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Abstract: Carbonaceous chondrites are very primitive meteorites that are rich in carbon. They contain
many soluble organic compounds, including nitrogen heterocycles. These play a crucial role in
present-day living organisms as they are components of the genetic material and of the co-factors
of enzymes. This review outlines the nitrogen heterocycle content of carbonaceous meteorites.
The potential mechanisms of formation of these molecules are also described. Measurements of
the compound-specific carbon and hydrogen isotopic compositions are mentioned as a way of
establishing the origin of the nitrogen heterocycles detected in meteorites.
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1. Introduction

Meteorites are extraterrestrial objects originating from comets or asteroids that survive the passage
through the Earth’s atmosphere and impact the Earth’s surface. They are named after the town or
geographic feature in which they are found. The names of Antarctic meteorites are followed by a
number, in which the first two digits correspond to the year the meteorite was found, and the last
three digits correspond to the specimen number. Around 86% of all meteorites that fall to the Earth
are chondrites. Their parent bodies have not experienced melting, and they are named after the
millimeter-sized spherules (i.e., chondrules) that they contain. The parent bodies of the remaining
14% of meteorites that fall to the Earth have experienced melting and differentiation [1]. Chondrites
can be divided into ordinary (O), enstatite (E), carbonaceous (C), Rumuruti (R), and Kakangari (K)
chondrites, with the ordinary, enstatite, and carbonaceous chondrites further divided into different
groups according to their mineralogy and bulk chemical composition [1-3]. Carbonaceous chondrites
are the most primitive meteorites because their bulk chemical compositions match that of the solar
photosphere (except for the gaseous elements, e.g., H, He, etc.) more closely than any other class of
chondrites [4]. The division of the carbonaceous chondrites into groups include the ones named after
its type specimen (CI, CM, CK, CO, CR, CV), some unusual ones that have been affected by impact
processes (CH and CB), and several ungrouped members [5]. They are further grouped into petrographic
types (ranging from 1 to 6) depending on the intensity of thermal metamorphism or aqueous alteration
on their parent bodies. Thermal metamorphism is the adjustment of the minerals due to the increased
temperatures in the meteorite parent body, while aqueous alteration is the modification of the original
minerals into a new assemblage of minerals, due to the reaction with water at low temperature in the
meteorite parent body. A petrologic type from 3 to 1 indicates increasing aqueous alteration, while a
petrologic type from 3 to 6 indicates increasing thermal metamorphism [6,7]. These processes may
influence the chemical compositions of carbonaceous chondrites [7-9]. Carbonaceous chondrites have
high carbon content (~3.5 wt. %) [10], which may be present in different forms, including organic
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matter [11-13]. More than 70% of this organic matter is in the solvent-insoluble form [14-16], while the
remaining 30% is composed of several solvent-soluble organic compounds [17-19].

Nitrogen heterocycles, i.e., cyclic compounds that have at least one nitrogen atom along
with carbon atoms as members of their rings, have been detected in the solvent-soluble organic
fraction of carbonaceous chondrites. The nitrogen heterocycles detected in carbonaceous meteorites
include pyridine carboxylic acids, diketopiperazine, hydantoins, purines, pyrimidines, triazines,
pyridines, quinolines, carboxylactams, lactams, lactims, and the amino acid proline. Some of these
compounds may have been directly involved in primitive biological systems, as in present-day nitrogen
heterocycles are part of the co-factors of several enzymes as well as of genetic material (Ribonucleic acid
(RNA) and Deoxyribonucleic acid (DNA)) [20]. The exogenous delivery of these meteoritic molecules
between 4.56 to 3.8 billion years ago may have contributed to the inventory of compounds from
which life may have emerged between 3.8 to 3.5 billion years ago [21-32]. Therefore, it is important
to determine which nitrogen heterocycles are present in carbonaceous meteorites, which ones are
indigenous, and what were their formation mechanisms. Measurement of the compound-specific
carbon, hydrogen, or nitrogen isotopic compositions are usually used to determine if organic
compounds detected in carbonaceous chondrites are indigenous or terrestrial contamination.

(Rsample - Rstundﬂrd)
§(%0) = x 1000
Rstandard

The stable isotope compositions are given in & values (%), where R represents D/H for hydrogen,
13C/12C for carbon, or '’N/!*N for nitrogen. The following standards are used: Vienna standard mean
ocean water (VSMOW) for hydrogen, Vienna Pee Dee Belemnite (VPDB) for carbon, and atmospheric
nitrogen for nitrogen. Indigenous organic compounds are enriched in D, 13C, and 1°N (e.g., [17,33-35]).

Meteoritic soluble organic compounds are thought to be formed by different processes:
low temperature reactions in the interstellar medium (supported by D and '®N enrichments [36-41])
and subsequent meteorite parent body accretion, aqueous alteration in the meteorite parent (i.e.,
melting of ice in the asteroid due to heating from the decay of several short-lived radionuclides, such as
26 A1 [42]), or a combination of these two mechanisms [17,41]. This manuscript reviews the nitrogen
heterocycle content of carbonaceous meteorites and their formation mechanisms.

2. Inventory of Meteoritic N-Heterocycles

2.1. Pyridine Carboxylic Acids

Pyridine monocarboxylic acids have been detected in several carbonaceous chondrites [43—46].
They were first detected in Tagish Lake (C2-ungrouped) and Murchison (CM2), with total abundances
of 7.5 and >7 parts-per-million (ppm), respectively [43]. Individual pyridine monocarboxylic acids
present in the water extracts of these two meteorites included nicotinic acid (3-pyridinecarboxylic acid)
and its two isomers (2-pyridinecarboxylic acid and 4-pyridinecarboxylic acid (Figure 1, structures
A1-A3), and at least 12 methyl- and dimethyl-homologs [17]. Some of these compounds were found to
be extra-terrestrial, as shown by the high positive values of §!3C = +20.3%0 + 1.7 and 8D = +129 4 1%
measured for nicotinic acid in Murchison [44,45]. A value of §13C = +20.3 £ 1.2%0 was determined for
one of the methyl homologues of nicotinic acid in Murchison (CM2), and a value of §D = +621 £ 43%
was measured in Murray (CM2) (Table 1) [44,45]. Eight Antarctic CM2 meteorites were further analysed
for pyridine monocarboxylic acids: Allan Hills (ALH) 85013, Dominion Range (DOM) 03183, DOM
08003, Elephant Moraine (EET) 96016, LaPaz Ice Field (LAP) 02333, LAP 02336, Lewis Cliff (LEW) 85311,
and Wisconsin Range (WIS) 91600. The three structural isomers were present in formic acid extracts of
all these meteorites (Table 2) [46]. In addition, pyridine dicarboxylic acids (3,4-pyridinedicarboxylic
acid, 2,5-pyridinedicarboxylic acid, and 3,5-pyridinedicarboxylic acid) were unambiguously identified
in multiple of those meteorite extracts [46] (Figure 1, structures A4-A6).



Life 2018, 8, 28

30f16

A. pyridine carboxylic acids

OH N N
\ X
N
X (o) / 0] =
7 OH ! ©
A2 A3
2-pyridinecarboxylic acid 3-pyridinecarboxylic acid 4-pyridinecarboxylic acid
(picolinic acid) (nicotinic acid) (isonicotinic acid)
e}
O OH o o
o}
Ho N
X HO X OH
OH
= OH
N
— =
N
N
° A6
AS 3,5-pyridinedicarboxylic acid
3,4-pyridinedicarboxylic acid 2,5-pyridinedicarboxylic acid ~-pyridinedicarboxylic act
B. Diketopiperazine C. Hydantoins
(o}
H H
N N
NH
0] 0]
NH
N N
0] H o} H
© 2,4-Imidazolidinedione 5-Methyl-2,4-imidazolidinedione
(Hydantoin) (5-Methylhydantoin)

2,5-Piperazinedione
(Cyclo(glycylglycine))

C. Hydantoins

- - h

5/5-Dlmethyl-2/4- 5-Ethyl-2,4-imidazolidinedione 5-Ethyl-5-methyl-2,4-
imidazolidinedione (5-Ethylhydantoin) imidazolidinedione
(5,5-Dimethylhydantoin) (5-Ethyl-5-methylhydantoin)
0 OH
H
N
o © N
HO
N o
¢} H
co & N
(2,5-Dioxo-4-

imidazolidinyl)acetic acid

; 3-(2,5-dioxo-4-imidazolidinyl)propanoic acid
(5-Carboxymethylhydantoin)

(5-(2-Carboxyethyl)hydantoin)

Figure 1. Cont.



Life 2018, 8, 28

40f16

D. Purines
HaN NH,
N
= N N
N N \ N \
k / )l\ | NH,
AN Z =
N N HoN N N N N
D1 D2 D3
Purine Purine-2,6-diamine Purine-6,8-diamine
(2,6-Diaminopurine) (8-Aminoadenine)
0]
NH, o
NZ N\ HN N> HN l N\>
K N> HN )\N N KN N
N H 2 H H
D4 D5 D6
Adenine Guanine 1,9-Dihydro-purine-6-one
(Hypoxanthine)
D. Purines E. Pyrimidines
0 0
H
N Y
NH l > HN ‘ ‘
)\ / )\ HO )
N N
0] H 0 H E2
D7 E1 4-Hydroxypyrimidine
3,7-Dihydropurine-2,6-dione 2,4(1H,3H)-Pyrimidinedione
(Xanthine) (Uracil)
F. Triazines
NH,

N)\N
)\
H,N N NH,
F1

Melamine

H
HZNYN NH,
NTN
o}

F2

Ammeline

OH
A

F3
Cyanuric acid

Figure 1. Cont.



Life 2018, 8, 28

50f16

G. Pyridine

ﬁ\l
G
N

Gl

2,4,6-trimethylpyridine
(Collidine

H. Quinoline

Quinoline

H3

Isoquinoline 2-methylquinoline

N
X
O
)
XN "
/ ©i)/
H4

\N
H2

Isoquinoline

N
/
H5

4-methylquinoline

I. Carboxylactams

0}
OH
NH
0o
I

5-Oxoproline
(Pyroglutamic acid)

O
MOH
N
0o H
12

2-Methyl-5-oxoproline

o}
HO
HN
o}
I3

6-Oxo-2-piperidinecarboxylic acid
(6-oxopipecolic acid)

I. Carboxylactams J. Lactams

H
N
0@ Q%O
N
H (6]
HO n
14

2-Pyrrolidinone
7-Oxo-2-azepanecarboxylic acid

H
\<Njo
J2
5-Methyl -2-pyrrolidinone
(y-Valerolactam)

J. Lactams
Q 0
é\l H l@
3 "
2-Azepanone

2-Piperidinone ) :
(d-valerolactam) (e-caprolactam)

0]
@
J5

2-Azocanone
(w-Heptalactam)

Figure 1. Cont.



Life 2018, 8, 28

6 of 16

J. Lactams K. Lactims

K1
2,5-pyrrolidinedione
(Succinimide)

J6
2-Azonanone
(w-Caprylolactam)

HN

0
K2

2,6-Piperidinedione
(Glutarimide)

L. Amino acid

0]

OH

NH

L1
Proline

Figure 1. The structure and the International Union of Pure and Applied Chemistry (IUPAC) name

(and other commonly known name) of the nitrogen heterocycles detected in carbonaceous chondrites.

Compounds include pyridine carboxylic acids (A1 to A6), a diketopiperazine (B1), hydantoins (C1 to
C7), purines (D1 to D7), pyrimidines (E1 and E2), triazines (F1 to F3), pyridine (G1), quinolines (H1 to
H3), carboxylactams (I1 to I4), lactams (J1 to J6), lactims (K1 to K2), and amino acid proline (L1).

Table 1. Compound specific stable isotope composition (%o) of individual pyridine carboxylic acids in

Murchison and Murray [44,45].

Murchison Murray
8D s§13¢C 8D 813C
Nicotinic acid +129 +1 +20.3 +1.7 - -
Nicotinic methyl homologue - +20.3 £1.2 +621 £ 43 -

Table 2. The abundances (ppb) of pyridine carboxylic acids in the formic acid extracts of carbonaceous

meteorites [46].

WIS 91600 DOM 03183 DOM 08003 ALH 85013 EET 96016 LAP 02333 LAP 02336 LEW 85311

Picolinic Acid 251 +2 702 +7 482.2 + 48 98.8 + 10 322.0+32 197.1 £ 20 318.4 +32 510.7 £ 51
Nicotinic Acid 96.3 £+ 10 121.9 +£ 12 221.0 £22 139.6 + 14 265.1 £ 26 246.8 £ 25 332.1+33 571.8 £ 57
Isonicotinic Acid 420+ 42 708 £7 153.7 £ 15 674+7 116.7 £ 12 161.5 £ 16 256.9 + 26 2941+ 29

Synthesis of Pyridine Carboxylic Acids

Aqueous alteration in the meteorite parent body seems to influence the synthesis of pyridine
carboxylic acids, with a decrease of their abundances with increasing aqueous alteration, i.e., aqueous
alteration may have had a destructive effect on these compounds [46]. In addition, it was proposed that
the oxidation of alkylpyridines would give pyridine carboxylic acids [47]. Although to date no pyridine
carboxylic acids or their potential precursors (e.g., pyridine) have been detected in the interstellar
medium, they may have been formed by radiation of icy interstellar grains. To test this, a 1:1 ice
mixture of pyridine and CO, was proton-irradiated [46]. Pyridine monocarboxylic acids were later

identified in the corresponding non-volatile residue, with distributions similar to the ones detected
in carbonaceous meteorites, which suggested that interstellar chemistry may have contributed to the
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formation of meteoritic pyridine carboxylic acids. However, it was pointed out that more realistic
interstellar ice compositions should be tested before drawing a conclusive remark [46].

2.2. Diketopiperazine and Hydantoins

2,5-Piperazinedione (cyclo(Gly-Gly)) was the only diketopiperazine detected in carbonaceous
chondrites (Figure 1, structure B1). It was present in the Yamato-791198 (CM2) and Murchison (CM2)
meteorites at the concentrations of 2.1 and 2.6 parts-per-billion (ppb), respectively (Table 3) [48].
Hydantoins were also detected in the same meteorite extracts, with concentrations ranging from
1.0 to 6.5 ppb in Yamato-791198, and from 0.9 to 11.9 ppb in Murchison (Table 3) [48]. Detected
compounds included hydantoin, 5-methylhydantoin, 5,5-dimethylhydantoin, 5-ethylhydantoin,
5-ethyl-5-methylhydantoin, 5-carboxymethylhydantoin, and 5-(2-carboxyethyl)hydantoin (Figure 1,
structures C1-C7). Some of these were previously detected in Murchison, but their concentration was
not determined [49].

Table 3. Concentration (ppb) of a piperazine and the hydantoins in Yamato-791198 and Murchison [48].

Yamato-791198 Murchison
Cyclo(glycylglycine) 21 2.6
Hydantoin 6.5 7.3
5-Methylhydantoin 5.5 11.9
5,5-Dimethylhydantoin 5.6 9.0
5-Ethylhydantoin 1.0 1.5
5-Ethyl-5-methylhydantoin 3.4 6.7
5-Carboxymethylhydantoin n.d. 0.9
5-(2-Carboxyethyl)hydantoin n.d. 1.4

n.d.—Not detected above 0.9 ppb.

Synthesis of Diketopiperazine and Hydantoins

The only detected diketopiperazine (2,5-piperazinedione) in carbonaceous meteorites may
have been formed by oligomerization of amino acids via drying-wetting cycles in the presence of
inorganic materials (e.g., clay minerals) [50-53]. Glycine is more reactive than other amino acids
to form dipeptides by oligomerization on the surface of a clay mineral, which could explain why
2,5-piperazinedione (cyclo(Gly-Gly)) was the only detected diketopiperazine in meteorites [48,51].
Hydantoins, which were present in the same extract as diketopiperazine, were suggested to be formed
by intramolecular dehydration of N-carbamyl amino acids in the parent body of Murchison [49].
However, analysis by Shimoyama and Ogasawara [48] did not support formation of hydantoin
through N-carboxyanhydrides of glycine. Indeed, while the concentrations of hydantoin and
5-methylhydantoin were roughly equal in the Yamato-791198 meteorite (Table 3), only Gly-Gly was
detected (no glycylalanine, alanylglycine, and alanylalanine were detected) [48]. Alternatively, vacuum
UV photo-irradiation of interstellar/circumstellar ice analogues containing H,O, CH3OH and NHj;
has been shown to form small quantities of hydantoin [54].

2.3. Purines, Pyrimidines, Triazines, Pyridines, and Quinolines

Several researchers have detected purines, pyrimidines, triazines, pyridines, and quinolines in
carbonaceous chondrites (Figure 1, structures D1 to H3) [47,55-66]. Throughout the years, there has
been controversy regarding the detection of these compounds, as different research groups found
different purines, pyrimidines, and triazines, in some cases for the same meteorite. Purines (adenine
and guanine) and triazines (melamine and ammeline) (Figure 1, structures D4, D5, F1, F2, respectively)
were detected in the Orgueil meteorite (CI1) by Hayatsu and co-authors [55,56]. Adenine, guanine,
melamine, and cyanuric acid (Figure 1, structure F3) were also detected in Orgueil by the same research
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group when using drastic extraction conditions (hot temperature, 3-6 M HCl or CFsCOOH) [57].
On the other hand, Folsome and co-authors found 4-hydroxypyrimidine (Figure 1, structure E2) and
heterogenous classes of speculative pyrimidines in Murchison (CM2), Murray (CM2), and Orgueil,
which did not agree with the results of Hayatsu and co-authors [58-60]. The explanation for this
discrepancy was found a few years later. Xanthine, and tentatively guanine and hypoxanthine (Figure 1,
structures D7, D5, D6, respectively) were detected in formic acid extracts of the Murchison meteorite by
dual-column, ion-exclusion chromatography and ultraviolet spectroscopy [61]. Hydroxypyrimidines
were detected only after the silylation of a water extract, suggesting that the compounds previously
detected were terrestrial contaminants from the silylation reagent [61]. Uracil (Figure 1, structure
E1) was detected for the first time in water and formic acid extracts of Murchison, Murray, and
Orgueil using fractionation techniques and ion exclusion chromatography with UV spectroscopy [62].
Orgueil contained 27 ppb, while Murchison contained 33 ppb of uracil (Table 4). Adenine, guanine,
hypoxanthine, and xanthine were also detected in formic acid extracts of these three meteorites [63].
Triazines were not detected and, similarly to hydroxypyrimidines, were suggested to be terrestrial
contamination resulting from the experimental procedures used previously [55,56]. The efficiency of
the extraction procedure for purines, pyrimidines and triazines was determined by extracting a sample
of the Allende meteorite (CV3), which was spiked with known amounts of standard compounds [63].
Recoveries of these compounds for the water extraction after desalting ranged from 41% to 81%,
while for formic acid, it had an average recovery of 71% [63]. A conclusion about the origin of purines
and pyrimidines detected in meteorites was obtained in 2008 when compound-specific carbon isotope
measurements of these compounds were performed by using gas chromatography-combustion-isotope
ratio mass spectrometry (GC-C-IRMS) [65]. Carbon isotope ratios of uracil and xanthine in Murchison
(813C = +44.5%0 and +37.7%q, respectively), and of uracil and thymine from a soil collected in the
proximity of the meteorite fall site (5'>C = —10.6%0 and —15.9%q, respectively) showed that uracil and
xanthine detected in the Murchison meteorite were enriched in '3C and therefore were indigenous
to this meteorite (Table 5) [65]. Purines and pyrimidines were detected in several other meteorites.
Guanine, and possible xanthine and hypoxanthine, were detected in formic acid extracts of Y-74662
(CM2) and Y-791198 (CM2) [64]. Purine, purine-2,6-diamine, purine-6,8-diamine (Figure 1, structures
D1 to D3), adenine, guanine, hypoxanthine, and xanthine were detected in some of the following
meteorites: Orgueil (CI1), Meteorite Hills (MET) 01070 (CM1), Scott Glacier (SCO) 06043, (CM1)
Allan Hills (ALH) 83100 (CM1/2), Lewis Cliff (LEW) 90500 (CM2), Lonewolf Nunataks (LON) 94102
(CM2), Murchison (CM2), Grosvenor Mountains (GRO) 95577 (CR1), Elephant Moraine (EET) 92042
(CR2), Graves Nunataks (GRA) 95229 (CR2), and Queen Alexandra Range (QUE) 99177 (CR2) [66].
The total purine abundances were up to 12 times higher in CM2 carbonaceous chondrites than in
the other analysed meteorites (Table 4, [66]). Within CM chondrites, the abundances and diversity of
purines decreased with increasing aqueous alteration [66]. Pyridines (2,4,6-trimethylpyridine) (Figure 1,
structure G1) and quinolines (quinoline, isoquinoline, 2-methylquinoline and 4-methylquinoline)
(Figure 1, structures H1 to H5) were also detected in Murchison [47].
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Table 4. The abundances (ppb) of purines [66] and a pyrimidine [62] in formic acid extracts of carbonaceous meteorites. Numbers in parentheses represent
concentrations for tentative structural assignments (i.e., they were usually due to low S/N coupled with a complex multiple reaction monitoring (MRM) chromatogram,
not allowing for unambiguous assignment). The + sign indicates the positive identification for the compound (but no quantitation).

Orgueil SCO 06043 MET 01070 GRO 95577 ALH 83100 Murchison LEW 90500 LON 94102 GRA95229 EET 92042 QUE 99177

Guanine 20 ) 29 <2t 21 56 167 244 4 <2t <2t
Hypoxanthine 5) 4) <3t <3t 4 26 23 94 4) <3 <3t
Xanthine <10t <10t <10t <10t (4) 60 22 77 <10t <10t <10t
Adenine 7 4 5 <0.5 1 5 10 30 21 5 11
Purine 5 <1t <1t <1t <01* 3 1 6 9 4) 7
2,6-Diamonopurine <2t <2t <2t <2 <02* + <02* 5 <2t <2t <t
Uracil 27 n.d. n.d. n.d. n.d 33 n.d. n.d. n.d. n.d. n.d.

t—Not detected and reported as upper limit. n.d.—not determined.

Table 5. Compound-specific stable isotope composition (§!*C in %o) of uracil and xanthine in Murchison [65].

Murchison

Uracil +44.5 + 2.3
Xanthine +37.7 £ 1.6
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Synthesis of Purines, Pyrimidines, Pyridines, and Quinolines

Only upper limits of pyrimidines, pyridine, quinoline, and isoquinolines were detected in the
gas phase of astrophysical environments [67-70], which may be explained by their low stability
against UV radiation in these environments [71,72]. Laboratory work has demonstrated that uracil,
cytosine, and thymine may be formed by UV photoirradiation of astrophysical ice analogues containing
pyrimidine [73-76]. UV photoirradiation of purine mixed with combinations of H;O and NHj ices
resulted in the formation of adenine, guanine, and other purine derivatives [77]. The formation of
adenine, guanine, and analogues in a UV-irradiated mixed HyO:NH3 ice (10:1) containing purine was
confirmed by using ab initio and density functional theory computations [78]. These investigations
suggested a multistep reaction mechanism involving water, ammonia, a purine cation, and hydroxyl
and amino radicals. They predicted that mono-substituted products (preferentially adenine
and 2-hydroxypurine) were more energetically favourable, followed by bi-substituted product
(preferentially isoguanine and xanthine) [78]. Experimental results were in agreement with ab initio,
with adenine and hypoxanthine as the most abundant products, followed by the bi-substituted
photoproducts [77]. Purines and pyrimidines may also be formed by polymerization of ammonium
cyanide solutions at temperatures ranging from —78 °C to +80 °C, which could have happened in
the parent body of carbonaceous chondrites [79-89]. Thermochemical computational simulations
show that Fischer-Tropsch type (FIT) synthesis is likely the dominant source of nucleobases within
a meteorite parent body (planetesimal) model, followed by non-catalytic synthesis (under certain
chemical conditions) [90]. Pyridine, quinoline, and isoquinoline can be formed from the UV irradiation
of benzene and naphthalene in H,O and HyO:NHj ices at low temperature [91]. This study also
showed that these compounds may be formed in icy grains without requiring that they be formed in
or condense from the gas phase, therefore avoiding photodegradation [91]. Other suggested formation
mechanisms of pyridines include FIT reactions, e.g., the synthesis of alkyl pyridines by catalytic
reactions of aldehydes and ammonia [47].

2.4. Carboxylactams, Lactams, and Lactims

Several carboxylactams were detected in the Murchison meteorites, including 5-oxoproline,
2-methyl-5-oxoproline, 6-oxo-2-piperidinecarboxylic acid, and 7-oxo-2-azepanecarboxylic acid (Figure 1,
structures I1 to 14) [49]. Although no abundances were determined for this class of compounds, results
suggest that the alkyl-substituted five-and six-membered ring carboxy lactams are the most abundant.
Lactams are also present in the Murchison meteorite, including the five-membered ring compound
2-pyrrolidone to at least the nine membered ring compound 2-azonanone (Figure 1, structures J1 to
J6). Both lactams and carboxylactams present in Murchison include most of their structural isomers
based on mass spectra and retention time comparison to those of silylated standard compounds or
mass spectra with the expected fragment ions [49]. For the carboxylactams, the seven-carbon isomers
(i.e., alkyl-substituted five-and six-membered ring carboxy lactams) are the most abundant members
of the series, and a nine-carbon homologue is the highest member of the series. The lactams start
with the five-membered ring compound and extends to at least the nine membered ring compound
(8-octanelactam) [49]. Finally, 2,5-pyrrolidinedione and 2,6-piperidinedione (two lactims) were also
positively identified in the Murchison meteorite (Figure 1, structures K1 and K2).

Synthesis of Carboxylactams, Lactams, and Lactims

The mechanisms for the synthesis of carboxylactams, lactams and lactims in carbonaceous
meteorites have been proposed [49]. Carboxylactams were suggested to be formed by dehydration
of N-carbamyl amino acids (formed by the reaction of cyanates with amino acids), with subsequent
decarboxylation leading to lactams. Alternatively, carboxylactams would be formed via dehydration
of the corresponding amino acid. The reaction of hydantoins with cyanates would form an acid amide
derivative, which would subsequently synthesize a lactim via dehydration [49].
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2.5. Amino acid Proline

The amino acid proline (Figure 1, structure L1) was detected in Murchison and Murray [92,93].
Concentrations of proline ranged from 622 to 1550 ppb in the Murchison meteorite, while it was
400 ppb in Murray [93-96]. The indigenous nature of proline in Murchison was indicated by its stable
nitrogen isotope composition (5!°N value of +50%o for D,L-proline) [97].

Synthesis of the Amino Acid Proline

Amino acids may be formed by UV photolysis of interstellar ice analogs. In fact, proline was
found in the residues of interstellar ice analogs processed with UV radiation [98,99]. A radical-radical
mechanism of formation of amino acids in interstellar ice analogs was proposed [100]. It was later
shown that a modified radical-radical mechanism could happen, but general amino acid formation
occurs via multiple pathways [101]. A more recent study using chemical retrosynthesis shows that
proline in interstellar ices may be formed from the amine precursor butylamine [102].

3. Astrophysical and Astrobiological Implications of Meteoritic N-Heterocycles

Several N-heterocycles have been detected in carbonaceous chondrites, and their synthesis may
have an interstellar heritage via low temperature reactions, followed by accretion to the meteorite
parent body. Furthermore, aqueous alteration in the meteorite parent may have also played a role on
its own on the synthesis of N-heterocycles or after interstellar medium synthesis and accretion [17,41].
Although compound-specific carbon, hydrogen, or nitrogen isotopic compositions have been performed
for N-heterocycles, the available data are extremely limited and were obtained for only a handful of
individual compounds [44,45,65,96] (Tables 1 and 5). The lack of an extensive study on the simultaneous
analysis of at least two sets of data of the compound-specific carbon, hydrogen, or nitrogen isotopic
compositions for all the detected classes of meteoritic N-heterocycles forfeits a complete understanding
of the mechanisms of formation of these compounds. This research is certainly worth exploring in the
future to fully master their formation mechanisms.

The prebiotic contribution of meteoritic N-heterocycles must be viewed first in light of their
solubility on the oceans of the primitive Earth, i.e., how easily they are extracted from carbonaceous
chondrites and could be used in chemical reactions on our early planet, followed by their potential
use by primitive living organisms. Some N-heterocycles (e.g., pyridine carboxylic acids, hydantoins,
purines, pyrimidine, etc.) are soluble in water, which means that they could potentially participate in
primitive biological systems. However, the abundances of individual N-heterocycles in carbonaceous
chondrites are low, in the order of a few ppb (Tables 2-4), which indicates that carbonaceous meteorites
were probably not the only source of N-heterocyles on the early Earth. In addition, it has not
yet been found how to synthesise ribonucleotides from nucleobases (and ribose) under prebiotic
conditions, as the addition of nucleobases to ribose is either inefficient or does not occur [103,104].
Nevertheless, none of these preclude the use of meteoritic N-heterocycles on primitive biological
systems. Indeed, in present-day biology, the amino acid proline is used in the biosynthesis of proteins,
while N-heterocycles are components of the co-factors of enzymes and of genetic material (RNA and
DNA) [20].

4. Conclusions

This manuscript reviews the nitrogen heterocycle content of meteorites, including the abundances
and the compound-specific carbon and hydrogen isotopic compositions of individual compounds
in the soluble organic fraction. Likely indigenous meteoritic nitrogen heterocycles included
pyridine carboxylic acids, piperazinedione, hydantoins, purines, pyrimidines, pyridines, quinolines,
carboxylactams, lactams, lactims, and proline. Formation mechanisms included reactions in the
interstellar medium, followed by accretion and processing on the meteorite parent body. While likely
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not the only source of N-heterocycles used by primitive living organisms, carbonaceous meteorites
contributed to the feedstock of organic molecules freely available on the early Earth.
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