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Abstract: Imaging has become indispensable in the diagnosis and management of diseases in the
posterior part of the eye. In recent years, imaging techniques for the anterior segment are also gaining
importance and are nowadays routinely used in clinical practice. Ocular surface disease is often
synonymous with dry eye disease, but also refers to other conditions of the ocular surface, such
as Meibomian gland dysfunction or keratitis and conjunctivitis with different underlying causes,
i.e., allergies or infections. Therefore, correct differential diagnosis and treatment of ocular surface
diseases is crucial, for which imaging can be a helpful tool. A variety of imaging techniques have
been introduced to study the ocular surface, such as anterior segment optical coherence tomography,
in vivo confocal microscopy, or non-contact meibography. The present review provides an overview
on how these techniques can be used in the diagnosis and management of ocular surface disease
and compares them to clinical standard methods such as slit lamp examination or staining of the
cornea or conjunctiva. Although being more cost-intensive in the short term, in the long term, the
use of ocular imaging can lead to more individualized diagnoses and treatment decisions, which in
turn are beneficial for affected patients as well as for the healthcare system. In addition, imaging is
more objective and provides good documentation, leading to an improvement in patient follow-up
and education.

Keywords: ocular surface disease; dry eye; meibomian gland dysfunction; optical coherence
tomography; in vivo confocal microscopy; meibography; interferometry; tear break-up time; ocular
thermography; wavefront aberrometry

1. Introduction

The ocular surface consists of the tear film, conjunctiva, cornea, eyelids and lacrimal glands.
The term “ocular surface disease (OSD)” is frequently synonymous for dry eye disease (DED), which in
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its strict sense is not correct since DED is a condition that belongs to a group of ocular surface disorders,
which also includes blepharitis, Meibomian gland dysfunction (MGD), allergic eye diseases and other
conditions affecting the ocular surface [1].

Many diseases can cause ocular surface disorders. Table 1 provides an overview of clinical routine
tests and new imaging techniques for OSD and shows parameters that are included in this review.
We start this review paper with a summary of the most frequent forms of OSD where imaging may
add clinical value in differential diagnosis and follow-up.
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Table 1. The lines list the techniques that are covered in this review, the columns list the different parameters that can be assessed. LIPCOF = lid parallel conjunctival
folds, OCT = Optical coherence tomography, IVCM = in vivo confocal microscopy, NITFBUT = non-invasive tear film break-up time. * requires instillation
of fluorescein.

Technique Slit Lamp
Bio-Microscopy

Impression
Cytology OCT IVCM

Non-Contact
Meibography

Interferometry NITFBUT
Ocular

Thermography
Tear Film

Imager
Blink Pattern

Analysis
Wavefront

AberrometryParameter

Superficial Punctuate
Keratopathy X * X

Corneal Epithelial
Defects X * X X

Corneal Nerves X
Tear Film Thickness X

Tear Meniscus Height X X X
Lipid Layer Thickness X X X
Muco-Aqueous Layer

Thickness X

Tear Film Break-Up
Time X * X

LIPCOF X X
Goblet Cell Count X X

Inflammatory Cells X X
Meibomian Gland

Evaluation X X X X

Ocular Surface
Temperature X

Optical Properties X
Blink Pattern X
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2. Ocular Surface Diseases for Imaging

2.1. Dry Eye Disease

Dry eye disease (DED), in the past often referred to as keratoconjunctivitis sicca, is defined as
a multifactorial affection of the ocular surface. It is associated with a loss of homeostasis in the tear
film and is accompanied by ocular symptoms. Tear film instability, hyperosmolarity, ocular surface
inflammation and damage, as well as neurosensory abnormalities, are typical signs of the disease [2].
In clinical routine, diagnosis is usually based on slit lamp examination, tear film break-up time (TFBUT),
Schirmer test score and corneal and conjunctival staining as well as measurement of tear osmolarity [3].
Common symptoms of DED include redness, burning, stinging, foreign body sensation, pruritus,
photophobia and blurred vision ranging from mild to severe [3]. Symptoms can be systematically
assessed and quantified by standardized questionnaires such as the Ocular Surface Disease Index
(OSDI) or the Dry Eye Questionnaire (DEQ-5) [4].

Despite its worldwide prevalence ranging from 20 to 50% [5], diagnosis and monitoring of DED
remain challenging in clinical practice [4]. A major issue relates to the weak correlation between
clinical signs and symptoms in affected patients [6]. Another problem is the low reproducibility and
the subjective nature of most assessments for DED [7]. Therefore, new imaging-based techniques may
help to overcome these issues.

2.2. Meibomian Gland Dysfunction

Meibomian gland dysfunction (MGD), an umbrella term encompassing a variety of different
meibomian gland disorders, is a common cause for DED. The International Workshop on Meibomian
gland dysfunction defined MGD as “a chronic, diffuse abnormality of the meibomian glands, commonly
characterized by terminal duct obstruction and/or qualitative/quantitative changes in the glandular
secretion” [8]. The dysfunction of Meibomian glands impacts the meibum secreted and frequently
affects the lipid layer of the tear film, leading to the evaporative form of DED. In addition, changes in
eyelid morphology, altered secretions, gland dropout, Meibomian orifice plugging, hyperemia and
telangiectasia can frequently be observed at the slit lamp examination as the most prominent clinical
signs of the diseases. There is, however, a subgroup of patients who show no clinical signs but still
suffer from MGD [9].

2.3. Conjunctivitis and Keratitis

Conjunctivitis and keratitis often come with DED, but can also have other causes, such as infections,
traumas or allergies. Differential diagnosis from DED in these cases is essential, since signs and
symptoms are often similar, but treatment is different [4].

3. Conventional Non-Imaging-Based Techniques

3.1. Slit Lamp Biomicroscopy

In clinical practice, OSD is usually diagnosed based on the slit lamp examination taken together
with medical history and assessment of symptoms. Standard parameters for OSD to be evaluated during
slit lamp examination without the need of dye instillation are conjunctival hyperemia, eyelid/Meibomian
gland status, evaluation of debris and lid parallel conjunctival folds (LIPCOF) [4]. Using different dyes
such as fluorescein or lissamine green, corneal epithelial defects and conjunctival staining can be made
visible during slit lamp examination. Further, determination of tear break-up time using fluorescein, a
frequently used parameter to assess tear film stability, plays a major role in diagnosis and follow up of
OSD [4]. The major strengths of the slit lamp examination are the global availability in ophthalmologic
and optometrists’ practices and the low costs. However, it needs to be considered that the evaluations
are subjective and that there is no objective documentation unless slit lamp photographs or videos are
taken. As mentioned above, since for some examinations instillation of dyes is necessary, they cannot



Diagnostics 2020, 10, 589 5 of 23

be considered as truly non-invasive and the dye insertion may have an impact on the outcomes by
interfering with tear film homeostasis [4].

3.2. Impression Cytology

Impression cytology allows for evaluation of cell morphology. Briefly, a filter is pressed towards
the conjunctiva and via different staining methods cell morphology can then be assessed under the
microscope. A common parameter evaluated by the means of impression cytology is assessment
of squamous metaplasia, reflected in the reduction of goblet cells and alterations of epithelial cells.
Inflammatory cells can also sometimes be observed. In addition, several biomarkers can be assessed
using immunofluorescence staining, flow cytometry, multiplex bead immunoassays or real-time PCR.
Impression cytology can be applied in various diseases of the ocular surface because it provides
information about conjunctival histology. The technique, however, requires that a filter is pressed
against the conjunctiva and therefore cannot be considered to be non-invasive [10].

4. Imaging Modalities

4.1. Anterior Segment Optical Coherence Tomography

Over the past 20 years, OCT has revolutionized ocular imaging and clinical care of patients with
retinal or optic nerve disease. Diagnosis, as well as follow-up, is nowadays inconceivable without this
technique. Continuous improvement in acquisition speed, sensitivity, field of view and axial resolution
has played a major role in this respect [11]. OCT has been listed by the International Dry Eye Workshop
as a potential diagnostic tool for DED and indeed, it can be used for several relevant assessments [4].

Briefly, OCT measures light backscattered from tissue as a function of the echo time delay, thereby
creating 2- or 3-dimensional tomographic images. It consists of a low-coherence light source, where
the emitted light is split into two paths by a beam splitter. These two paths then enter two arms,
a reference arm reflecting light from a mirror and a sample arm where the light is scattered by the
tissue under investigation. The reflected and backscattered light interferes at the beam splitter and
the resulting fringes are captured by a detector. From this information, an image can be created with
micrometer axial resolution [11]. OCT systems for the anterior segment are capable of obtaining images
of important structures of the ocular surface. While commercially available systems typically feature
axial resolutions of approximately 5 µm, custom-built ultrahigh-resolution systems with a broadband
light source offer axial resolutions in the order of 1 µm [11–15]. The lateral resolution is given by the
numerical aperture of the focusing optics and central wavelength, and typically ranges from 15 to
60 µm [11]. Recently, an in-depth review about anterior segment OCT was published to which the
readers can refer for more technical details [11].

As shown in Figure 1, all layers of the cornea and the precorneal tear film can be visualized [12].
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Figure 1. Ultrahigh resolution optical coherence tomography image of the healthy human cornea. TF 
= tear film; EP = corneal epithelium; BL = Bowman’s layer; ST = corneal stroma; DM = Descemet’s 
membrane; ED = corneal endothelium. The scales for the x- and y-axis are indicated. Reprinted from 
Werkmeister et al., 2013 [12]. 

A high resolution OCT system can visualize small corneal epithelial defects (superficial punctate 
keratopathy), which are frequently found in patients with OSD [16]. Larger corneal abrasions can be 
made visible and quantified, which allows for non-invasive monitoring of wound healing [17]. 
Therefore, OCT is an alternative for the clinical assessment of epithelial defects without the need for 
the use of dyes. 

OCT of the cornea has also been used as a tool in diagnosis and follow-up of microbial infectious 
disease, such as fungal [18], viral [19], bacterial [20] and parasitic keratitis [21] that show characteristic 
features on images, but no quantitative parameters for this purpose have yet been established. 

As the tear-film itself is the most crucial part in DED, the non-invasive imaging of the tear film 
by OCT has gained popularity in the last few years and several approaches have been realized. As 
such, pre-corneal tear film thickness (TFT) can be measured with ultrahigh resolution OCT systems 
[12,22,23] and TFT has been found to be a new parameter in OSD that correlates with objective and 
subjective assessments, such as tear film break-up time (TFBUT) and OSDI [24]. Studies assessing 
TFT in both patients with DED and healthy subjects reported that patients with dry eye show lower 
TFT compared to healthy controls, who have an average TFT of approx. 5 μm as measured using 
OCT [24,25]. These values of TFT are in keeping with values as reported using an alternative 
interferometric method [26,27]. TFT can also be used as a surrogate to determine the duration of the 
effect of lubricating eye drops on the tear film since single administration leads to an increase over a 
certain amount of time [25,28–30]. In contrast, instillation of low viscosity agents such as 
physiological saline have almost no effect on TFT and therefore can be used as a control in studies 
[28,30]. This has been observed in both healthy subjects as well as in patients with DED with different 
eye drops [25,28–30]. Whereas the effect of most lubricants on TFT is relatively short in time, ranging 
between several minutes and a few hours, some agents have been shown to increase TFT up to 24 h, 
such as topical chitosan-N-acetylcysteine, perfluorohexyloctane or low dose hydrocortisone [31–33]. 

While TFT refers to the overall pre-corneal tear film, including the lipid, aqueous and the 
mucous layer, there have also been some approaches to measure the thickness of specific tear film 
layers by OCT separately such as the lipid layer and the aqueous layer [34–36]. Currently, studies 
using these approaches for therapy evaluation, or to investigate patients with different forms of OSD, 
are still lacking. 

Evaluation of the tear meniscus with OCT has been proposed as another parameter for studying 
OSD (Figure 2) [11]. The tear meniscus is the accumulation of tear fluid between the eyelid margin 
and the ocular surface, containing 75–90% of the tears [37,38]. While methods for measurement of 
tear meniscus height at the slit lamp have been introduced previously, evaluation of this parameter 
using OCT offers several advantages omitting reflex tearing due to bright light and providing good 

Figure 1. Ultrahigh resolution optical coherence tomography image of the healthy human cornea.
TF = tear film; EP = corneal epithelium; BL = Bowman’s layer; ST = corneal stroma; DM = Descemet’s
membrane; ED = corneal endothelium. The scales for the x- and y-axis are indicated. Reprinted from
Werkmeister et al., 2013 [12].

A high resolution OCT system can visualize small corneal epithelial defects (superficial punctate
keratopathy), which are frequently found in patients with OSD [16]. Larger corneal abrasions can
be made visible and quantified, which allows for non-invasive monitoring of wound healing [17].
Therefore, OCT is an alternative for the clinical assessment of epithelial defects without the need for
the use of dyes.

OCT of the cornea has also been used as a tool in diagnosis and follow-up of microbial infectious
disease, such as fungal [18], viral [19], bacterial [20] and parasitic keratitis [21] that show characteristic
features on images, but no quantitative parameters for this purpose have yet been established.

As the tear-film itself is the most crucial part in DED, the non-invasive imaging of the tear film by
OCT has gained popularity in the last few years and several approaches have been realized. As such,
pre-corneal tear film thickness (TFT) can be measured with ultrahigh resolution OCT systems [12,22,23]
and TFT has been found to be a new parameter in OSD that correlates with objective and subjective
assessments, such as tear film break-up time (TFBUT) and OSDI [24]. Studies assessing TFT in both
patients with DED and healthy subjects reported that patients with dry eye show lower TFT compared
to healthy controls, who have an average TFT of approx. 5 µm as measured using OCT [24,25]. These
values of TFT are in keeping with values as reported using an alternative interferometric method [26,27].
TFT can also be used as a surrogate to determine the duration of the effect of lubricating eye drops on
the tear film since single administration leads to an increase over a certain amount of time [25,28–30].
In contrast, instillation of low viscosity agents such as physiological saline have almost no effect on
TFT and therefore can be used as a control in studies [28,30]. This has been observed in both healthy
subjects as well as in patients with DED with different eye drops [25,28–30]. Whereas the effect of
most lubricants on TFT is relatively short in time, ranging between several minutes and a few hours,
some agents have been shown to increase TFT up to 24 h, such as topical chitosan-N-acetylcysteine,
perfluorohexyloctane or low dose hydrocortisone [31–33].

While TFT refers to the overall pre-corneal tear film, including the lipid, aqueous and the mucous
layer, there have also been some approaches to measure the thickness of specific tear film layers
by OCT separately such as the lipid layer and the aqueous layer [34–36]. Currently, studies using
these approaches for therapy evaluation, or to investigate patients with different forms of OSD, are
still lacking.

Evaluation of the tear meniscus with OCT has been proposed as another parameter for studying
OSD (Figure 2) [11]. The tear meniscus is the accumulation of tear fluid between the eyelid margin
and the ocular surface, containing 75–90% of the tears [37,38]. While methods for measurement of
tear meniscus height at the slit lamp have been introduced previously, evaluation of this parameter
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using OCT offers several advantages omitting reflex tearing due to bright light and providing good
repeatability [39,40]. In addition, not only the height of tear meniscus, but also the area, volume,
depth and radius can be measured (Figure 2) [36].
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Figure 2. Assessment of tear meniscus area (A), tear meniscus height (B), tear meniscus depth (C) and
tear meniscus radius (D) using ultrahigh-resolution optical coherence tomography. Reprinted from
Stegmann et al. 2019 [36].

Tear meniscus parameters correlate negatively with OSDI and corneal fluorescein staining and
positively with Schirmer scores in patients with DED [41–44]. In addition, tear meniscus parameters
differ between different types of dry eye and may therefore be valuable in differential diagnosis [45].
Single administration of topical lubricants increases tear meniscus parameters in healthy subjects as
well as in patients with OSD and may therefore also be used as a marker for corneal residence time of
eye drops [46–48]. Two-month treatment with topical cyclosporine increased tear meniscus height and
volume in patients with dry eye, suggesting that this parameter might also be valuable in therapeutic
monitoring [13].

Appearance of lid-parallel conjunctival folds (LIPCOFs) is frequently seen in DED and is usually
recognized at the slit lamp. Recently, imaging of LIPCOFs has been reported using OCT, which
offers the advantage of providing greater details of LIPCOF morphology and area [49]. In addition,
this parameter has been found to correlate with slit lamp grading and the Dry Eye Questionnaire
(DEQ) [49,50].

Another structure of interest in OSD is the lacrimal drainage system, in particular the lacrimal
punctum and the canaliculi. In patients complaining about epiphora, obstruction of the lacrimal
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drainage system needs to be excluded. This is usually done invasively via probing [51]. Punctuae
and canaliculi can, however, also be identified by OCT [52–54]. This approach is non-invasive and
provides punctual dimensions quantitatively, therefore allowing for evaluation of therapeutic success
without the need for probing [53].

OCT has also been used for Meibomian gland imaging using custom-built, as well as commercially
available, devices [55–57]. Using Optical Coherence Tomography Meibography (OCT-M) a significant
decrease in Meibomian gland length and width was observed in patients with Meibomian gland
dysfunction (MGD) [58].

4.2. In Vivo Confocal Microscopy

In vivo confocal microscopy (IVCM) offers the opportunity to extract an en-face microstructure
image at the cellular level in real time [59,60]. In comparison to OCT, it provides a higher lateral
resolution of approximately 1.0 µm but with a significantly smaller field of view [59]. Although it
is possible to image all corneal layers, the focus can only be set to one plane of interest at a time
and different corneal layers have to be imaged separately [59,60]. Another disadvantage is that the
examination requires direct contact with the eye, therefore inducing discomfort for the patient and
carrying a small risk of corneal epithelial defects [59].

Several structures of the ocular surface can be studied using IVCM. In clinical practice, IVCM has
gained importance in the management of corneal diseases, especially atypical infections, which are
often sight-threatening but are difficult to diagnose. As such, several studies report on the usefulness
of IVCM in the differential diagnosis of acanthamoeba, fungal, bacterial and viral keratitis [59,61].
IVCM has also been used to monitor corneal wound healing, although it cannot directly measure
defect size, since the field of view is too small, but injured corneal epithelial cells can be visualized and
characterized according to morphology, and the time until a healthy epithelium is re-established can
be measured [62].

While it is not possible to directly visualize small epithelial defects as with fluorescein staining or
OCT, it is possible to use epithelial cell density as a surrogate parameter for corneal epithelial damage
in OSD [63]. Indeed, corneal epithelial cell density increased in parallel with improvement in corneal
fluorescein staining in a longitudinal study in patients with DED receiving topical cyclosporine [64].

OSD is often associated with loss and damage of corneal nerves, which partially explains the
weak correlation between signs and symptoms, since a reduction in corneal sensory nerves leads to a
reduced pain perception [65]. While previous investigation of corneal nerves was only possible by
in vitro methods, such as light or electron microscopy with staining, IVCM offers the possibility to gain
information about corneal nerves in vivo [66]. IVCM corneal nerve parameters include the number
of nerves per frame reported as the number of nerves/mm2, nerve density in mm/mm2, number of
beadings per 100 µm, nerve tortuosity and reflectivity (both assessed on a grading scale) and nerve
length and width in µm [63,67]. These corneal nerve parameters correlated significantly with OSDI in a
previous study [67]. In patients with DED as well as in patients on long-term topical glaucoma therapy
with OSD symptoms, a reduction in corneal nerve number and density was found, which significantly
correlated with corneal sensitivity [68]. Treatment with topical cyclosporine increased corneal nerve
number and density, making these parameters an interesting surrogate for OSD, especially in more
severe cases (Figure 3) [69].
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which are often found in patients with OSD, can also be visualized using IVCM. This is again an 
attractive alternative to using impression cytology with the same disadvantages as described above 
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IVCM also offers the possibility to image the microstructure of Meibomian glands [74]. Based on 
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4.3. Non-Contact Meibography 

Meibography refers to the visualization and quantification of Meibomian gland drop-out using 
photodocumentation [76] and offers observation of the silhouette of the Meibomian gland 
morphological structure by transillumination of the everted eyelids [4]. Conventional meibography 
was introduced in the 1970s and although it was possible to visualize Meibomian gland structure in 
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eyelid had to be transilluminated with a probe consisting of a sharp tip and a bright light, thereby 
producing heat [78]. 

Figure 3. IVCM images of a patient with dry eye disease before and after six months of treatment with
topical cyclosporine. Cell density of the intermediate epithelium of the cornea (a,b), number of nerve
fibers of subbasal plexus in the cornea (c,d), nerve fiber tortuosity of subbasal plexus in the cornea (e,f),
nerve fiber reflectivity of subbasal plexus in the cornea (g,h) and keratocyte activation in the cornea (i,j)
are shown, the first picture always represents baseline and the second picture findings after six months
therapy in the same patient. Reprinted from Iaccheri et al., 2017 [64].

In addition to the cornea, the conjunctiva can be investigated using IVCM: Goblet cell density
can be measured by IVCM, which was in the past only possible by invasive technologies such as
impression cytology, requiring time-consuming staining procedures [70,71]. Inflammatory cells, which
are often found in patients with OSD, can also be visualized using IVCM. This is again an attractive
alternative to using impression cytology with the same disadvantages as described above [72,73].

IVCM also offers the possibility to image the microstructure of Meibomian glands [74]. Based on
images obtained with IVCM, Meibomian glands can be graded similar to the meibography score and
a strong correlation was found between the two approaches [74]. In a cross-sectional study in DED
patients, dry eye symptoms correlated negatively with parameters for MGD severity as obtained by
MGD [75]. In summary, IVCM is a valuable tool in the diagnosis and management of MGD, but its
need for contact with the ocular surface prevents application in large patient populations.

4.3. Non-Contact Meibography

Meibography refers to the visualization and quantification of Meibomian gland drop-out using
photodocumentation [76] and offers observation of the silhouette of the Meibomian gland morphological
structure by transillumination of the everted eyelids [4]. Conventional meibography was introduced in
the 1970s and although it was possible to visualize Meibomian gland structure in vivo, the associated
discomfort for the patient prevented widespread use [77]. Briefly, the everted eyelid had to be
transilluminated with a probe consisting of a sharp tip and a bright light, thereby producing heat [78].
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To overcome these disadvantages, systems for non-invasive imaging of Meibomian glands have
been developed. Non-contact meibography is based on the autofluorescence of healthy meibum
when illuminated with infrared light which can be detected by an infrared charge-coupled device
camera [77,79]. Loss of glands, lack of meibum or alterations in meibum composition are seen as
dark lesions with this technology (Figure 4) [77,79]. From obtained images or videos, Meibomian
gland loss can be quantified as a diagnostic parameter, called Meiboscore [80]. Currently, slit lamp
based, mobile and topography-equipped systems are commercially available for this purpose [77]. In a
cross-sectional retrospective analysis, Meiboscore correlated significantly with expressible Meibomian
glands and TFBUT [80]. In a prospective study, Meiboscore was significantly higher in patients with
posterior blepharitis compared to healthy controls [81]. Meibography has also been used to evaluate
therapeutic success of treatment with topical diquafosol, a P2Y2 purinergic receptor agonist, or probing
of Meibomian glands in patients with obstructive MGD [82,83]. Investigating side effects of drugs
such as antiglaucoma medications or isotretinoin on Meibomian glands is another application of the
technique [84,85]. Newer systems allow real-time monitoring with meibography videos [86].
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Figure 4. Infrared images of the Meibomian glands of the lower eyelid in a healthy subject (a), a patient
with mild Meibomian gland dysfunction (MGD) (b) and a patient with moderate MGD (c). Areas of
gland dropouts can be clearly seen (arrows). The images were taken with the LipiView interferometer
(TearScience, Morrisville, NC, USA).
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4.4. Interferometry

Imaging-based ocular surface interferometry allows the measurement of lipid layer thickness (LLT)
on a nanometer (nm) scale [87]. Briefly, the ocular surface is illuminated with a white light-emitting
diode (LED) light source and the resulting image is recorded using a CCD camera. Optical interference
colors on the surface of the tear film can then be correlated to specific thickness values of the lipid layer
(Figure 5) [87]. This is a major advantage compared to previously used techniques for the assessment
of the lipid layer, which were also based on interferometry, but only provided qualitative grading at
the slit lamp [88,89].
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Figure 5. Measurement of lipid layer thickness and blink frequency with the LipiView Interferometer
(TearScience, Morrisville, NC, USA). The system provides average, maximum and minimum lipid
layer thickness (LLT) values in absolute nm values, measured over a period of 20 s. In addition, blink
frequency is registered, including complete and partial blinks. The arrows indicate partial blinks.
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Patients with obstructive MGD have significantly thinner LLT than healthy subjects [90], whereas
hypersecretory MGD results in an increase in LLT [91]. The lipid layer was also altered in patients
with allergic conjunctivitis [92].

Studies investigating the short-time effect of single instillation of eye drops on LLT have been
performed. While some studies report an immediate increase in LLT after instillation [93–96], other
studies report no short-time effects of eye drops targeting the lipid layer of the tear film [28]. This could
be due to technical limitations, because the natural lipid layer and the ingredients of the eye drops have
different refractive indices, which affect the correct assessment of the LLT by interferometry [28,31].
Alternatively, the effect on the LLT may build up after multiple instillations [28]. Therefore, LLT may
be used to monitor the effect of treatment on the lipid layer over time. Indeed some studies have
observed an improvement of lipid layer thickness after a few weeks of instillation using lubricants as
compared to placebo [31,97].

Eyes receiving glaucoma therapy or after undergoing cataract surgery show a significantly reduced
LLT [98,99]. LLT may therefore also be used to monitor the detrimental effects of drugs or surgical
procedures on the ocular surface.

Interferometry has also been used to measure lower tear meniscus height [100]. Tear meniscus
height values measured with the DR-1α tear interferometer (Kowa, Tokyo, Japan) significantly
correlated with values obtained from anterior segment OCT and were found to be significantly higher
in healthy subjects compared to patients with aqueous deficient dry eye [100].

4.5. Non-Invasive Tear Film Break-Up Time

In clinical routine, tear film break-up time (TFBUT) is assessed at the slit lamp and is dependent
on the amount of fluorescein solution instilled in the conjunctival fornix, thereby featuring suboptimal
accuracy and repeatability in DED [101]. Hence, non-invasive tear film break-up time (NITFBUT),
where no fluorescein instillation is required, has been proposed as an alternative to assess tear film
stability [4]. Commercially available corneal topography systems can measure NITFBUT through
the observation of placido disk images over time, which are reflected from the anterior surface of
the eye [4,102]. Using specifically developed software, these corneal topography systems are able to
assess localized changes in corneal power and break up of the tear film [103–106]. NITFBUT can also
be assessed with specific keratography modalities [107,108]. High-speed videokeratoscopy detects
changes in the variance of stability in image quality, by the variance of the number of complete rings of
the placido disk detected radially from the center [109,110]. This instability of the tear film is used as
an estimate of NITFBUT.

Different technical approaches to measure NITFBUT used in several studies indicate sensitivity
values between 82–84% and specificity values between 76–94% for detecting dry eye [108,111,112].
NITFBUT was found to correlate with TFBUT as assessed at the slit lamp, as well as with Schirmer test,
tear osmolarity and OSDI [113,114].

NITFBUT values of DED patients have been reported to be on average only 25% to 32% of normal
values assessed in healthy subjects. Values of less than 10 s are usually considered as DED when
viewing the reflection of an illuminated grid pattern [112]. Therapy with topical lubricants improves
NITFBUT in a similar fashion to TFBUT [31,115].

4.6. Ocular Thermography

Thermography measures the surface temperature of an object non-invasively using a
thermographic camera operating within the infrared range. Technically speaking, the higher the
temperature of the surface, the higher the power per radiating area. For the human body, this
radiation is several hundred Watts in the infrared range [116]. Initially, thermography was invented to
measure changes in skin temperature. It was then further developed to detect changes in ocular surface
temperature and accuracy; resolution and speed of the technique have increased continuously [117–121].
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Since inflammation is usually associated with elevated temperature, it comes as no surprise that
in ocular inflammatory diseases such as scleritis or anterior uveitis, ocular surface temperature in the
affected eye is higher than in the contralateral non-affected eye [122].

This also holds true for DED, which also comes with inflammation, and indeed patients with DED
featured higher temperatures of the ocular surface than healthy controls [123]. However, probably due
to a greater rate of tear film evaporation, patients with DED also show a faster cooling rate (loss of
heat) than healthy subjects [118,121,124].

A greater variance of temperature across the ocular surface as well as fluctuation in temperature
over a short period of time (a few seconds after blinking) has been found in patients with DED [125].
In addition, these parameters seem to be associated with lower TFBUT in these patients [123,126].
Ocular surface temperature variation and TFBUT in different areas of the cornea were correlated in
some studies [127,128]. A correlation between tear meniscus height, Schirmer test score and ocular
surface temperature difference has also been reported [126].

Based on these findings, thermography has been applied to differentiate between DED of differing
etiologies. Aqueous deficient dry eye patients seem to have lower temperatures of the ocular surface
but more substantial heat loss during the interblink intervals, whereas evaporative dry eye patients
seem to show lower cooling rates [129,130].

4.7. Tear Film Imager

The tear film imager (TFI), developed by AdOM (Advanced Optical Technologies Ltd., Lod,
Israel) can directly and dynamically measure tear physiology with one measurement. Using spectral
interference technology, it offers a high lateral resolution in the nanometer range and provides images
of the corneal surface of a large field of view of 6 mm diameter [131] tolerating the natural eye
state of blinks, saccadic motions, and defocusing events [132]. The TFI allows measurements of the
muco-aqueous layer thickness (MALT) [133] and the lipid layer thickness (LLT) [131].

Momentary drops in the lipid layer thickness can be detected by the TFI, which defines the lipid
break-up time (LBUT). The LBUT values as measured by the TFI significantly correlated with the
clinical measurements of TBUT while MALT values significantly correlated with Schirmer score [131].
In particular, TFI data shows thinner MALT in patients with DED compared to healthy subjects [131].
According to the clinical DED categorization, the TFI features a sensitivity of 87% and a specificity
of 88% [133]. However, currently only a few studies implementing this device in OSD research
are available.

4.8. Blink Pattern Analysis

Low blink rate as well as incomplete blinking are well-recognized risk factors for OSD [134].
Devices to investigate blink patterns have therefore been developed based on a video camera recording
of blinks. The devices are capable of identifying incomplete blinks during a specified amount of time
(Figure 5) [135] and the number of incomplete blinks has been found to negatively correlate with the
sum of both TFBUT and LIPCOF [136,137]. In addition, it has been shown that DED patients have
prolonged eyelid-closed time and shorter blink intervals, which again correlates with TFBUT [138–140].

An investigation of blink patterns is of interest for the assessment of smart glasses during visual
tasks such as reading [141]. Patients with moderate DED show a reduced spontaneous eye-blink rate
during video display terminal use, which results in a worsening of DED symptoms [142].

4.9. Wavefront Aberrometry

Wavefront aberrometry is commonly used in preparation for refractive surgery. Briefly,
aberrometry uses wavefront sensing, where a light wave is sent into the eye and aberrations in
the returning waves correspond to changes in refraction. While wavefront aberrations caused by
ametropy, astigmatism, corneal disorders such as keratoconus or changes in the lens remain stable
when sequential measures are applied, changes in the tear film lead to fluctuations in the dynamic
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wavefront analysis. This offers the possibility to analyze visual performance related to tear film
dynamics [143].

Indeed, wavefront aberrations occur earlier in patients with DED compared to healthy controls
when measured over approximately 30 s, which is probably caused by instability of the tear film.
Furthermore, they correlate with tear meniscus parameters as well as with OSDI [144,145]. In a study
using a driving simulator, the response time of DED patients was positively correlated with progression
index for higher-order aberrations (HOA) over 10 s [146]. One study investigated the effect of single
instillation of topical lubricants on dynamic wavefront aberrometry in patients with DED, but no
changes were found [147]. In contrast, another clinical trial investigated the effect of rebamipide
ophthalmic suspension, a secretagogue, on dynamic wavefront aberrometry in patients with DED.
After four weeks of treatment, a significant stabilization in the short-time course of corneal HOAs was
found [148]. Studies on the effect of long-term treatment of OSD on dynamic wavefront aberrometry
are currently lacking.

5. Conclusions and Perspective

In ophthalmology, imaging technologies are gaining importance and are becoming a significant
part of the clinical routine for a wide variety of conditions. While for the posterior segment, OCT has
become the gold-standard in the diagnosis and follow-up of many diseases such as age-related macular
degeneration [149], diabetic retinopathy [150] and glaucoma [151], imaging techniques for the ocular
surface are not well established. Although the techniques introduced in this review represent promising
approaches, they are still more cost intensive than clinical standard tests at the slit lamp such as
determination of TBUT or corneal fluorescein staining. On the other hand, OSD is becoming an
increasing economic burden and more specific diagnosis and management would be beneficial and
more cost-efficient in the long term [152]. Imaging provides improved documentation and objective
assessment, which is particularly beneficial in the long-term follow up and can also be used for patient
education. These advantages have to be weighed against the financial requirements for the systems.
Centers that are specialized in the clinical care of dry eye cases would definitely benefit from the use
of imaging systems. All the techniques introduced provide different parameters and therefore not
one single approach will fit all clinical needs. Concrete recommendations on which system to use
is difficult, because there is a lack of cost-effectiveness models in the literature. Cost effectiveness
may also largely depend on the clinical setting. In some countries dry eye patients are mainly seen
by optometrists, whereas in other countries clinical care is mainly provided by ophthalmologists.
In centers where OCT systems are available, their application to dry eye disease may be a reasonable
approach, but commercial software for this use is currently not well developed. Another problem with
anterior segment OCT is that the axial resolution in commercially available instruments is still too low
for assessment of tear film parameters. Given the high prevalence of the disease, cost effectiveness
models for different clinical scenarios are urgently required.

Another important field related to imaging is the application of artificial intelligence [153].
Deep learning algorithms have been applied in several image-centered medical specialties such as
radiology, pathology, dermatology and also ophthalmology. Using digital fundus images, diabetic
retinopathy, glaucoma, age-related macular degeneration, retinopathy of prematurity and refractive
error can be detected by deep learning systems [153]. One approach for the objective evaluation
of OSD, in particular allergic conjunctival disease, has been introduced recently [154]. In addition,
convolutional networks have been developed for segmentation of different structures in anterior
segment images [155,156]. In the future, algorithms can potentially also be applied to various forms of
OSD, with the objective images captured by the techniques that have been introduced in the present
review. Using these images in addition to other clinical variables and reference standards, datasets can
be created to develop convolutional neural networks for detection of different OSD subtypes. Deep
learning approaches may also be used to identify patients that benefit from different treatments to
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allow for individualized medicine in this field. For this, however, large datasets will be required from
international collaborations and multicenter trials.

6. Method of Literature Search

For this narrative review, a literature search was performed using PubMed. We included review
articles and clinical trials relevant to the subject of the review, while case reports, case series and
articles not written in the English language were excluded. Since the aim of the review was to
give an oversight on current techniques for ocular surface imaging, the following search terms were
used in various and/or logic combinations: “ocular surface disease”, “dry eye”, “Meibomian gland
dysfunction”, “conjunctivitis”, “keratitis”, “tear film”, “optical coherence tomography”, “in vivo
confocal microscopy”, “meibography”, “interferometry”, “non-invasive tear break up time”, “ocular
thermography”, “tear film imager”, “blink pattern analysis”, “wavefront aberrometry”, “artificial
intelligence” and “deep learning”.
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