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Abstract: Silent mutations are being intensively studied. We previously showed that the estrogen
receptor alpha Ala87’s synonymous polymorphism affects its functional properties. Whereas a link
has been clearly established between the effect of silent mutations, tRNA abundance and protein
folding in prokaryotes, this connection remains controversial in eukaryotic systems. Although a
synonymous polymorphism can affect mRNA structure or the interaction with specific ligands,
it seems that the relative frequencies of isoacceptor tRNAs could play a key role in the protein-folding
process, possibly through modulation of translation kinetics. Conformational changes could be
subtle but enough to cause alterations in solubility, proteolysis profiles, functional parameters
or intracellular targeting. Interestingly, recent advances describe dramatic changes in the tRNA
population associated with proliferation, differentiation or response to chemical, physical or biological
stress. In addition, several reports reveal changes in tRNAs’ posttranscriptional modifications in
different physiological or pathological conditions. In consequence, since changes in the cell state
imply quantitative and/or qualitative changes in the tRNA pool, they could increase the likelihood
of protein conformational variants, related to a particular codon usage during translation, with
consequences of diverse significance. These observations emphasize the importance of genetic code
flexibility in the co-translational protein-folding process.

Keywords: synonymous polymorphisms; estrogen receptor alpha; isoacceptor tRNAs; translation
kinetics; protein folding

1. Introduction

Nucleotide polymorphisms are DNA sequence variations that occur frequently within a
population. Silent polymorphisms (those that do not change the amino acid in the encoded protein)
have only in the last decade attracted increasing attention [1]. This kind of polymorphism can produce
different effects on gene expression and lead to functional differences of diverse significance. Several
recent reviews summarize the effects of such mutations, in particular in relation to human diseases,
personalized biomedicine and pharmacogenomics [2–6].

Silent mutations can affect gene expression acting at different levels and through different
mechanisms. They can influence binding of regulatory factors on DNA, mRNA secondary structure
and stability, ribosome traffic on mRNA and its interactions with specific ligands (as in riboswitches),
including other RNAs and proteins. Silent mutations can also modify splicing, altering intron-exon
boundaries or regulatory sites located in exons, enhancers or silencers, in all cases leading to an
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incorrect processing of mRNA. Finally, silent mutations can affect translational kinetics and protein
folding, by changing codons read by tRNAs of different cellular availability. Therefore, through several
mechanisms, silent mutations can give rise to differences in mRNA and protein abundance and in the
structure and functionality of proteins (for a review see [5]).

In this context, we have focused on the folding and biological activity of the human estrogen
receptor alpha (hERα) in an attempt to understand whether silent mutations have any effect on
the functional activity of this protein. Nearly 50 synonymous polymorphisms can be found in
the hERα coding sequence [7]. Some of these have been further studied in order to establish an
association with different human pathologies, most of them being associated with the risk of cancer
development. Additionally, evidence points towards a role for some of these synonymous variants
in sperm production and cognitive disorders. Two variants called PvuII and XbaI located in intron 1,
or the (TA)n repeats in the 5’ UTR, are among the main polymorphisms studied in hERα [8]. These
variants were found to be associated with various pathological conditions, including cardiovascular
disorders, venous thromboembolism, miscarriage, and severe pre-eclampsia [9].

Recently, we studied the activity of the hERα variant ERAla87. This variant, assigned as Bst UI,
is located in exon 1 and corresponds to an alanine codon change from GCG to GCC (rs746432). The
mean GCC allele frequency was estimated in about 5%, varying between 0% and 10% in Asian and
European populations, respectively. This synonymous variant has been studied for an association with
several pathologies, and has only been associated with mood disorders, particularly in females [10].

Using transiently transfected HepG2 and HeLa cells as an experimental approach, we were
able to show that the functional activity of ERAla87 differs from that of the wild-type hERα, on a
cell-type-dependent manner [11]. We propose that a conformational variant could be originated upon
translation of ERAla87, as a consequence of differences in translational kinetics due to the availability
of tRNA species that recognize either the GCG or the GCC codon. In this paper, we review arguments
that support the idea that differences in the population of tRNAs could produce subtle changes in
conformation of the ERAla87 and therefore explain the functional variations observed.

2. Case of Study: ERαAla87 Synonymous Polymorphism

hERα is a transcription factor which belongs to the nuclear receptor superfamily. It mediates,
together with the estrogen receptor beta (ERβ), the pleiotropic and tissue-specific effects of estrogens.
hERα presents a multidomain structure (Figure 1) which includes: the A/B domain containing the
activation function-1 (AF1); the C-domain which holds the DNA-binding domain (DBD); a hinge
region (D-domain); an E domain which harbors the ligand-binding domain (LBD), the dimerization
interface and the activation function-2 (AF2); and the carboxy-terminal domain (the F-domain) [12,13].
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Figure 1. Representation of the human estrogen receptor alpha functional domains (A to F). The 
location of activation functions 1 and 2, AF1 and AF2, are shown (above). Below, Estrogen receptor 
alpha (ERWT) and silent polymorphism ERAla87 coding sequences and translated amino acids 
residues around Ala87 are indicated. The nucleotide change in Ala87 is shown in bold. 

hERα can act through different mechanisms (Figure 2). In the classical pathway, it binds 
directly to DNA, specifically to estrogen-response elements (EREs) located in promoters of 
estrogen-responsive genes [14]. In the non-classical genomic pathway, hERα interacts with other 

Figure 1. Representation of the human estrogen receptor alpha functional domains (A to F). The
location of activation functions 1 and 2, AF1 and AF2, are shown (above). Below, Estrogen receptor
alpha (ERWT) and silent polymorphism ERAla87 coding sequences and translated amino acids residues
around Ala87 are indicated. The nucleotide change in Ala87 is shown in bold.

hERα can act through different mechanisms (Figure 2). In the classical pathway, it binds directly
to DNA, specifically to estrogen-response elements (EREs) located in promoters of estrogen-responsive
genes [14]. In the non-classical genomic pathway, hERα interacts with other transcription factors
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(such as AP1 or Sp1) and regulates gene expression without directly binding to DNA [15–18]. hERα
also acts via a “non-genomic” mechanism, in which it modulates the activity of kinases that can
regulate gene transcription and the activity of other proteins [19,20].
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originated from a cervix carcinoma, present a poorly differentiated phenotype with a cell context 
strictly permissive to the AF2 transactivation function of hERα. In contrast, the hepatocarcinoma 
HepG2 cell line shows a more differentiated phenotype, and AF1 is the dominant transactivation 
function involved in hERα transcriptional activity in these cells [21,24]. Though important efforts 
have been made to understand hERα cell-specific activity and relevant advances have already been 
accomplished, to date the mechanisms underlying the modulation of its activity remain elusive. 
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pathway when acting through the ERE-Thymidine kinase promoter, but does not seem to be affected 
when acting through human complement C3 promoter (also containing ERE elements) [25]. On the 
other hand, ERAla87 transactivation activity is increased in the non-classical pathway when acting 
through AP-1 promoter and is induced by 4-OHT or ICI, which have been previously described as 
potent agonists on this pathway [16–18,23]. Finally, no significant differences were observed 
between the receptors in their ability to mediate non-genomic rapid effects in HeLa cells. 
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Figure 2. hERα mediates estrogen (E2) and other ligand effects through three main pathways.
(1) The classical pathway, in which hERα binds directly to DNA, to estrogen-response elements (EREs);
(2) The non-classical genomic pathway, where hERα interacts with other transcription factors (e.g., AP1
or Sp1) and regulates gene expression without directly binding to DNA; (3) The “non-genomic”
mechanism, in which hERα modulates the activity of kinases that can regulate gene transcription and
protein activity [19].

Importantly, the hERα activation mechanism, the respective contributions of AF1 and AF2 towards
its activity and the agonist/antagonist effect of different ligands and promoters are all cell-specific and
depend on the differentiation stage of the cell [17,18,21–23]. For instance, HeLa cells, originated from a
cervix carcinoma, present a poorly differentiated phenotype with a cell context strictly permissive to
the AF2 transactivation function of hERα. In contrast, the hepatocarcinoma HepG2 cell line shows
a more differentiated phenotype, and AF1 is the dominant transactivation function involved in
hERα transcriptional activity in these cells [21,24]. Though important efforts have been made to
understand hERα cell-specific activity and relevant advances have already been accomplished, to date
the mechanisms underlying the modulation of its activity remain elusive.

2.1. Differential Functional Properties of ERAla87 in HeLa and HepG2 Cells

To explore whether the ERAla87 synonymous polymorphism presents a behavior similar to that
of ERWT, we analyzed its transcriptional activity and subcellular localization comparatively to ERWT,
in transfected HeLa and HepG2 cell lines. For this purpose, cells were transfected with plasmids
including the respective coding sequences, reporter genes, and a construct for normalization [11].
We showed that the ERAla87 transactivation activity is reduced in the classical pathway when acting
through the ERE-Thymidine kinase promoter, but does not seem to be affected when acting through
human complement C3 promoter (also containing ERE elements) [25]. On the other hand, ERAla87
transactivation activity is increased in the non-classical pathway when acting through AP-1 promoter
and is induced by 4-OHT or ICI, which have been previously described as potent agonists on this
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pathway [16–18,23]. Finally, no significant differences were observed between the receptors in their
ability to mediate non-genomic rapid effects in HeLa cells. Furthermore, by in situ immunofluorescence,
we showed differences in the subcellular distribution of ERAla87 compared to ERWT when expressed in
HeLa cells. Surprisingly, no differences in the subcellular localization were observed between ERAla87
and ERWT in HepG2 cells [11]. In brief, ERAla87 activity depends on the activation mechanism but also
on the specific pathway involved within this mechanism. ERAla87 activity can be increased, decreased
or remain unchanged comparatively to ERWT. Additionally, the mutation affects the subcellular
localization of ER in a cell-type specific manner. How can the differences of ERαA87 functional
properties be explained?

As previously mentioned, there are several mechanisms by which synonymous mutations could
affect protein activity. The experimental strategy employed bypassed the effects of synonymous
variants on DNA-binding factors or on splicing. Moreover, there are no significant differences in the
receptor expression at mRNA and protein levels [11]. Using RNAsnp software [26,27] to determine local
RNA secondary structure changes induced by single nucleotide polymorphism (SNP), no significant
differences were estimated between ERWT and ERαA87 mRNAs (not shown). Differences in miRNA
and other non-coding hybridization sites as well as transcription factor-binding sites were assessed
using RegRNA 2.0 software [28] and no differences were found either (data not shown)

2.2. Codons and tRNAs Involved in Decoding Alanine 87

Interestingly, Ala87 is the central alanine of a group of three consecutive alanines. Figure 1 shows
the three consecutive alanine codons within the coding sequence. In ERWT, the three codons are GCT
GCG GCG; in ERAla87, they become GCT GCC GCG. According to the human codon usage reported
in the Genomic tRNA Database [29], these three codons are used as follows: GCT: 1.84%, GCG: 0.74%
and GCC: 2.77%. This implies that in ERWT a local repetition of the less-used codons occurs (Ala87
and Ala88), whereas in ERAla87, one of the less-used codons is substituted by the most frequently
used, also eliminating the codon repetition. (Number of genes and codon usage for alanine codons in
human cells is shown in Table 1a).

Table 1. (a) Number of genes and codon usage for alanine codons in human cells. (b) Wobble pair
rules reviewed in [30]. (c) Analysis of ERWT and ERAla87 codon-anticodon recognition by alanine
tRNAs restricted to tRNA Ala sequences described in the literature according to Modomics [31–33].
* indicates that recognition is not frequent in cell context. Ó indicates low affinity recognition.

a. Alanine tRNA Genes in Human Genome According to the Genomic tRNA Database [29]

Anticodon (51 Ñ 31) Corresponding Codon
(5’ Ñ 3’) nº of Genes Genome Codon Usage

AGC GCT 30 1.84
GGC GCC 1 2.77
CGC GCG 5 0.74
UGC GCA 10 1.58

b. Wobble Pair Rules Reviewed in [30]

tRNA 5’ Anticodon Base mRNA 3’ Codon Base ER Ala 87 Polymorphism Recognized by tRNA
G U,C Ala87
C G wt

k2C A —
A U,C,G>A wt, Ala87
U U,A,G>C wt, Ala87 Ó

xm5s2U,xm5Um,Um,xm5U A>G wt Ó

xo5U U,A,G wt
I A,C,U Ala87
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Table 1. Cont.

c. Analysis of ERWT and ERAla87 Codon-Anticodon Recognition by Alanine tRNAs Restricted to
tRNA Ala Sequences Described in the Literature According to Modomics [31–33].

tRNA-AGC: -without modifications recognizes: wt *, Ala87 *
-modified A Ñ I recognizes: Ala87

tRNA-CGC: -without modifications recognizes: wt *
tRNA-UGC: -without modifications recognizes: wt, Ala87 Ó

-with modifications recognizes: wt
tRNA-UGC: -without modifications recognizes: Ala87

Looking at the tRNAs involved in decoding alanine codons (see Table 1b,c) [30,34,35], it is
interesting to note the differences in their ability to recognize the GCG codon present in ERWT or the
GCC codon present in ERAla87. In fact, tRNAAla-AGC, without posttranscriptional modifications in
its anticodon, is able to recognize both codons; meanwhile, when adenine in the anticodon is converted
to inosine, tRNAAla-IGC is only capable of recognizing the GCC codon. Therefore, there will be at least
the same or even more tRNA molecules capable of decoding the GCC than the GCG codon from the
tRNAAla- I/AGC population that is available for translation. Also, in this sense, tRNAAla-GGC can
only decode Ala87 (GCC). On the other hand, tRNAAla-CGC and tRNAAla-UGC only decode efficiently
the GCG codon. tRNAAla-UGC could also decode the GCC codon through wobble pairing but with less
affinity. Therefore, tRNAAla-CGC and tRNAAla-UGC population will contribute mostly to decoding
GCG codon. Taking this information into account, could the change of tRNAAla isoacceptor required
to read a GCC instead of GCG be related to differences in translational kinetics and folding between
ERAla87 and ERWT? In the following sections, elements that support this hypothesis are reviewed.

3. tRNA Abundance Can Affect Translation Kinetics and Protein Conformation

To acquire a tridimensional conformation, nascent polypeptides can follow diverse folding
pathways. Sometimes folding is essentially posttranslational as it is the case for proteins which are
targets of Hsp60 chaperone, and their folding occurs inside the cage formed by its 14 subunits. Many
times, however, polypeptides fold during translation, while still bound to ribosomes, sequentially
from the N-terminal end of the protein [36]. In this context, the kinetics of translation becomes critical
since differences in the kinetics may lead to differences in folding pathways and therefore in the
conformation adopted by specific proteins [37]. tRNA abundance has been proposed as a major
determinant in translation kinetics, but it remains to be precisely determined in most organisms.
Additionally, thermodynamic parameters of anticodon-codon recognition, which depend on the
specific codon sequence, the wobble alternatives and the presence of modified bases in the anticodon
loop, are relevant factors in local translation rate [38,39].

3.1. Role of tRNAs in the Conformation of Proteins in Prokaryotes

Codon usage bias is thought to result from selection for efficient and accurate translation of highly
expressed genes [40]. In E. coli, in which tRNA abundance is well known, more abundant isoacceptor
tRNAs were shown to correspond to more frequently used synonymous codons, decoding highly
expressed proteins [41]. In this way, the use of abundant tRNAs in the synthesis of highly expressed
proteins ensures higher yield and quality, by increasing translation efficiency and reducing codon
misreading or aborted products. This fact has been extensively verified by experimental approaches
aiming to improve the production of recombinant proteins in bacterial systems: the overproduction of
less abundant tRNAs in the expression host, or the substitution of rare codons by frequent ones in the
coding sequence, can lead to a significant yield increase [42].

However, also frequently, after rare codon substitution, the increased yield of the recombinant
protein in E. coli is accompanied by a reduction of its solubility, and its accumulation in inclusion
bodies [43]. The decreased solubility suggests that a conformational change is generated by the
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modification of codon usage, and this can occur following either extensive changes or just a few
substitutions in specific locations within the mRNA [44,45].

Indeed, rare codons have been found preferentially located in particular regions: encoding the
N-terminal end of the protein, in turns or links between secondary structured regions, in links between
consecutive domains or encoding signal peptides in proteins to be secreted [46–48]. A few works serve
as illustrative examples: a study performed on the expression of EgFABP, a small fatty acid-binding
protein from E. granulosus in E. coli, in which rare codons were substituted by frequent ones at a
turn between two alpha helices, revealed that a synonymous variant increased its insolubility, and
about 30% of the protein was detected in the insoluble fraction. The expression of the same variant
triggered the activity of a heat shock promoter, indicating the presence of unfolded or misfolded
proteins associated with the expression of this variant [44]. More recently, the effect of discontinuous
translation at specific locations within the mRNA was analyzed on the folding of the multi-domain
protein Suf1 in E. coli. Four slow translating regions were theoretically identified in Suf1 mRNA and
their effect was analyzed experimentally. Both the addition of low-abundant tRNAs in E coli or the
substitution of rare codons by frequent ones led to changes in the proteolysis profile, or in folding
intermediates [49]. As a final example, the protein domains of epoxide hydrolases were delineated
according to structural data determined for other members of the protein family. Rare codons were
introduced at sites encoding links between domains, and this substitution allowed a significant increase
in the solubility of the protein expressed in E. coli [45], indicating a role of rare codons in translation
kinetics and protein conformation.

It is worth mentioning that the effect of tRNA abundance or codon usage on protein conformation
has been mainly characterized for specific proteins. However, the impact of the ribosomal speed
on the folding and solubility on a global, cell-wide level was addressed recently by upregulating
three low-abundant tRNAs in E. coli. Interestingly, this upregulation led to an increased aggregation
propensity of several cellular proteins and to a decreased solubility of some chaperones [50]. On the
other hand, the expression of heterologous proteins in E. coli strains that overexpress rare tRNAs
showed an increase in the insolubility of many proteins, which appears to be related to the rare codon
content in the corresponding coding sequences [43].

Finally, in order to better understand the role of translation kinetics on protein folding, interesting
mathematical models have been proposed, and are expected to contribute further to the knowledge of
the mechanisms involved in in vivo protein folding [36,51,52].

Taken together, evidence so far clearly indicates that the modulation of translation dynamics in
prokaryotes in relation to tRNA abundance and the choice of synonymous codons plays a critical
role in a number of processes including ribosomal traffic, protein abundance, topogenesis, protein
solubility and folding.

3.2. tRNAs, Codon Usage and Protein Conformation in Eukaryotes

In eukaryotes, the link between tRNAs, codon usage and the conformation of proteins is much
less clear. In Saccharomyces and Neurospora, for example, different approaches evidence a relation
between codon usage, RNA structures and protein activity. In Neurospora, a genome-wide correlation
between codon choice and predicted secondary protein structures was observed, in which non-optimal
codons appear to preferentially encode intrinsically disordered regions. This observation was verified
experimentally, on the circadian clock gene frequency (frq), in which the change of synonymous codons
affected its function in vivo [53].

On multicellular eukaryotes, few reports describe the effect of synonymous codon changes on
protein conformation. As such variants can modify gene expression at different levels, a link with
protein folding is not evident. In this sense, the study of synonymous polymorphisms in the MDR1
gene, one of the major drug transporters in human, is particularly relevant. P-glycoprotein (P-gp)
encoded by MDR1 is involved in cellular expulsion of diverse compounds and in multidrug-resistance
cancer cells. P-gp encoded by MDR1 carrying synonymous SNPs from a common haplotype was
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expressed in stably transfected polarized epithelial cells. The P-gp synonymous variants were properly
synthesized and located on the cell surface, showing drug transporter activity. Interestingly, however,
two of the synonymous SNPs significantly affected the stability and overall folding of P-gp. As a
result, P-gp conformational alterations affected protein activity, in particular the interaction with some
ligands, therefore leading to altered cellular cytotoxicity [54]. This study on MDR1 variants strongly
contributed to the notion that synonymous polymorphisms can indeed affect functional properties of
proteins in mammalian cells [5] and therefore are particularly relevant in the fields of biomedicine and
pharmacology [55].

In general, the relevance of synonymous mutations in higher eukaryotes is mainly recognized for
their association to diseases. In this context, the first identified silent mutations were shown to affect
the normal splicing pattern and, more recently, as previously mentioned, other effects have also been
described [5,6].

In order to understand whether synonymous variants can be related to translation kinetics and
protein folding, and in turn are associated with diseases, global genomic or transcriptomic approaches
are being performed. Mainly related to cancer or other complex diseases, these approaches aim to
address two main concerns: (1) in relation to translation kinetics, the identification of sites of higher
ribosome permanence on coding sequences during translation; and (2) the presence of synonymous
variants involved in or associated with diseases. The former refers to the ribosome profiling approach
which allows the identification of sites where ribosomes stay longer, thus reflecting a real traffic chart
of the translational process [56]. The second consists in massive sequencing of many thousands of
exomes of specific diseases and the identification of genetic variants significantly connected to the
pathology [57].

The translational discontinuity revealed by ribosome profiling is a powerful experimental
approach but the interpretation of results is still controversial, and from these approaches a direct
relation of codon usage and translation kinetics remains unclear [58–62]. An important work is in
progress, devoted to deciphering the biological significance of translational discontinuity, through
biochemical, biophysical, genetic, cellular, and in silico studies [59,62–64]. On the other hand, massive
sequencing of tumoral exomes led to the conclusion that synonymous variants can be involved
in cancer and most of them appear located in oncogenes and are related to aberrant splicing [65].
However, most silent variants found in tumor suppressor p53 do not seem to be involved in the
tumoral process [65]. Additionally, sequencing of melanoma cells allowed the identification of a
synonymous variant F17F in the BCL2L12 gene which affects the binding of a miRNA (hsa-miR-671-5p)
and the subsequent stabilization of an oncogene. Taken together, the aforementioned approaches
provide valuable information about the translation process and on the identification of (synonymous)
genetic variants involved in diseases. A deeper and more detailed analysis should provide clues
linking silent polymorphisms with translation kinetics and protein conformation properties.

The aforementioned observations from eukaryotes suggest that conformational changes due to
modified translation kinetics could account for functional differences, such as those found in ERAla87.
Considering this, we wondered whether the change of isoacceptor tRNAAla required to read a GCC
instead of GCG codon may be related to a modification of local translation kinetics of the receptor
mRNA. In general, the poor knowledge on tRNA abundance in higher eukaryotes has been an obstacle
for the estimation of translation kinetics based on tRNAs’ relative concentration. How to evaluate the
tRNA population?

4. Dynamic Populations of tRNAs

As has already been mentioned, a general fit of the translational system was highlighted through
a strong correlation between the frequency of synonymous codon usage and the corresponding
population of decoder tRNAs’ molecules in the cell. For example, early reports on cells with
extremely biased protein expression revealed high frequencies in the use of selected codons and
high concentrations of the specific decoder tRNAs. This was the case for isoaccepting tRNAAla and
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tRNASSer species present in the posterior gland of the silkworm Bombyx mori, described several decades
ago [66–68].

Nevertheless, although in bacteria and yeast it was clearly shown that the abundance of tRNA
isoacceptors correlates with the codon usage of abundant proteins, in metazoans this correlation
appeared less strict [69]. In this case, which is the real correlation between the tRNA population and
codon usage? Is it the same in unicellular organisms and metazoans? Beyond classical works reporting
differential expression of tRNA genes (for instance, tRNAs present in the gland of the aforementioned
Bombyx mori), the question remains if the tRNA population is tissue- or cell-specific. Does the tRNA
population of a given cell change during cell cycle?

4.1. tRNA Genes Are Differentially Expressed in Different Cell States

Over the last few years, different lines of research based on holistic approaches, progressively
converged, and began to shed more light on the biological roles of tRNA. Notably, through
characterization (although partial) of the tRNA population by deep sequencing [70], microarrays [71,72]
and chromatin analysis at the tRNA loci [71], it appears that tRNA genes are in fact differentially
regulated. In this context, it has been described in S. cerevisiae that specific changes in tRNAs’ copy
number were associated with specific stress responses [70]. Moreover, after a semi-quantification of
tRNA pools in different human cells, the existence of two distinct translation programs that operate
during proliferation and differentiation was proposed [71]. Furthermore, it was shown that alterations
in the tRNA repertoire of proliferating and differentiated cells correspond to codon usage preferences
of proliferation- or differentiation-regulated genes as revealed by transcriptomic studies, measurement
of tRNA pools, gene ontology analysis that groups functionally related genes, and the analysis of active
chromatin and RNA polymerase III occupancy at the level of tRNA genes [71]. This indicates that
modification of the levels of specific tRNAs is concerted with changes in the transcriptome, in order to
optimize codon usage of genes that are being expressed. Among other works supporting this view,
it is worth mentioning that significant differences in tRNA composition have been found between
breast cancer cells and non-transformed tissue, suggesting an adjustment of tRNA pools in cancer
cells adapted to translate mRNAs associated with tumor progression [73]. These changes in tRNA
repertoire strongly suggest an extremely precise coordination between transcription and translation in
eukaryotic cells, involving fine regulatory mechanisms that ensure the adaptation of the translation
apparatus to specific cell states [74].

4.2. tRNA Post-Transcriptional Modifications: Expanding the Complexity of the tRNA Population

Concerning the link between the tRNA population and codon usage, it is also important to
consider tRNA post-transcriptional modifications which have been intensively studied over several
decades [38,75–77]. To date, roughly 100 modified nucleosides have been found in tRNAs from
bacteria, archaea and eukaryotes. tRNA modifications involve a large set of specific enzymes
(methyl-transferases, transglycosylases, transferases, adenosine desaminases, pseudouridine synthases,
thiouridylases, among others) present in different cell compartments, which exhibit high specificities
for tRNA species, particular target bases, and the precise location in the tRNA structure (for a review
see [75,78,79]).

Modified bases are required for efficient protein synthesis, stabilizing tRNA structure, ensuring
specificity and stability of codon-anticodon interaction, preventing frameshift errors and participating
in the specificity of aminoacyl-tRNA synthetase [76]. Concerning their involvement in codon-anticodon
interaction, the role of modified (and frequently hypermodified) bases in positions 34 of the anticodon
(wobble) and 37 in the anticodon loop, has been highlighted both in prokaryotes and eukaryotes. They
appeared to be critical in defining kinetic and thermodynamic parameters of codon recognition and
hence of the translation process [38,76,78,80].

Nevertheless, their role is not limited to the translation process. Indeed, they are critical in tRNA
quality control and turnover [81], cellular localization of tRNA molecules, and are also related to
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tRNA fragments’ biogenesis [82]. Furthermore, changes in the profile of tRNA modification have been
described as associated with genetic diseases [83,84], microbial infections [85,86], immune response [87]
and cellular stress [88]. It is worth mentioning that tRNA base modifications participate in translation
regulation in response to change in cellular programs, as revealed in yeast under stress conditions [89].

Therefore, it is interesting to consider that the population of each tRNA species may be further
subdivided into subspecies, characterized by different base modification profiles. If the enzymatic
modification process, in addition to sequential modification events, also varies depending on cellular
state, then the number of subspecies of a given tRNA could be very high. Finally, it is worth mentioning
that the implication of altered tRNA base modification profiles in different phenotypes and diseases
has been proposed for many years. More recently, from genome-wide association studies, an important
number of human pathologies, such as alterations of metabolic pathways, mitochondrial defects,
neurological disorders and increased susceptibility to cancer, have been associated with mutations in
genes coding for tRNAs and tRNA-modifying enzymes (for a review see [83]).

4.3. The tRNA Pool Is Partitioned in Different Cell Compartments

After transcription, the tRNA cycle includes different steps: maturation (processing of 5’ and
3’ trailers, intron splicing for those tRNA carrying an intervening sequence), posttranscriptional
modification, precise cellular localization, interactions with partners involved in their different roles,
and, finally, quality control that includes their degradation in the cytoplasm and/or the nucleus
involving complex translocation mechanisms (reviewed in [90,91]).

Mature tRNAs—free or aminoacylated—interacting with molecules and molecular complexes
involved in translation, can be considered as partitioned in different cell compartments: initiation
and elongation factors, aminoacyl-tRNA synthetases (either free or included in multi-synthetase
complexes in eukaryotes and archaea [92]), or translating ribosomes, among others. Interestingly,
a “tunneling” phenomenon has been described by which tRNAs involved in translation, cycle among
elongation factor eF2, aminoacyl-tRNA synthetases and translating ribosomes [92–95]. In agreement,
from studies in the yeast S. cerevisiae, it was proposed that once a particular codon has been used,
subsequent occurrences of the same amino acid do not use codons randomly, but favor codons that
use the same tRNA. The reported data suggest that tRNA diffusion away from the ribosome is slower
than translation [96]. Nevertheless, this important issue is still open [97].

As more evidence becomes available, the definition of the tRNA population turns more complex
and its dynamic nature becomes more evident. Which subspecies of a particular tRNA is actually
involved in decoding a certain codon? Is it preferentially located in a certain compartment? What
are the posttranslational modifications it requires to fulfil this role? And finally, how is this regulated
in order to ensure an efficient translation process, adjusted to different cell states? These issues need
to be taken into account when trying to determine the relation between tRNA availability, codon
usage and ultimately protein conformation and function. In this sense, the development of new
techniques for an accurate measurement of the different tRNA species (or even subspecies) will be of
paramount importance.

5. General Conclusions

The Sound of Silent Substitutions: The Tale of the Princess and the Pea, and the Case of Synonymous
Polymorphism Ala87Ala GCG->GCC in Human ERα

As an approach to understanding the basis of the regulation of hERα and the effect of synonymous
polymorphisms on its activity, we previously showed functional differences exhibited by ERAla87
comparatively to ERWT in HepG2 and HeLa transfected cells. After discarding other hypotheses,
in this work our aim was to review arguments for a role of a conformational change in the ER (which
would lead to the described functional changes) brought about by a possible change in the identity of
the tRNA decoding Ala87. Considering human codon usage, the Ala87 codon change involves the
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substitution of a rare codon (in WT) by a frequent one (in ERAla87). In addition, this change suppresses
a codon repetition (in WT) leaving instead three consecutive different Ala codons. Looking at the
involved isodecoder tRNAsAla, it is interesting to note that tRNAAla carrying inosine (tRNAAla-IGC)
and tRNAAla-GGC can only decode Ala87 (GCC). Also, they could read two consecutive codons in
the silent polymorphism, though only one in the WT. On the other hand, as analyzed previously, the
tRNAAla-CGC and tRNAAla-UGC populations would contribute mostly to decoding the WT (GCG).
According to these observations it seems possible that when ERWT and ERAla87 are expressed in the
same cell lines, the alanine codon change could lead to a modification of the local translation dynamics
and to a change in the protein conformation.

But how can the functional activity of ERAla87 differ from that of the wild-type hERα, on a
cell-type-dependent manner? As reviewed, changes in the tRNA population have been associated with
proliferation, differentiation or response to chemical, physical or biological stress. These findings imply
quantitative and/or qualitative differences in the tRNA pool between cell lines that could increase the
likelihood of protein conformational variants, related to a particular codon usage during translation.

Nonetheless, tRNA availability is still not well understood in multicellular organisms. The lack
of information about the real concentration of each tRNA under different physiological conditions
hampers the evaluation of translation kinetics and hence the analysis should be considered with
caution. The development of new sequencing methods, allowing the identification of modified bases
in tRNAs, is urgently needed for a deeper understanding of the roles of tRNAs in the cell and the
real tRNA availability for protein translation in each tissue, each cellular condition and for each
subcellular compartment. This information will be crucial in order to truly determine if our hypothesis
regarding the role of tRNAs in the conformation and functional properties of hERα synonymous
variants is correct.

The relationship between tRNAs, codon usage and the process of co-translational protein folding
is currently the subject of intense work. The convergence of holistic approaches, like deep sequencing
and ribosome profiling, among others, together with biochemical and cellular approaches (with
particular attention paid to the posttranscriptional modifications of RNA and its regulation, global
cellular adaptation, from transcription-translation concerted regulation to the adjustment of the
translational apparatus to specific cell states), will certainly provide important elements in the near
future. In addition, computer modeling approaches will surely lead to powerful integrative landscapes.

Clearly, multiple interdependent factors are involved in the co-translational folding, and that fact
could be the basis for divergent reports, each focusing on different aspects. For instance, several
reports, based on ribosome profiling studies, have reached contradictory conclusions about the
correlation between high translation elongation rates and codon frequencies and/or isoacceptor tRNA
abundance [56,61]. In this sense, it was recently shown in yeast that the overexpression or deletion
of tRNAs, as well as swapping of anticodons, analyzed by different approaches including ribosome
profiling and kinetic modeling, did not show a direct correlation between codon adaptation and
translational efficiency, describing instead a correlation between strong mRNA secondary structures
and a local speed reduction of translating ribosomes [62]. Such contradictory results could arise
from conceptual and/or technical issues. Conceptual aspects could be connected to the diversity
of the tRNA population (isoacceptors, isodecoders, different species, different modification states,
possibly different compartmental distribution). Technical aspects could be related to the precision in
determining ribosomal dwell sites at the codon level. In this sense, several recent papers focusing on
technical considerations about translation arrest to stabilize ribosomes for measuring their positions,
strongly support that translation kinetics is linked to the concentration of decoder tRNAs [58,59,98]
and to their modification state [99]. Moreover, concerted global regulatory mechanisms associated
with translation demands should also be considered. This was recently highlighted through the
observation that the deletion of a tRNA gene in yeast breaks the translational balance, thereby causing
the tRNA pool to rapidly evolve to meet the new translational demands, suggesting—even though the
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evolutionary scenarios that trigger changes in the tRNA pool have yet to be thoroughly explored—that
genomic duplications, deletions, and anticodon mutations could shape tRNA gene families [100].

Possibly within the large diversity of the cellular tRNA population, their complex life cycles and
multiple functions, new clues will arose that will help to solve the present challenges.

In conclusion, the correlation between codon usage and tRNA population and its complexity
should be subtler than a general fit, even taking into account tRNA transcription levels or their global
abundance in specific cell contexts. The precise effect of tRNAs on the translation of a specific mRNA
might vary depending on the cell state. It could be subtle or extensive, but in any case it could
result in conformational changes which can in turn give rise to polypeptides that expose transient
hydrophobic surfaces prone to aggregation, alternative proteolytic profiles, and therefore to altered
functional properties. The conformation of the ERα has been proposed as a major regulator of its own
activity [101] and, additionally, different conformations were detected in ERWT when synthesized in
different in vitro translation systems by chymotrypsin-limited proteolysis [102]. All these elements
lead us to consider that a subtle conformational change occurs in the synonymous variant ERAla87
which may be involved in its differential behavior.
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