)

3. Experiment Results

In the classification process, the most commonly used classifiers are SVM, multilayer
perceptron (MLP), random forest (RF), K-nearest neighbors (KNN), radial basis function
network (RBFN) [25], and Naive Bayes (NB) [26]. During the experiment, we conducted
multiple sets of controlled trials. The four groups of experiments were compared and veri-
fied using the HDM-NET and SVM, HDM-NET and MLP, HDM-NET and RF, HDM-NET
and KNN, MobileNet and SVM, MobileNet and MLP, MobileNet and RF, and MobileNet
and KNN classification process. Compared to performance and accuracy of the HDM-
NET+SVM architecture.

For training, we used the Adam optimizer with a batch size of eight images, and a
learning rate of 0.001 [27]. Because the image sizes collected in the original dataset are
all 640 × 480, the optimizer will be slow during training and often lack video memory.
Thus, the image is uniformly reduced to a pixel resolution of 224 × 224 and filled with
zeros to maintain the original aspect ratio. A minimal data enhancement process was
applied in the form of sample image rotation and rescaling. Apart from the standard pixel
normalization of between zero and 1, no further preprocessing steps were applied to the
input image. For experimental implementation, we used the Keras API in the Python3.6
TensorFlow2.1 framework. The training was conducted on an NVIDIA GeForce GTX
1660ti GPU equipped with 1536 CUDA cores, 6 GB of RAM, and a base clock speed of
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1455 MHz. The comparative classification performance results shown in (Figure 6) show
that, after testing on the same dataset DHI, the accuracy of HDM-NET is increased by
2.1% compared with the traditional CNN network. In particular, using our HDM-NET
for feature extraction, combined with SVM, RF, MLP, and other methods for hair feature
extraction and classification, the accuracy of the combined classification methods, such as
Mobilenetv1, is generally higher. In many of the experiments, with HDM-NET combined
with SVM, the final classification accuracy rate was the highest, reaching up to 94.8%.
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Herein, we only used MobileNet and HDM-NET to complete the experiment. In addi-
tion, we did not use other CNN models for the experiments because such models (Table 2),
such as VGG16 and GoogleNet, despite obtaining a high accuracy, have excessively large
parameters for operation on mobile devices. Moreover, a small microscope was applied.
The proposed model was improved and optimized on the basis of MobilenetV1, and, thus,
we only conducted experiments for MobileNetV1 and HDM-NET. The proposed model has
the least number of parameters, and its accuracy is slightly higher than that of the original
MobileNet model. Because the MobileNet model has an ultra-small network framework,
the classification accuracy is lower than that of the general CNN model. Our improved
model based on MobileNet (HDM-NET) is far lower in accuracy than large-parameter mod-
els such as VGG16 (Table 3); however, compared with small networks such as MobileNet,
our model has better classification results. Moreover, the parameters of the proposed model
are small, and, thus, it is easier to directly complete the classification of hair damage images
on a mobile microscope. We also used the HDM-NET and other models to complete the
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experiment (Table 4). We also tested and drew a conclusion of how long it took when one
network was trained and when it had finished detecting certain images (Table 5).

Table 2. Results of MobileNetV1 and HDM-NET on DHI datasets.

Model Classifiers Accuracy (%)

MobileNetV1 (Softmax) 85.3
MobileNetV1 SVM 92.6
MobileNetV1 RF 91.9
MobileNetV1 MLP 90.5
MobileNetV1 KNN 89.8

HDM-NET(ours) (Softmax) 87.4
HDM-NET(ours) SVM 94.8
HDM-NET(ours) RF 91.4
HDM-NET(ours) MLP 92.3
HDM-NET(ours) KNN 90.3

Table 3. Parameters and results of general CNN models on DHI datasets.

Model DHI Dataset Accuracy (%) Million Parameters

VGG16 99.1 138 M
GoogleNet 97.2 6.8 M
ResNet50 98.6 25.5 M

SqueezeNetV1 83.4 1.2 M
ShufflenetV1 84.8 2.3 M
MobileNetV1 85.3 4.3 M

HDM-NET(ours) 87.4 1.4 M

Table 4. Results of HDM-net and other lightweight networks on DHI datasets.

Model Classifiers Accuracy (%)

SqueezeNetV1 (Softmax) 88.4
SqueezeNetV1 SVM 93.7
SqueezeNetV1 RF 87.3
SqueezeNetV1 MLP 90.2
SqueezeNetV1 KNN 89.8
ShufflenetV1 (Softmax) 86.5
ShufflenetV1 SVM 92.3
ShufflenetV1 RF 89.4
ShufflenetV1 MLP 90.6
ShufflenetV1 KNN 91.4

HDM-NET(ours) SVM 94.8

Table 5. The training time and detection time for HDM-net and other networks (VGG16 [28],
GoogleNet [29], ResNet50 [30]) and lightweight CNN models (SqueezeNetV1 [31], ShufflenetV1 [32],
MobilenetV1).

Model Training Time (hours) Detection Time (s)

SqueezeNetV1 2.6 0.33
ShufflenetV1 2.6 0.52
MobileNetV1 2.7 0.55

VGG16 5.6 0.68
GoogleNet 3.1 0.46
ResNet50 3.4 0.51

HDM-NET(ours) 2.4 0.22

In this study, the structures of HDM-NET and SVM were used to analyze and classify
the hair images collected under SEM. The HDM-NET architecture is proposed and a new
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SEM image dataset on hair was constructed separately to solve the limitations of other
models in diagnosing hair images, including the following:

1. General CNN model training requires a large number of datasets, and the datasets
we can use now are extremely small. 2. Using a larger model with too many param-
eters leads to poor training effects. 3. Although the pre-trained model obtained on
ImageNet [33,34] can be used for migration learning to alleviate the results of a poor
training effect owing to the lack of a dataset, in our survey, the ImageNet contains few SEM
images of hair, and, thus, the effect is poor. Therefore, we can only choose a CNN model
that has smaller parameters for improvement.

4. Conclusions

In this study, we proposed a fast and easy method for diagnosing the health of hair and
proposed a lightweight deep learning framework. We completed the task of identifying
and classifying our dataset extremely well. Although the final classification result is lower
than that of the general CNN model, the accuracy is better than that of other lightweight
CNN models when compared with models similar to our proposed lightweight CNN
model (HDM-NET), e.g., SqueezeNet. In addition, the parameters are less than the original
model. Owing to the compactness of the model, in the future, it can be easily transplanted
to mobile phones or portable mobile devices [35] for conducting a hair diagnosis at any
time. It will also promote other services such as hair care in the beauty industry. We have
also proposed a new type of dataset on hair health, which we are still compiling. Deep
learning provides convenience for fast hair health image diagnosis and classification tasks.

In general, this method is faster and more convenient than traditional physical and
chemical diagnostic methods for hair health. At the same time, the high accuracy of the
deep learning method shows the significant potential of deep learning in the diagnosis of
hair health, and it can also be applied to micro or digital microscopes [36] (for example:
SVBONY SM401 Microscope Wireless Digital Microscope 50×–1000×) connected to mobile
phones in the future. Our experiments also proved that the attribute selection step in
the feature selection process is beneficial for improving the accuracy of recognition and
classification of microscope images.
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