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Abstract: Currently, mental stress is a common social problem affecting people. Stress reduces human
functionality during routine work and may lead to severe health defects. Detecting stress is important
in education and industry to determine the efficiency of teaching, to improve education, and to reduce
risks from human errors that might occur due to workers’ stressful situations. Therefore, the early
detection of mental stress using machine learning (ML) techniques is essential to prevent illness and
health problems, improve quality of education, and improve industrial safety. The human brain
is the main target of mental stress. For this reason, an ML system is proposed which investigates
electroencephalogram (EEG) signal for thirty-six participants. Extracting useful features is essential
for an efficient mental stress detection (MSD) system. Thus, this framework introduces a hybrid
feature-set that feeds five ML classifiers to detect stress and non-stress states, and classify stress levels.
To produce a reliable, practical, and efficient MSD system with a reduced number of electrodes,
the proposed MSD scheme investigates the electrodes placements on different sites on the scalp and
selects that site which has the higher impact on the accuracy of the system. Principal Component
analysis is employed also, to reduce the features extracted from such electrodes to lower model
complexity, where the optimal number of principal components is examined using sequential forward
procedure. Furthermore, it examines the minimum number of electrodes placed on the site which
has greater impact on stress detection and evaluation. To test the effectiveness of the proposed
system, the results are compared with other feature extraction methods shown in literature. They are
also compared with state-of-the-art techniques recorded for stress detection. The highest accuracies
achieved in this study are 99.9%(sd = 0.015) and 99.26% (sd = 0.08) for identifying stress and non-stress
states, and distinguishing between stress levels, respectively, using only two frontal brain electrodes
for detecting stress and non-stress, and three frontal electrodes for evaluating stress levels respectively.
The results show that the proposed system is reliable as the sensitivity is 99.9(0.064), 98.35(0.27),
specificity is 99.94(0.02), 99.6(0.05), precision is 99.94(0.06), 98.9(0.23), and the diagnostics odd ratio
(DOR) is≥ 100 for detecting stress and non-stress, and evaluating stress levels respectively. This shows
that the proposed framework has compelling performance and can be employed for stress detection
and evaluation in medical, educational and industrial fields. Finally, the results verified the efficiency
and reliability of the proposed system in predicting stress and non-stress on new patients, as the
accuracy achieved 98.48% (sd = 1.12), sensitivity = 97.78% (sd = 1.84), specificity = 97.75% (sd = 2.05),
precision = 99.26% (sd = 0.67), and DOR ≥ 100 using only two frontal electrodes.

Keywords: electroencephalogram (EEG); mental stress detection (MSD); machine learning;
mental arithmetic
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1. Introduction

Mental stress is the human body’s response to exposed psychosocial or physical situations.
It affects people all over the world regardless of their age, gender, or occupation. This is because
of the increasing work difficulties, rising pressure, and demanding daily activities that people face
every day [1]. Currently, mental stress is considered the main cause of several health problems.
These problems include heart attacks, strokes, nervousness, depression, post-traumatic stress disorder
(PTSD), and immunological disorders. Stress can also influence brain activity and structure [2].
Therefore, early detection of stress is essential to prevent illness and reduce the chances of clinical brain
damage and other health problems.

Detection and the evaluation of mental stress is essential as well in fields such as education
and industry. In educational e-learning settings, stress may be a major factor that affects students’
performance in exams. Stress level may increase with unhealthy examination schemes in higher
education. In such systems, students can be rated on their performance based on limited hours only.
Accordingly, their grades may not represent their real knowledge and intelligence but rather their
ability to cope with exam induced stress [3]. Additionally, in an offline educational setting, the frequent
evaluation of student’s mental state can be used to define the speed of teaching and improve the
outcome of education [4]. For industrial security, recognizing hazards that occurs due to human
mistakes is essential. This is because insecure and careless manners of workers and absence of safety
measures are the major reasons for human-caused problems. Such factors include lack of sufficient
sleep, poor diet, physical deficiencies, and fatigue, which can lead a person into a stressful situation.

Common methods to measure stress include questionnaires, where the mental effort that applicants
put into a task is evaluated [5]. However, such methods can be subjective, i.e., depend on the
personal opinion of the applicants, based on psychophysiological [6] or personal measures [7].
Therefore, these methods are not accurate enough due to individuals’ inconsistencies. Moreover,
this process becomes challenging when the number of individuals to be evaluated increases in real
time. Thus, automated stress detection algorithms that can correctly recognize and assess stress
even with a large number of subjects are important in identifying stress factors and facilitating
stress management. These approaches embrace the use of portable devices such as mobiles, remotes,
or wearable sensing devices to gather physiological signals, such as electrocardiograms (ECGs),
near-infrared spectroscopy (NIRS), near-infrared spectroscopy (NIRS), functional magnetic resonance
imaging (fMRI), electro-corticography (ECoG) or electroencephalograms (EEGs) [8,9].

Recently, brain activity measurement has been verified as an efficient method in the imaging
of emotional stress changes [10]. NIRS and fMRI measure brain activity using blood in the brain.
The strength of fMRI is its ability to capture signals in the brain with an outstanding resolution,
nevertheless, the measurements are deferred until the state of the brain changes. In contrast, NIRS has
the ability to describe only the state of the brain and the signal is eventually captured through blood
flow. The EEG and ECoG waves measure the brain signals as well. Regardless of the ability of the ECoG
to measure long-bandwidth signals, a surgical procedure is needed to insert electrodes on the skull
to detect these signals. EEG is measured non-invasively; it employs a process that requires wearing
a helmet. It measures signals from the scalp rather than from the brain itself [3]. Therefore, EEG is
preferred over other methods. EEG is commonly used to measure stress [11–14] due to the increasing
availability of EEG systems as low-cost wearable devices [15]. Additionally, it has a comparatively
greater temporal resolution and it can visualize fast and energetically varying brainwave patterns in
complex stress scenarios [9] Therefore, in this study, EEG is used. The main purpose of this paper is to
identify the mental state of a person by analyzing the EEG signals. EEG is a noisy signal. Medical signal
processing (MSP) techniques play an important role in removing this noise and retaining only the
frequency bands containing informative data that describe mental stress. MSP can also extract useful
features from EEG signals. Many feature extraction techniques are used for the analysis of EEG signals.
Some of these methods include; Hjorth parameters [16,17], power spectral density (PSD) [18,19],
common spatial patterns (CSPs) [9,14], statistical-based [20,21], and wavelet-based methods [22,23].
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Features extracted using feature extraction techniques are fed into a classification model to either
classify stress, non-stress, or stress levels. Classification based on machine learning techniques has the
ability to accurately classify stress states. This can assist doctors to understand the signals well, make
an accurate diagnosis and provide appropriate treatment [1,8].

Recently, many studies have validated the associations between EEG pattern and emotional stress
state [24]. These studies examine stress, non-stress, and stress levels from EEG signals. The authors
in [25] proposed a framework that applies the concepts of network physiology and information theory
to extract valuable features. A random forest (RF) classifier was constructed to distinguish between
stress and non-stress situations. Mahajan, in [18], proposed two feature-sets to classify stress using
an artificial neural network (ANN). In [6], a threshold-based method was introduced to detect stress.
The number of peaks of the theta band of an EEG signal was counted. If this count exceeded the
threshold, then it was considered a stressful state. The authors of [14] used CSP as a feature extractor.
A linear discriminant classifier (LDA) was used to distinguish between stress and non-stress. A support
vector machine classifier was employed in [26] to differentiate between stress levels using power
spectral density (PSD) features. PSD features were also used in [19] to discriminate between stress
and non-stress conditions using an ANN classifier. In the research articles [20,27], we assessed stress
levels using a support vector machine (SVM) classifier. In [28], an SVM classifier was also used to
classify the mental stress state of individuals based on the changes in EEG power spectral density,
especially in the theta and alpha bands, where the average classification accuracy reached 79% and
78%, respectively. The authors in [4] employed a single channel EEG device to examine the use of
frontal EEG to determine stress levels. An SVM classifier was employed to evaluate stress levels
and the accuracy achieved was in the range of 65%–75%. The authors in [10] employed classical
machine learning classifiers with a feature selection approach to detect stress levels. In [11], a hybrid
feature pool was constructed to recognize stress and non-stress using KNN. Donghoo et al. in [29]
proposed a genetic algorithm (GA)-based feature selection algorithm and used and k-nearest neighbor
(KNN) classifier to identify stress and non-stress. Fares et al. in [30,31] proposed an MSD to detect
stress using an SVM classifier. Most of the previous techniques used a large number of electrodes to
construct their MSD systems. The performance of such systems was not sufficient enough for real
applications. They also lacked efficient feature extraction, selection, or reduction techniques to enhance
the performance of a subsequent classifier.

Other MSD systems were constructed based on deep learning techniques such as Li et al. [24],
who used a fused deep learning architecture to extract discriminative spatial–temporal EEG features
for detecting emotional stress. Hefron et al. [32] presented a novel convolutional recurrent neural
classifier by means of multipath subnetworks for detecting stress. Kuanar et al. [33] built a recurrent
neural network algorithm to complete the cognitive analysis of EEG signals. Such methods based
on deep learning have several drawbacks. First of all, for efficient performance using deep learning,
deep networks usually require large amounts of data for training. Furthermore, deep features extracted
from deep networks are commonly not separable, are highly correlated, and have a huge feature
dimensional space. Additionally, the current methods do not consider any significance to the selection
of appropriate features from specific domains for deeper fundamental analysis. A summary of the
recent related techniques from literature that are close to the proposed MSD system are presented
in Table 1.
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Table 1. A summary of recent techniques from literature that are comparable to the proposed mental
stress detection (MSD) system.

Reference Number of
Participants

Number of
Electrodes Class Label Classifier Validation

Method Accuracy

[25] 1 14 Stress and
non-stress

Random
Forest

k-fold cross
validation 97.5%

[13] 50 14 Stress and
non-stress Threshold-based Hold out 88%

[14] 7 31 Stress and
non-stress LDA k-fold cross

validation 82.6%

[19] 5 19 Stress and
non-stress ANN Hold out 91.17%

[28] 4 22 Stress and
non-stress SVM Hold out 78–79%

[11] 32 32 Stress and
non-stress KNN k-fold cross

validation 73.38%

[29] 32 32 Stress and
non-stress KNN k-fold cross

validation 71.76%

[31] 25 23 Stress and
non-stress SVM k-fold cross

validation 83.1%–89.8%

[30] 22 7 Stress and
non-stress SVM Leave-one out 91.7%

[34] 27 5 Stress and
non-stress

Linear
Regression

k-fold cross
validation 98.76%

[35] 50 16 Stress and
non-stress Ensemble k-fold cross

validation 97.95%

[26] 10 14 Stress levels SVM k-fold cross
validation 96%

[20] 11 14 Stress levels SVM k-fold cross
validation 80.32%

[27] 42 128 Stress levels SVM k-fold cross
validation 94.6%

[10] 12 19 Stress levels KNN
k-fold cross
validation
Hold out

91.5%
90.5%

[4] 20 1 Stress levels SVM k-fold cross
validation 65%–75%

[34] 27 5 Stress Levels Linear
Regression

k-fold cross
validation 95.062%

[36] 26 9 Stress Levels KNN Leave one out 90.9%

[37] 10 4 Stress Levels LDA Leave-one-out 86%

[38] 12 7 Stress Levels SVM k-fold cross
validation 80%–85%

[39] 28 1 Stress Levels SVM k-fold cross
validation 78.57%

The key aim of this paper is to construct a portable real-time EEG-based mental training
neuro-feedback system to identify and evaluate stress levels efficiently in real-time. Thus, a new
MSD system is proposed to classify stress, non-stress, and stress levels. Relative features are the
key factor in a powerful MSD system. Therefore, the proposed technique presents a hybrid feature
subset for MSD. Five classifiers are used to detect stress situations, then the stress level is assessed
and sorted into low and high. In order to generate an efficient MSD system with a lower number
of channels, first, the proposed MSD scheme explores the placements of electrodes on different sites
on the skull and selects the location which has the highest influence on the accuracy of the system.



Diagnostics 2020, 10, 292 5 of 26

Furthermore, Principal Component Analysis (PCA) feature reduction is applied in a sequential forward
search to select the optimal number of principal components and reduce the dimension of feature
space, which usually enhances the performance of the subsequent classifier. In addition, in order
to make the proposed MSD system more portable and movable and easier to set up, the number
of electrodes is further reduced by selecting the minimum number of channels from the site which
has the greater impact on the stress detection rates. To prove the efficiency of the proposed method,
the results are compared with three feature-sets proposed in literature. They are also compared with
the state-of-the-art techniques.

2. Materials and Methods

2.1. Participants

Initially, sixty-six subjects (age: µ = 18.6, σ = 0.87) participated in the data collection procedure,
and 47 of them were women and 19 were men. According to EEG visual examination by an expert
neurophysiologist, thirty of them were omitted from the data collection process because of poor EEG
quality (extreme amount of myographic and oculographic artifacts), so the final sample size is thirty-six
participants [40]. Details of the participants can be found in Table 2. Subjects were qualified to register
in the study if they had no medical signs of cognitive or mental deficiency, verbal or non-verbal
education incapacities, and had usual or corrected-to-usual visual perception, and normal color sight.
Exclusion criteria were the use of medication or alcohol addiction, psychoactive drug, and neurological
or illnesses.

Table 2. Details of the participants.

Name Age (Years) Gender

Participant 1 21 Female

Participant 2 18 Female

Participant 3 19 Female

Participant 4 17 Female

Participant 5 17 Female

Participant 6 16 Female

Participant 7 18 Male

Participant 8 18 Female

Participant 9 26 Male

Participant 10 16 Female

Participant 11 17 Female

Participant 12 18 Female

Participant 13 17 Female

Participant 14 24 Male

Participant 15 17 Female

Participant 16 17 Female

Participant 17 17 Female

Participant 18 17 Female

Participant 19 17 Female

Participant 20 22 Male

Participant 21 17 Female
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Table 2. Cont.

Name Age (Years) Gender

Participant 22 19 Female

Participant 23 20 Female

Participant 24 16 Female

Participant 25 17 Male

Participant 26 17 Male

Participant 27 17 Female

Participant 28 19 Female

Participant 29 19 Female

Participant 30 19 Male

Participant 31 17 Male

Participant 32 19 Female

Participant 33 20 Female

Participant 34 17 Male

Participant 35 18 Female

Participant 36 17 Female

2.2. EEG Collection Procedure

Mental arithmetic evaluation is commonly used as a standard stressor [41]. Therefore, in this paper,
mental arithmetic tasks are used. The tasks consist of counting during the relaxed state (non-stress)
and serial subtraction of two numbers during the stress state. Every serial subtraction trial begins with
verbally subtracting 4 numbers from 2. Serial subtraction during 15 min is known as psychosocial
stress [42], and it was used in [40]. In this manner, the design of the data collection procedure in [40]
required exhaustive cognitive activity from the engaged individuals. This strenuous mental load leads
to a variation in the emotional background once the individual involves more effort to solve tasks.
Depending on quantity of arithmetic operations per minute, participants were grouped into two classes.
The first class are called “high stress” and contains participants who performed the arithmetic tasks
with difficulty and make more effort to perform the arithmetic tasks. The other class is called “low
stress” and consists of participants who managed the arithmetic tasks without difficulty and no excess
effort. Thus in this study, two mental stress states are considered.

Subjects were asked to sit on a comfortably reclined armchair in a dark soundproof hall. Before
starting the experiment, they were asked to relax throughout the resting state (non-stress state) and
informed about the arithmetic task. Subjects were instructed to count accurately and quickly for 3 min
without talking or moving in the pace they chose. Afterwards, they performed serial subtraction and
the EEG was recorded for 1 min during this state (stress condition).

The EEG dataset was acquired using the Neurocom monopolar EEG 23 channel system. Silver/silver
chloride electrodes were placed on the scalp to record the data according to the International 10/20
scheme. Electrodes were inserted on different locations on the scalp. These sites comprise temporal
(T3, T4, T5, T6), frontal (Fp1, Fp2), frontal (F3, F4, Fz, F7, F8), central (C3, C4, Cz), occipital (O1, O2),
and parietal (P3, P4, Pz), according to the International 10/20 system. Ear electrodes were used as a
reference. Electrode sites on the scalp are shown in Figure 1.
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2.3. Proposed Mental Stress Detection System

In this paper, a new system is proposed to detect stress states and classify stress levels. The proposed
system consists of five steps as shown in Figure 2. Initially, the data are preprocessed, and noise
and artifact removal constitutes the first step. Subsequently, the data are segmented into frames
by a sliding window. Afterwards, valuable features are extracted using time and frequency feature
extraction techniques to yield two feature-sets which are combined later to form a hybrid feature-set.
Then, a feature reduction step is used to reduce the dimension of the combined feature-set. Finally,
five machine classifiers are used to detect stress and evaluate stress levels. The proposed MSD system
is composed of three experiments. In the first experiment, each of the two feature-sets are used
individually to construct the MSD system, and then combined to form a hybrid feature-set to examine
the influence of combining time and frequency features. In experiment two, to reduce the number
of channels employed to construct the MSD system and enhance the effectiveness of the proposed
approach, the electrodes are placed on different sites on the skull and the location which has the
greatest influence on the accuracy of the system is chosen. Finally, in experiment three, the PCA feature
reduction method is adopted to choose the optimum number of principal components in sequential
forward search and reduce the dimension of feature space. Reducing feature space commonly improves
the performance of an MSD system.
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2.3.1. Data Preprocessing

An EEG signal is usually noisy due to power line interference, electromyography (EMG),
electrocardiography (ECG), and subject movement, etc. In order to reduce noise and artifacts,
a high-pass filter with 0.5 Hz cut-off frequency, low-pass filter with 500 Hz cut-off frequency and a
notch filter of 50 Hz were used. The filters used were Butterworth IIR filters of order 4. The distortion
of the filters was handled using forward–reverse filtering. In addition, a de-noising method based on
multilevel wavelets decomposition was employed [43]. The number of wavelet levels was 5, the mother
wavelet was Symlets. The number of vanishing moments was 4. The signals are further smoothed
using a Savitzky–Golay filter [44].

2.3.2. Segmentation

EEG pre-processed signals are segmented into 4-s segments with a sliding window of 1 s as an
increment step. The same segmentation procedure as [12] is followed which stated that a window size
of 4 s is suitable and common for classification using a mental arithmetic task. Each of these segments
is considered as a single trial. Thus, each trial will have a size of N × T, where N = 19 is the number of
channels and T = 4 corresponds to 4 s of one segmented frame sampled at 500 Hz. All trials will be
used later in the feature extraction and classification steps.

2.3.3. Feature Extraction

To construct a machine learning classifier, useful features are needed to be extracted from the EEG
segmented data. For this purpose, for each trial of an EEG signal, two subsets of features are extracted.

Previous studies have demonstrated that to detect emotional activities like stress with higher
accuracy, it is preferable to extract features from the frequency domain [45]. Other studies mentioned
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that fusing time and frequency features has better impact for the detection rates of stress [46,47].
Therefore, in this paper, we proposed using time and frequency features and studied the impact of
fusing these features. The Feature-Set 1 is a frequency feature-set which includes features which were
used in [48]. These features are the median frequency (MDF), modified frequency mean (MFMD)
features, and spectral moments (SM). MDF computes the median normalized angular frequency.
SM calculates three power spectral moments from each EEG segment corresponding to root squared
zero, second and forth order moment. MDMD it is the frequency at which the spectrum is split
into two sections with equivalent amplitude. In other words, it determines the median amplitude
spectrum in each segment calculated using Fourier transform. Feature-Set 2 consists of the following
features; the root mean square (RMS) amplitude of the signal which was used in [49,50] and a sixth
order autoregressive (AR) model coefficients which was used in [51,52]. AR uses each sample of
EEG segment to describe it as a linear fusion with the preceding samples plus a white noise error
term. AR calculates coefficients of the model depending on the order chosen. Such coefficients are
considered as features [53]. Feature-Sets 1 and 2 are combined together to form a hybrid subset called
Feature-Subset 3. The equations representing the features are shown below.

MDF =
1
2

M∑
j = 1

PSD j (1)

MFMD =
1
2

M∑
k

Ak (2)

where M is the size of the power spectrum density, and PSDj is the jth line of the power spectrum
density; Ak is the EEG amplitude spectrum at frequency index k.

mo =

√√√N−1∑
i

x2
i (3)

m2 =

√
N−1∑
k = 0

k2Pk

Pk = 1
N

N−1∑
k = 0

∣∣∣XkX∗k
∣∣∣ (4)

m4 =

√
N−1∑
k = 0

k4Pk

Pk = 1
N

N−1∑
k = 0

∣∣∣XkX∗k
∣∣∣ (5)

where a sampled version of the EEG segment is denoted as xi, with i = 1,2, . . . N, of length N, mo, m2,
and m4 are the root squared zero, second and forth order moment. The discrete frequency transform
of an EEG segment can be expressed as a function of frequency Xk. Pk is the phase-excluded power
spectrum which is equivalent to the result of a multiplication of Xk by its conjugate Xk* divided by N,
and k is the frequency index.

RMS =

√√√
1
N

N∑
i = 1

x2
i (6)

AR =
D∑

d = 1

adxi−d + e (7)
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where ad is AR coefficients, e is white noise or error sequence, and D is the order of AR model, d is the
order of the coefficient d = 1,2, . . . ..D.

2.3.4. Feature Reduction

The hybrid Feature-Set 3 extracted in the previous step is of high dimensional space, and for
this reason the feature reduction process is required to lower the dimension of the feature space,
reduce the cost of computation of the training process, decrease the complication of the MSD system,
improve the efficiency of stress detection process, and produce a reliable portable real time MSD
system. Principal Component Analysis (PCA) is a common feature reduction technique used to reduce
the size of Feature-Set 3 by applying a covariance analysis. PCA shrinks the number of features in
Feature-Set 3 to a lower number of principal components [54]. Such principle components convey the
variance of the features in Feature-Set 3. The steps of PCA technique used in to reduce Feature-Set 3
are as follows; first, we calculate the covariance matrix of Feature-Set 3. Afterwards, we determine the
eigenvectors and the eigenvalues of the covariance matrix. Next, we select the number of the principal
components using a sequential forward procedure. Finally, a reduced feature-set is produced.

2.3.5. Classification

The three feature-sets generated in the feature extracted phase are used to construct five well-known
classification models. These models are linear discriminate analysis (LDA), k-nearest neighbor
(KNN), linear and cubic support vector machine (SVM) classifiers, and random forest classifiers.
The distance metric that is used for the KNN is Euclidian and the number of neighbors (K) is equal
to 1. These classification models are first used to detect stress and non-stress states. Next, they are
used to distinguish between two stress levels (low and high stress levels). All models are tested using
5-fold cross-validation.

2.4. Performance Evaluation

Several metrics are used to evaluate the performance of the proposed system. These metrics are the
classification accuracy (CA), sensitivity, specificity, Goodness Index (G), precision, Matthew correlation
coefficient, diagnostic odds ratio (DOR), and receiver operating characteristic (ROC) analysis.

CA =
TP + TN

TN + FP + FN + TP
(8)

Sensitivity =
TP

TP + FN
(9)

Speci f icity =
TN

TN + FP
(10)

GoodnessIndex =

√
(1− Sensitivity)2 + (1− Speci f icity)2 (11)

Precision =
TP

TP + FP
(12)

MCC =
TP× TN − FP× FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(13)

DOR =
TP× TN
FP× FN

(14)

where TP is the true positive, which is the number of positive class instances that are correctly classified.
TN is the true negative, which is the number of negative class instances that are correctly classified.
FP is the false positive, which is the number of negative class instances that are incorrectly classified as
positive class, and FN is the false negative, which is the number of positive class instances that are
incorrectly classified as negative class.
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3. Results

The main objective of this study is to build a portable real-time EEG-based system to detect stress
states and distinguish between stress levels. The mental arithmetic test is a popular stress inducer,
and so is used in this study. This study presents a new MSD system which consists of four phases,
or experiments. Phase one—two feature extraction methods are used to extract valuable features from
segmented EEG data. Afterwards, a hybrid feature-set (Feature-Set 3) is formed by fusing feature-set 1
and 2. Phase two—the appropriate electrode site placement is selected, which has higher influence on
stress detection rates. This part examines the electrode placements on different sites on the skull and
selects the location which has the higher influence on the accuracy of the system. Phase three—we
investigate the optimal number of principal components in the sequential forward search strategy
to reduce the dimension of the feature space. Compressing feature space commonly improves the
performance of an MSD system. Minimizing the number of EEG channels used in mental stress
detection and evaluation would make the system more mobile and easier to set up, and maintain the
real-time EEG-based mental stress detection system. Therefore, we come to phase four, where we
examine the impact of each frontal electrode and select a minimum number of frontal electrodes in
order to construct a portable MSD system. Five classifiers were built to identify stress and distinguish
between two stress levels (low and high). Figure 3 illustrates the four experiments.
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3.1. Experiment One Results

Two feature-sets (feature-set 1 and 2) were introduced in our study. Subsequently, a hybrid
feature-set (Feature-Set 3) was made by combining these two feature-sets. These feature-sets were
first used to detect stress and non-stress states. The classification accuracy of those three feature-sets,
when used for detecting stress and non-stress states, are shown in Figure 4. It is clear from Figure 4 that
Feature-Set 3 has higher accuracy than the other two feature-sets except for LDA which has the same
performance as feature-set 1. Table 3 shows the evaluation metrics using Feature-Set 3 which achieved
a higher accuracy for detecting stress. The sensitivity and specificity rates are all above 99% except for
LDA, which is above 98%, and the sensitivity of linear SVM which is 98.84%. On the Goodness Index,
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they are all below 0.02. Figure 5 shows the ROC curve for detecting stress for both a cubic SVM and a
KNN classifier. The area under ROC curve (AUC) is one.
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Figure 5. Receiver operating characteristic (ROC) curves for detecting stress and non stress; (a) cubic
support vector machine (SVM) classifier, (b) k-nearest neighbour (KNN) classifer.

Table 3. Evaluation metrics (with their 95% confidence intervals) for detecting stress using Feature-Set 3.

Classifier Accuracy
(%)

Sensitivity
(%)

Specificity
(%)

Goodness
Index

Precision
(%) MCC (%) DOR

LDA 98.50
(98.49–8.63)

98.89
(98.85–98.93)

98.45
(98.17–98.73)

0.0198
(0.0196–0.020)

99.83
(99.69–99.96)

99.7
(99.66–99.76)

1.3 × 106

(0.669–1.952) × 106

Linear
SVM

99.85
(99.8–99.88)

98.84
(99.81–9.876)

99.86
(99.85–99.88)

0.020
(0.0017–0.002)

99.95
(99.94–99.95)

99.64
(99.57–99.7)

1.36 × 106

(0.504–3.2306) × 106

Cubic
SVM

99.90
(99.85–99.93)

99.88
(99.81–99.95)

99.9
(99.88–99.93)

0.015
(0.0009–0.002)

99.96
(99.94–99.96)

99.7
(99.67–99.74)

8.08 × 105

(6.209–9.946) × 105

KNN 99.86
(99.84–99.89)

99.95
(99.91–99.99)

99.79
(99.75–99.81)

0.0022
(0.002–0.0025)

99.99
(99.98–100)

99.64
(99.94–99.98) >1000

Random
Forest

99.68
(99.64–99.72)

99.52
(99.42–99.62)

99.76
(99.69–99.83)

0.0054
(0.0044–0.006)

99.8
(99.8–99.8)

99.14
(99.08–99.19)

7.8 × 104

(6.8783–8.733) × 104
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Afterwards, the three subsets of features are used to classify stress levels. The classification
accuracy of the three feature-sets used to classify stress levels is shown in Figure 6. Figure 6 shows
that Feature-Set 3 yielded the highest accuracies using LDA, cubic and linear SVM, KNN and random
forest classifiers respectively compared to the other two feature-sets. Table 4 shows the evaluation
metric using Feature-Set 3 which achieved the highest accuracy for classification of stress levels.
Table 3 indicates that the sensitivity ranges between (98%–100%) and the specificity ranges between
(85%–99.4%). Figure 7 shows the ROC curve for detecting stress for both Cubic SVM and KNN classifier.
The Goodness Index values are in the range of (0.00634–0.0151). The area under ROC curve (AUC)
is one.
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Table 4. Evaluation metrics (with their 95% confidence intervals) for evaluating stress levels using
Feature-Set 3.

Classifier Accuracy
(%)

Sensitivity
(%)

Specificity
(%)

Goodness
Index

Precision
(%) MCC (%) DOR

LDA 98.6
(98.37–98.83)

99
(98.85–99.56)

97
(96.32–97.60)

0.03156
(0.0259–0.037)

97.98
(97.68–98.27)

96.63
(96.25–97)

4589.8
(3451–5728.6)

Linear
SVM

94.5
(94.08–94.84)

98
(97.83–98.24)

85
(83.93–86.11)

0.151
(0.1401–0.161)

94.16
(93.55–94.77)

85.42
(85.19–85.71)

271.2
(244.74–297.65)

Cubic
SVM

99.7
(99.52–99.79)

99.85
(99.82–99.89)

99.4
(99.05–99.73)

0.00634
(0.0032–0.009)

99.69
(99.61–99.76)

99.49
(99.37–99.62)

2.39 × 105

(1.255–3.53) × 105

KNN 99
(98.86–99.03)

99.4
(99.25–99.47)

97.7
(97.49–98.10)

0.02296
(0.020–0.0259)

98.27
(97.88–98.66)

97.27
(97.03–97.51)

6.97 × 103

(5.426–8.50) × 103

Random
Forest

98.91
(98.77–99.05)

100
(100–100)

96.02
(95.44–96.59)

0.0398
(0.034–0.0456)

100
(100–100

97.38
(97.19–97.56) >1000

In order to show the ability of the proposed feature to distinguish between stress and non-stress
scenarios and to separate between stress levels, two figures are plotted to present two-dimensional
scatter plots of two different features of the proposed feature-set. Figure 8 shows a two-dimensional
scatter plot of time domain second power spectral moment vs. time domain forth power spectral
moment feature for stress and non-stress cases. Figure 9 shows a two-dimensional scatter plot of time
domain second power spectral moment vs. time domain forth power spectral moment feature for
high and low stress levels cases. These figures verify the effectiveness of the proposed features to
differentiate between both stress and non-stress, and stress levels.
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3.2. Experiment Two Results

As mentioned before, the main aim of the experiment is to explore the electrode locations on
different sites on the brain and chooses the site which has the greater impact on the accuracy of the
system. This process will also reduce the number of channels employed to construct the MSD system
which accordingly makes it more reliable and efficient. Figure 10 shows a bar chart that compares
between the performance of several classifiers constructed from Feature-Set 3 extracted from several
sites on the skull to detect stress. It is clear from this figure that using only the frontal activation
channel, the performance of the MSD system reached 99.98% using the KNN classifier which is higher
than all other sites. Table 5 shows the values of accuracy for detecting stress and non-stress from
different electrode sites. The frontal activation site has also greater impact on evaluating stress levels
as well, shown in Figure 11. Figure 11 shows a bar chart that compares the performance of several
classifiers constructed using the proposed Feature-Set 3 extracted from different sites on the skull to
evaluate stress levels. The highest accuracy of 99.78% was achieved using the KNN classifier. Table 6
shows the values of accuracy for evaluating stress levels from different electrode sites

Table 5. Accuracy (95% CI) for detecting stress and non-stress from different electrode sites.

Classifier Frontal Temporal Central Parietal Occipital

LDA 99.3
(99.28–99.32)

98.44
(98.37–98.50)

98.42
(98.36–98.48)

98.56
(98.45–98.67)

98.52
(98.46–98.58)

Linear SVM 99.75
(99.67–99.82)

98.31
(98.26–98.38)

98.66
(98.14–99.18)

98.32
(98.18–98.46)

98.24
(98.17–98.30)

Cubic SVM 99.91
(99.88–99.93)

99.7
(99.67–99.73)

99.26
(99.19–99.33)

99.46
(99.39–99.53)

99
(98.92–99.12)

KNN 99.98
(99.96–100)

99.6
(99.81–99.92)

99.6
(99.56–99.67)

99.4
(99.245–99.55)

99.2
(99.05–99.35)

Random Forest 99.67
(99.65–99.69)

99.42
(99.39–99.46)

99.22
(99.19–99.25)

99
(98.97–99.11)

99
(98.96–99.08)
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Figure 10. A comparison between classification accuracies of several classifiers constructed using the
proposed Feature-Set 3 extracted from different sites on the skull to detect stress and non-stress states.
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Figure 11. A comparison between classification accuracies of several classifiers constructed using the
proposed Feature-Set 3 extracted from different sites on the skull to access stress levels.
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Table 6. Accuracy (95% CI) for evaluating stress levels from different electrode sites.

Classifier Frontal Temporal Central Parietal Occipital

LDA 88.74
(88.30–89.18)

90.5
(90.11–90.89)

80.64
(80.39–80.88)

79.92
(79.59–80.05)

75.46
(75.29–75.63)

Linear SVM 85.92
(85.34–86.49)

87.5
(87.19–87.76)

76.74
(76.43–77.04)

78
(77.79–78.25)

72.2
(72.2–72.2)

Cubic SVM 99
(98.79–99.24)

98.58
(98.31- 98.85)

94.48
(93.96–95.0)

93.32
(92.83–93.80)

90.18
(89.82– 90.53)

KNN 99.78
(99.72–99.84)

99
(98.88–99.12)

95.4
(94.96–95.84)

94
(93.81–94.27)

89.84
(89.64–90.03)

Random Forest 97.91
(97.73–98.09)

97
(96.73–97.33)

91.96
(91.69–92.22)

91.92
(91.73–92.12)

88.93
(88.64–89.22)

3.3. Experiment Three Results

The aim of this experiment is to investigate the influence of reducing the feature space using PCA
on the performance of MSD system. The number of principal components are chosen in a sequential
forward strategy. Figure 12 shows the selection process for the optimal number of principle components
for detecting stress. Figure 12 shows that, using only 58 and 15 principal components, the accuracy of
detecting stress reached 100% and 99.8% using cubic SVM and KNN classifiers respectively.
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Figure 13 represents the selection procedure for the optimal number of principle components for
evaluating stress levels. It is clear from Figure 13 that, using only 30 and 54 principal components,
the accuracy of classifying stress levels reached 99.4% and 99.7% using cubic SVM and KNN
classifiers respectively.
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3.4. Experiment Four Results

As stated before, one of the aims of this manuscript is to build a portable real-time EEG-based
mental training neuro-feedback system to detect and evaluate stress in real time with high accuracy.
Minimizing the number of EEG electrodes used in mental stress detection and evaluation would
make the system more portable and easier to operate, and maintain the real-time EEG-based mental
stress detection system. In this experiment, the impact of each frontal electrode on stress detection
and evaluation rates is investigated individually. Afterwards, the influence of fusing two or three
electrodes which have higher detection and evaluation rates when used individually is examined for
both stress detection and stress level evaluation.

It is clear from Table 7 that Fp1 and Fp2 electrodes have the highest impact on detecting stress and
non-stress. Therefore, each one can be used alone to detect stress, and the results show that only one
frontal electrode, such as Fp1 or Fp2, is capable of detecting stress and non-stress. However, the impact
of fusing Fp1 and Fp2 is examined and shown in Table 8, which shows the impact of using Fp1 and
Fp2 on detecting stress and non-stress using five-fold cross validation.

Table 7. Accuracy (%) with (95% CI) for detecting stress and non-stress, and evaluating stress levels
using each frontal electrode individually using five-folds cross validation.

Classifier Fp1 Fp2 F3 F4 FZ F7 F8

Detection of Stress and Non-stress

KNN 99.74
(99.70–99.78)

99.54
(99.49–99.59)

99.37
(99.35–99.39)

97.82
(97.77–97.86)

99
(98.98–99.08)

99.29
(99.21–99.37)

98.87
(98.93–99.02)

Cubic
SVM

99.64
(99.63–99.65)

99.39
(99.35–99.43)

99.18
(99.14–99.22)

97.78
(97.73–97.84)

99.22
(99.20–99.25

99.14
(99.09–99.19)

99
(98.99–99.07)

Evaluating Stress Levels

KNN 92
(91.71–92.29)

90
(89.82–90.34)

90.74
(90.32–91.16)

85.58
(85.32–85.85)

88.76
(87.96–89.56)

91.36
(90.92–91.79)

92.5
(92.18–92.82)

Cubic
SVM

88.48
(88.06–88.89)

88.48
(88.21–88.75)

88.62
(88.07–89.17)

87.3
(87.0–87.59)

89.58
(89.29–89.87)

92.26
(91.89–92.63)

90.98
(90.60–91.36)
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Table 8. Performance metrics (95% CI) for detecting stress and non- stress with Fp1 and Fp2 electrodes
using five-folds cross validation.

Classifier Accuracy Sensitivity Specificity Precision MCC Goodness
Index DOR

KNN 99.9
(99.84–99.97)

99.9
(99.65–99.99)

99.94
(99.84–99.98)

99.81
(99.49–99.93)

99.74
(99.71–99.77)

0.006
(0.004–0.007)

1057474
(0.67–1.44) × 106

Cubic
SVM

99.75
(99.74–99.77)

99.65
(99.58–99.71)

99.79
(99.77–99.81)

99.37
(99.31–99.43)

99.34
(99.29–99.40)

0.0041
(0.003–0.005)

124250
(1.14–1.35) × 105

Table 8 shows that fusing Fp1 and Fp2 improves the performance metric for detecting stress,
therefore the two Fp1 and Fp2 electrodes are sufficient to construct an efficient and portable MSD
system. In order to further validate the performance of the proposed system and its ability to predict if
a new person has stress or non-stress, leave-subject-out validation is performed as well and shown
in Table 9. The results of Table 9 show the efficiency of the proposed system in predicting stress and
non-stress on new patients.

Table 9. Performance metrics (95% CI) for predicting stress and non-stress with Fp1 and Fp2 electrodes
using leave-subjects-out cross validation.

Classifier Accuracy
(%)

Sensitivity
(%)

Specificity
(%)

Precision
(%) MCC (%) Goodness

Index DOR

KNN 98.48
(97.47–99.49)

97.78
(97.07–100)

97.75
(95.90–99.59)

99.26
(98.66–99.86)

96.14
(93.69–98.58)

0.032
(0.0041–0.05) >1000

Cubic
SVM

98.67
(97.82–99.53)

98.96
(97.67–100)

98.26
(95.68–100)

99.29
(98.44-
100)

96.6
(94.47–98.73)

0.02
(0–0.04) >1000

In the case of evaluating stress levels, Table 7 shows that the highest accuracy achieved for
evaluating stress levels using one electrode is 92.5% using the F8 electrode, followed by 92% and 91.36%
using Fp1 and F7 respectively. To improve the performance of the proposed system for evaluating
stress levels using the minimum number of electrodes, the impact of fusing two or three electrodes is
investigated and shown in Table 10.

Table 10. Performance metrics (95% CI) of the proposed system constructed using (Fp1 + F7) and
(Fp1 + F7 + F8) to evaluate stress levels using five-folds cross validation.

Classifier Accuracy
(%)

Sensitivity
(%)

Specificity
(%)

Precision
(%) MCC (%) Goodness

Index DOR

Fp1 + F8

KNN 97.52
(94.68–100)

97.59
(97.19–97.97)

99.36
(99.15–99.57)

98.37
(97.9–98.83)

97.32
(96.94–97.69)

0.025
(0.021–0.096)

7708
(0.51–1.03) × 104

Cubic
SVM

97.48
(97.37–97.58)

94.96
(94.6–95.27)

98.46
(98.37–98.54)

95.56
(95.75–96.16)

93.73
(93.47–93.97)

0.053
(0.049–0.056)

3611
(1.56–8.78) × 103

Fp1 + F7 + F8

KNN 99.26
(99.17–99.34)

98.35
(98.05–98.64)

99.6
(99.56–99.66)

98.9
(98.65–99.15)

98.15
(97.99–98.32)

0.017
(0.014–0.02)

15935
(1.37–1.81) × 104

Cubic
SVM

98.36
(98.25–98.46)

96.65
(96.23–97.07)

99
(98.89–99.15)

97.43
(97.10–97.75)

95.89
(95.62–96.15)

0.035
(0.031–0.04)

2977
(2.6–3.34) × 103

The results of Table 10 show the ability of the proposed system to evaluate level increase using
two electrodes. However, the performance of the proposed system is further improved using the three
electrodes (Fp1 + F7 + F8). In order to further validate the performance of the proposed system and its
ability to predict stress levels for a new person, leave-subject-out validation is performed as well and is
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shown in Table 11. However, the results of Table 11 show that the proposed system has a lower ability
to predict stress levels.

Table 11. Performance metrics for predicting stress levels with Fp1 + F8 and Fp1 + F7 + F8 electrodes
using leave-subjects-out cross validation.

Classifier Accuracy
(%)

Sensitivity
(%)

Specificity
(%)

Precision
(%) MCC (%) Goodness

Index DOR

Fp1 + F8

KNN 76.85
(67.14–86.58)

67.15
(53.17–81.25)

78.85
(64.54–93.15)

63.83
(49.6–77.56)

48.88
(34.13–63.63)

0.39
(0.2–0.58)

17
(7.669–26.4)

Cubic
SVM

75.8
(66.59–84.99)

65.26
(50.37–76.14)

80.3
(65.89–94.73)

61.64
(47.85–75.42)

44.87
(30.79–58.95)

0.4
(0.24–0.61)

14.13
(2.675–25.59)

Fp1 + F7 + F8

KNN 76.2
(65.77–86.61)

65.66
(48.56–82.77)

80.14
(64.02–96.256

63.48
(47.97–78.99)

47.85
(32.13–63.57)

0.444
(0.295–0.593)

22.28
(0.6879–43.87)

Cubic
SVM

73.83
(62.82–84.83)

52.04
(34.86–69.22)

77
(58.98–95.13)

60.77
(44.26–77.28)

48
(32.25–63.81)

0.545
(0.424–0.67)

12.39
(3.92–20.86)

4. Discussion

This study proposes an effective MSD system to detect stress and classify stress levels. For this
purpose, the study design consists of three parts. The first part compares two feature-sets. The first
feature-set consists of frequency-based features, whereas the second one consists of AR and RMS
features. Here, the influence of combining time and frequency features is assessed. The analysis showed
that combining time and frequency features increases stress detection and stress level classification
rates. In order to verify the effectiveness of our proposed system, the results are compared with
the classification accuracy of three feature-sets from literature. These include the feature extraction
method proposed by Khushaba et al. [22] and the two approaches presented by Mahajan [18]. The two
feature-sets reported by Mahajan include some peak related features and PSD features. Mahajan’s first
feature-set comprises four peak-related features which are number of negative peaks, the number of
positive peaks, the mean of negative peaks, and the mean of positive peaks. The second feature-set
of Mahajan’s consists of the mean spectral power estimation in beta (13–30 Hz), alpha (8–13 Hz),
theta (4–8 Hz), and delta (0.5–4 Hz) EEG sub-bands respectively. The feature-set of khushaba et al.
represents features extracted using wavelet packet decomposition where the frequency components
are selected using a mutual information estimation procedure that depends on the generalization of
the fuzzy entropy theory.

Figure 14 shows the accuracies for detecting stress and non-stress states using our proposed
Feature-Set 3 compared to Khushaba and the two feature-sets from Mahajan using only Fp1 + Fp2
frontal electrodes. It is clear from Figure 14 that the accuracy of our proposed Feature-Set 3 (99.94%) is
greater than that of Khashaba et al. (98.6%) and the two feature-sets of Mahajan (64.7%, 93.6%) using
LDA classifier. Additionally, the accuracies of our proposed Feature-Set 3 (99.93%, 99.7, 99.75%) is
greater than that of Khashaba et al. (99.6%, 99.2%, 99.7%), the peak feature-set of Mahajan (96.9%,
97.1%, 92.9%), and the PSD feature-set of Mahajan (99.6%, 98.5%, 99%) using KNN, Linear SVM, cubic
SVM classifier respectively.
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Figure 14. The classification accuracy of detecting stress and non-stress states using our proposed
Feature-Set 3 compared to Khushaba et al. [22] and the two feature-sets from Mahajan [18] using only
Fp1 + Fp2 frontal electrodes.

The proposed Feature-Set 3 was also compared with Khushaba et al. and the two feature-sets from
Mahajan, but in this case for evaluating stress levels using only Fp1 + F7 + F8 electrodes. Figure 15
shows the classification accuracies of classifying stress levels using our proposed Feature-Set 3
compared to Khushaba and the two feature-sets from Mahajan. It is clear from Figure 15 that the
proposed Feature-Set 3 has better performance in evaluating stress levels compared to the other
feature-sets from Khushaba et al. and Mahajan. The accuracy of our proposed Feature-Set 3 (82%,
99.26%, 88.1%, and 98.36%,) are higher than the Mahajan PSD feature-set (75.4%, 96.7%, 75.7%, and
94.3%), and Mahajan Peak feature-set (71.7%,72.3%, 63.8%, and 74.6%), using LDA, KNN, linear SVM,
and cubic SVM classifiers respectively. The accuracy of the proposed Feature-Set 3 is also greater
than Khushaba et al.’s feature-set as well (81.7%, 93.9%, 82.1%, and 95.2%), using LDA, KNN, linear
SVM, and cubic SVM classifiers. This suggests that our proposed system, using the hybrid feature-set,
is more efficient and has higher ability in identifying stress levels.Diagnostics. 2020, 10, x FOR PEER REVIEW 21 of 25 
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Figure 15. The classification accuracies for classifying stress levels using our proposed Feature-Set 3
compared to Khushaba et al. [22] and the two feature-sets from Mahajan [18].
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In the second part of the proposed technique, the selection of skull site and its influence on the
performance of the MSD system are examined. Based on [4,30,31,55] that showed that EEG signals
acquired from the frontal site of the skull are capable of evaluating and detecting the mental stress,
this experiment was conducted and proved that frontal brain activation has the most impact on
detecting and classifying stress levels. The accuracy of the proposed MSD with frontal brain activation
reached 100% for detecting stress and 99.78% for classifying stress levels. The experiment showed
that only seven electrodes are enough to achieve a reliable and efficient MSD system. Note that the
feature space dimension is 228 after feature extraction. In the third part of the proposed study, PCA is
used to reduce the feature space dimension and to construct the MSD and lower its complexity. Here,
we showed that PCA is capable of improving the performance of MSD constructed using a cubic SVM
classifier to reach an accuracy of 100% for detecting stress and 99.4% for classifying stress levels with
only 58 and 54 principal components.

As it is clear from the results, KNN and SVM classifiers yielded the highest accuracies for both
detections of stress and stress levels. This is because the KNN classifier is simple, straightforward
and has high effectiveness, even with noisy datasets [56]. Despite its simplicity, it is able to produce
high-accuracy rates in medical applications [57,58]. SVM is a strong classifier, and also has the
capability to alter an input vector which is not linearly distinguishable using a hyperplane into a
higher-dimensional feature space that is able to linearly discriminate between classes of input data
to facilitate the classification process. The process is obtained using a kernel function which maps
the likeness between the input data and the new higher-dimension feature space. A linear kernel is
frequently used when the dataset is just divided by a linear line, which is the case in the feature space
used in the case of detecting stress as shown in Figure 8. However, a quadratic kernel is a nonlinear
kernel used when the dataset is complex and not linearly separable. Cubic kernels may possibly
increase the accuracy. Other benefits of cubic kernels include taking sophisticated mathematical
tractability and direct geometric interpretation [51]. The feature space in the case of classifying stress
levels was not linearly separable, as shown in Figure 9; therefore, the cubic kernel produced better
results than that of the linear kernel in classifying stress levels.

EEG signals are commonly known to be non-stationary. This is due the changes in states of
neuronal assemblies during brain functioning. It is essential to recognize non-stationaries in EEG signal,
because they are illustrative of the underlying actions. This is done by segmenting the EEG signal into
smaller stationary segments [59]. Selecting the appropriate window size which segments EEG signal
into stationary segments is very important so that the model fits the actual and consistent activity of the
brain [60]. There are several ways to check stationarity in literature. Among them, Azami et al. in [61]
suggested that the standard deviation determined for each segment is can be a property that indicates
changes in amplitude or/and frequency, as it remains unchanged in stationary intervals, the differences
of the standard deviation in successive windows indicates stationarity. Furthermore, McEwen verified
that short segments (up to 10 s) usually follow the normal distribution while longer segments (up to
60 s) are not Gaussian. McEwen recommended that EEG could be visualized as a procedure consisted
from short Gaussian segments. A portion of segments that can be thought as Gaussian reduces from
90% to 20% when the segments’ period rises from 4 to 60 s. In contrast, up to 90% of 4-s-long segments
can be believed as stationary while this number decreases to 70%–80% when analyzing 16 s-long EEG
segments [2]. Therefore, we used 4-s segment length.

It was reported in [62,63] that for the medical system to be reliable, it should achieve a sensitivity
greater than or equal to 80%, with a specificity greater than or equal to 95%, a precision greater than
or equal 95%, and a DOR greater than or equal 100. The results in Table 8 show that the proposed
system is reliable and can be used to detect stress and non-stress as the sensitivity is 99.9, specificity is
99.94, precision is 99.81, and DOR is 1057474 using a KNN classifier constructed with only Fp1 and Fp2
frontal electrodes. The results in Table 10 verify that the proposed system is reliable as well as capable
of evaluating stress levels, as the sensitivity is 99.6, the specificity is 98.9, the precision is 98.15, and the
DOR is greater than 100 using a KNN classifier constructed with only Fp1 + F7 + F8 frontal electrodes.
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This means that by using only one or two electrodes, the proposed system is capable of detecting stress
and non-stress. It is also able to evaluate stress levels using only three frontal electrodes with high
performances. The minimum number of electrodes selected to construct the proposed system makes
the system more portable and mobile, and easier to set up.

Furthermore, to validate the ability of the proposed MSD system to predict if a new person has
stress or non-stress, leave-subject-out validation is performed as well. The results in Table 9 confirm the
capability of the proposed system in predicting stress and non-stress using only Fp1 and Fp2 frontal
electrodes. They also reveal that the proposed system is reliable and can be used to predict stress
and non-stress as the sensitivity is 97.78, the specificity is 97.75, the precision is 99.26, and the DOR is
greater than 100 using a KNN classifier. Finally, the ability of the proposed MSD system to predict the
stress level of a new person is tested using leave-subject-out validation. The results in Table 11 shows
that the proposed system has lower capability in predicting stress levels. This is due the imbalance
occurring between the two classes of stress levels. Therefore, future work will focus on investigating
solutions to deal with this imbalance and improve the performance of predicting stress levels.

Comparing the results of the proposed algorithm with recent related work in Table 1, it is quite
clear that the proposed MSD system outperforms other recent related techniques from literature.
More specifically, the accuracies achieved for the proposed technique are 99.9% (sd = 0.015) and
99.26% (sd = 0.08) for identifying stress and non-stress states, and distinguishing between stress levels,
respectively, using only two frontal brain electrodes for detecting stress and non-stress, and three
frontal electrodes for evaluating stress levels as shown in Tables 8 and 10. The results prove that the
proposed method has a competitive performance compared to the state-of-the-art techniques for both
detecting stress and non-stress and classifying stress levels.

5. Conclusions

The main aim of the proposed system is to build a portable real-time EEG-based mental training
neuro-feedback system to detect and evaluate stress levels in real-time with high accuracy using
mental arithmetic tasks. The proposed method introduced a hybrid feature-set (Feature-Set 3) and
used five classification models for this purpose. Minimizing the number of EEG channels used in
mental stress detection and evaluation would make the system more mobile and easier to set up,
and maintain the real-time EEG-based mental stress detection system. This study revealed that the
frontal brain activation has a great impact on detecting and evaluating stress levels and is capable of
achieving high detection and classification rates. Additionally, the study indicated that PCA has the
ability to reduce feature space and enhance stress detection rates. Furthermore, the study indicated
that only one or two frontal electrodes are capable of detecting stress and non-stress, and three
frontal electrodes are able to evaluate stress levels. The results showed that the proposed method
based on the hybrid feature-set was capable of both identifying stress and classifying stress levels.
Moreover, our method outperformed other feature extraction methods in literature. Furthermore, it has
competitive performance compared to the state-of-the-art techniques. Thus, it can be used for stress
management, industrial safety, and education. It will enable clinicians to make an accurate diagnosis
and provide appropriate treatment, which will consequently reduce chances of clinical brain damage
and other health problems. It will also improve the safety standards in industry and will enhance the
quality of education.
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