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Abstract: Recent evidence suggests that quantum mechanics is relevant in photosynthesis, 

magnetoreception, enzymatic catalytic reactions, olfactory reception, photoreception, 

genetics, electron-transfer in proteins, and evolution; to mention few. In our recent paper 

published in Life, we have derived the operator-sum representation of a biological channel 

based on codon basekets, and determined the quantum channel model suitable for study of 

the quantum biological channel capacity. However, this model is essentially memoryless 

and it is not able to properly model the propagation of mutation errors in time, the process 

of aging, and evolution of genetic information through generations. To solve for these 

problems, we propose novel quantum mechanical models to accurately describe the 

process of creation spontaneous, induced, and adaptive mutations and their propagation in 

time. Different biological channel models with memory, proposed in this paper, include: (i) 

Markovian classical model, (ii) Markovian-like quantum model, and (iii) hybrid quantum-

classical model. We then apply these models in a study of aging and evolution of quantum 

biological channel capacity through generations. We also discuss key differences of these 

models with respect to a multilevel symmetric channel-based Markovian model and a 

Kimura model-based Markovian process. These models are quite general and applicable to 

many open problems in biology, not only biological channel capacity, which is the main 

focus of the paper. We will show that the famous quantum Master equation approach, 

commonly used to describe different biological processes, is just the first-order 

approximation of the proposed quantum Markov chain-like model, when the observation 

interval tends to zero. One of the important implications of this model is that the aging 

phenotype becomes determined by different underlying transition probabilities in both 
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programmed and random (damage) Markov chain-like models of aging, which are 

mutually coupled.  

Keywords: quantum biology; bioinformatics; DNA quantum information; biological 

channels; mutations; aging; evolution; channel capacity 

 

1. Introduction 

In 1944 Erwin Schrödinger published a book entitled What is Life? [1,2]. In Chapter 1 of his book, 

Schrödinger introduces the order-from-disorder principle and explains that most physical laws on a 

large scale originate from the chaos on a small scale. In Chapter 4, he connects the mutations to the 

quantum jumps (leaps). In the same chapter, he explains that stability of molecules, being composed of 

atoms, should be attributed to the quantum mechanics. In Chapter 5 of his book, Schrödinger 

introduces the concept an “aperiodic crystal”, now known as DNA, which contains the genetic 

information in its configuration of covalent chemical bonds, and allows us to encode an almost infinite 

number of possibilities with a small number of basic units, now known as nucleotides. In addition to 

explaining DNA structure, Watson and Crick suggested that point mutations might be caused by 

tautomeric forms of nucleic acids [3]. This idea was later studied in a series of papers [4–6], and it is a 

subject of interest even these days [7,8]. In several recent publications [9,10], it has become evident 

that both the Darwinian type of evolution (random mutations followed by selection process) and the 

Lamarckian type of evolution (selected mutations beneficial to the organism) are important. Moreover, 

Cooper [11] has shown that evolutionary pressure has selected quantum probability laws over classical 

kinetics laws. In the same paper, Cooper also discusses the relevance of time-dependent substitutions 

and time-dependent deletions, indicating that the biological channel is a channel with memory. 

The use of both classical and quantum information theory, as well as error-correction, to describe 

the genome preservation and biological evolution is getting momentum, which can be judged by a number 

of recent papers related to these problems [8–15]. There have been many attempts to explain the 

transfer of genetic information from DNA to protein by using the concepts of quantum mechanics [14,15]. 

However, the determination of a quantum biological channel capacity was still an open problem until 

recently [8]. 

In our recent paper [8], we have derived the operator-sum representation of biological channel 

based on codon basekets, and used this representation to determine the quantum channel model 

suitable for study of the quantum biological channel capacity. Unfortunately, this model is essentially 

memoryless and as such it can be used to determine the quantum genetic channel capacity for a given 

codon nucleobase error probability. However, this model is not able to properly describe the 

propagation of mutation errors in time, the process of aging, and evolution of genetic information 

through generations.  

To solve for these problems, in this paper, we propose novel quantum mechanical models to 

accurately describe the process of creation spontaneous, induced, and adaptive mutations and their 

propagation in time. These models are based on an operator-sum representation [8] of the quantum 

biological channel. We propose the following quantum biological channels with memory: (i) 
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Markovian classical model, (ii) Markovian-like quantum model, and (iii) hybrid quantum-classical 

model. Then we study how the quantum channel capacity changes in different stages of life, in other 

words, by aging. We then apply these models to study how the quantum biological channel capacity 

changes through generations. Further, we calculate quantum biological channel capacities for a 

multilevel symmetric channel (MSC) [16] based Markovian model and a Kimura model [17] based 

Markovian process, which serve as reference cases. As indicated in the abstract, these models are quite 

general and applicable to many open problems in biology, not only biological channel capacity, the 

main focus of the paper. As an illustration, we will demonstrate that the famous quantum Master 

equation approach, commonly used to describe different biological process, is just the first-order 

approximation of the proposed quantum Markov chain-like model, when the observation interval tends 

to zero. 

The proposed models are also compatible with both damage/error and programmed theories of 

aging, reviewed by Jin [18]. The proposed Markovian-like quantum biological channel model can also 

be used to unify damage and programmed senescence theories of aging as follows. The aging process 

can be described by two Markov chain-like processes running in parallel. The first one is a 

programmed aging model, based on a life clock, and it describes the transition from one stage of life to 

another. When one particular transition probability in the model is close to 1 that means that the 

corresponding transition is deterministic. The transition probabilities in this model are more certain, 

but they are not completely deterministic; instead, they get perturbed by the environment. Transition 

from one stage in life to the next stage in life is determined by particular gene activation and 

deactivation. The second Markov chain-like model is the random aging Markov chain-like model that 

describes the change in biological channel capacity that results from deferent “genetic noise” errors. (For 

detailed description of various sources of genetic noise an interested reader is referred to reference [8].) It 

runs between two transitions in the programmed Markov chain-like model of aging. Therefore, the first 

one serves as a sort of control mechanism.  

This has a number of testable implications for the biology of aging and for evolution. One 

interesting application to use this unified (programmed-damage) Markov chain-like model is to predict 

predominant types of error in the aging process of particular tissue or organ. The biological models 

described in this paper can also be used to determine, for instance, the death rate at a certain age. The 

programmed Markov chain-like model, as we indicated above, serves as a control mechanism that is 

not perfectly stable, but can be perturbed by environment, stress, lifestyle, habits, and random 

mutations, to mention few. The damage model operating between two stages in the programmed model 

can either slow down certain biological processes or speed them up. The interplay between these two 

models is not trivial to determine and requires further study, since the aging phenotype becomes 

determined by different underlying transition probabilities in both programmed and random Markov 

chain-like models. Given that the proposed Markovian-like quantum model is quantum stochastic and 

that the superposition principle is not used in its derivation, this model is consistent with recent finding 

that quantum mechanics is essentially nonlinear [19,20]. 

The paper is organized as follows. In Section 2, we describe the proposed quantum channel models 

suitable for study of mutations’ propagation in time and aging. We calculate how channel capacity 

changes in different stages of the life of the organism. In Section 3, we apply these quantum biological 

models and study the evolution of quantum channel capacity through generations. Corresponding 
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MSC-based and Kimura model-based Markovian processes are also described and the corresponding 

evolution of capacity is evaluated as well. Section 4 concludes the paper. 

2. Markovian Chain-Like Quantum Mechanical Modeling of Mutations and Aging 

In this section we extend the memoryless quantum biological model, described in our previous paper [8], 

to a corresponding model with memory. Before we describe the proposed model, we briefly review the 

density operator concept and operator-sum representation. The density operator (matrix) is used to 

describe an ensemble of quantum states; in other words a classical statistical mixture of quantum states 
(kets) {|φn} with probability distribution {Pn} (nPn=1) as follows  

n n nn
Pρ φ φ= , where |φn is a 

column-vector (ket), while φn| is a row-vector representing a Hermitian conjugate of ket, often called 

“bra”. In quantum information theory, the density matrix ρ can be used to determine the amount of 

information conveyed by the quantum state, i.e., to compute the von Neumann entropy defined as 

( ) ( ) 2Tr log log ,ii
S ρ ρ ρ λ λ= = −  where λi are the eigenvalues of the density matrix. The corresponding 

Shannon entropy can be calculated by 
2log ,i i

i

H p p= −  where pi is the probability of selecting the i-th 

vector from an ensemble of orthogonal vectors. Thus, the Shannon (classical) entropy is just a special 

case of the von Neumann (quantum) entropy, when the density matrix is diagonal. Let the composite 

system C be composed of quantum system Q and environment E. If the initial system-environment 
state was pure 

QEψ  the corresponding density operator is defined as 
QS QE QEρ ψ ψ= . By tracing-out 

the environment, we can determine the density operator of the system as TrE QE QEρ ψ ψ= . The 

presence of off-diagonal elements is commonly referred to as coherence. In a typical system in 

quantum physics, the off-diagonal elements will be averaged out and become eventually zeros, and we 

refer to this effect as decoherence. However, the biological systems are different (“wet, warm, and 

noisy”), and very exotic states get suppressed with biological system-environment interaction so that 

the biological system moves into the preferred state. This transformation (mapping) of the initial 

density operator of the system ρ to the final density operator of the biological system ρf, represented by 
preferred states, can be described as : fξ ρ ρ→ , which is commonly referred to as the superoperator or 

quantum operation. The final density operator can be expressed in so called operator-sum 

representation as follows † ,f k k
k

E Eρ ρ=  where Ek are known as the Kraus operators for the 

superoperator satisfying the normalization condition †
k kk

E E I=  (where I is the identity operator). The 

Kraus operators for a memoryless (single-stage) quantum biological channel model, with codon 

nucleobase error probability as the parameter, are determined in our previous publication [8]. Here we 

determine the corresponding multi-stage quantum biological channel model. 

For convenience, we provide in Figure 1 two stages of the quantum biological channel model with 
memory for basekets corresponding to Phe. The error introduced by Kraus operator UUU,AUU AUU UUUa  

leads to the change baseket representing Phe into the baseket representing Ile, where aUUU,AUU denotes 

the probability amplitude for basket |UUU to basket |AUU transition. The corresponding probability 

is related to the probability amplitude by pUUU,AUU =|aUUU,AUU|2. Now, by concatenating two stages of 
the transition diagram, the Krauss operator AUU,UUU UUU AUUa  in the second stage corrects the error 

introduced by the Kraus operator UUU,AUU AUU UUUa  in the first stage. What we have essentially just 
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described is a Markov chain-like biological quantum channel model. Before we proceed further, we 

provide the brief review of the theory of Markovian chains [16]. 

The finite Markovian chain is a commonly used model in communication systems to describe both 

the sources and channels with memory. The Markovian stochastic process with a finite number of 

states {S} = {S1, …, Sn} is characterized by transition probabilities pij of moving from state Si to state 

Sj (i, j=1, …, n). The Markov chain is the sequence of states with transitions governed by the following 

transition matrix: 

11 12 1

21 22 2

1 2

,

n

n
ij

n n nn

p p p

p p p
p

p p p

 
 
  = =   
 
  





   



P  (1)

where j pij = 1. The probability of reaching all states from initial states after k-steps can be determined by 
( ) ( )0 ,k k=P P P  (2)

where P(0) is a row-vector containing the probabilities of initial states. 

|UUU

|UUC

|UUU

|UUA

|UUC

|UGU

|UAU

|CUU

UUU,UUU UUU UUUa

Phe

UUU,UUA UUA UUUa

UUU,UUC UUC UUUa

UUU,GUU GUU UUUa

|UCU

|AUU

|GUU

UUU,UCU UCU UUUa

|UUG

|UUU

|UUA

|UUC

|UGU

|UAU

|CUU

UUU,UUU UUU UUUa

AUU, UU UUU AUUUa

|UCU

|AUU

|GUU

UCU,UUU UUU UCUa

|UUG

 

Figure 1. Two stages of a quantum biological channel model with memory for basekets 

corresponding to Phe. Only selected transitions have been shown to illustrate the model. 

The am,n denotes a transition probability amplitude from baseket |m to baseket |n, where m 

∈ {UUU, UUC } and n could be any of 64 basekets. The probability amplitude is related to 
probability by pm,n = |am,n|2. The Kraus operator Em,n is obtained as , , .m n m nE a n m=  

For the regular Markov chain (the k-th stage transition matrix has only nonzero entries), the 

transition matrix converges to stationary transition matrix T with all rows identical to each other: 

1 2

1 2

1 2

lim .

n

nk

k

n

t t t

t t t

t t t

→∞

 
 
 = =
 
 
  





   



T P  (3)
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In addition, the following is valid: 
( ) ( ) ( ) [ ]0 0

1 2lim lim ,k k
n

k k
t t t

→∞ →∞
= = P P P P T =  (4)

so that we can find stationary probabilities of states (or equivalently solve for elements of T) from equations 

1 11 1 21 2 1

2 12 1 22 2 2

1 1 2 2

1

1.

n n

n n

n n n nn n

n

i
i

t p t p t p t

t p t p t p t

t p t p t p t

t
=

= + + +
= + + +

= + + +

=









 

(5)

The theory of Markov chains has already been used in biology to describe population processes. In particular 

the Leslie matrix has been used to describe the age-structured model of population growth in population 

ecology [21]. Markov chains have also been used in population genetics to describe the change in gene 

frequencies in small populations affected by genetic drift [22]. The Markov chain theory has also been used to 

study the complexity of the protein families [23]. 

The equivalent classical biological channel model corresponding to Figure 1 is provided in Figure 2. As an 

illustration, the probability of moving from state UUU to UUC in two steps can be calculated as: 
( )2

, , , , , , , , , ,UUU UUC UUU UUU UUU UUC UUU UUC UUC UUC UUU UUG UUG UUC UUU UUA UUA UUCp p p p p p p p p= + + +  (6)

which is consistent with Markovian chains theory described above. 

UUU

UUC

UUU

UUA

UUC

UGU

UAU

CUU

UUU,UUUp

Phe

UUU,UUAp

UUU,UUCp

UUU,GUUp

UCU

AUU

GUU

UUU,UCUp

UUG

UUU

UUA

UUC

UGU

UAU

CUU

UUU,UUCp

AUU, UUUp

UCU

AUU

GUU

UCU,UUUp

UUG

 

Figure 2. Two stages of a classical biological channel model with memory for basekets 

corresponding to Phe. Only selected transitions have been shown to illustrate the model. 

The pm,n denotes the transition probability from state m ∈ {UUU, UUC} to state n (any of 

64 basekets). 

Unfortunately, Markov chain theory is not consistent with quantum mechanics, as in sequential 

processes in quantum mechanics we need to multiply probability amplitudes instead [24]. To clarify 

this claim, we provide in Figure 3 the polarizer-analyzer ensemble. When an electromagnetic (EM) 
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wave passes through the polarizer, it can be represented as a vector in the xOy plane transversal to the 

propagation direction z. The electric filed vector of EM wave can be written as: 

( )0 ˆ cos ,E p t kzω= −E  (7)

where ( )ˆ cos ,sinp φ φ= is the polarization orientation unit vector with φ being an angle between the electrical 

field EM vector and x-axis. (k denotes the wave number.) If φ = 0 rad, the light is polarized along x-axis, while 

for φ = π/2 rad it is polarized along y-axis. After the analyzer, whose axis makes an angle θ with respect to x-
axis, which can be represented by unit vector ( )ˆ cos ,sinn θ θ= , the output electric field is given by: 

( ) ( )( ) ( ) ( ) ( )
( )[ ] ( ) ( )

0 0

0 0

ˆ ˆ ˆ ˆ ˆ ˆ' cos cos cos ,sin cos ,sin

ˆ ˆcos cos cos sin sin cos cos .

n n E t kz p n n E t kz n

E t kz n E t kz n

ω ω φ φ θ θ

ω φ θ φ θ ω φ θ

= ⋅ = − ⋅ = − ⋅  
= − + = − −

E E
 (8)

The intensity of the electrical filed of EM wave at the output of analyzer can be written as: 

( )2 2' ' cos ,I I φ θ= = −E  (9)

which is commonly referred to as Malus’ law. Classical physics prediction of total probability of a photon 

passing the polarizer-analyzer ensemble is given by: 

( )2 2 2 2 2
tot cos cos sin sin cos ,p φ θ φ θ φ θ= + ≠ −  (10)

which is inconsistent with Malus’ law, given by Equation (9). In order to reconstruct the results from wave 
optics, the concept of probability amplitude that an angle α is detected as β, denoted as ( ) ,a α β→  is 

introduced in quantum mechanics[24]. The probability is obtained as the squared magnitude of probability 

amplitude ( ) ( ) 2
.p aα β α β→ = →  The basic principles of quantum mechanics tell us that we need to 

sum up the probability amplitudes for indistinguishable paths:  

( )tot cos cos sin sin cos .a φ θ φ θ φ θ= + = −  (11)

The corresponding total probability is given by 

( )2 2
tot tot cos ,p a φ θ= = −  (12)

and this result is consistent with the Malus’ law. 

 

Figure 3. The study of the photon polarization by polarizer-analyzer ensemble. 
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We now apply this probability amplitude strategy to a quantum biological channel model with 

memory illustrated in Figure 1. As an illustration, let us determine the Kraus operator for moving from 
state |UUU to state |UUC in two steps, which will be denoted as ( )2

,UUU UUCE . Let us observe only a single 

nucleobase error per codon events. From quantum information processing theory [24] we know that, 

for serial (cascade) connection of gates, we need to multiply the corresponding operators, while for 

parallel connection of gates we need to sum-up the corresponding operators. Therefore, the 

corresponding Kraus operator can be obtained as: 
( )2

, , , , , , , , , .UUU UUC UUU UUC UUU UUU UUC UUC UUU UUC UUC UUG UUG UUU UUC UUA UUA UUUE E E E E E E E E= + + +  (13)

Now by expressing the Kraus operators in terms of basekets we obtain: 
( ) ( ) ( ) ( )(

( )( ) ( )(

2
, , , , ,

, , , ,

UUU UUC UUU UUC UUU UUU UUC UUC UUU UUC

UUC UUG UUG UUU UUC UUA UUA UUU

E a a UUU UUU UUU UUU a a UUC UUC UUC U

a a UUC UUG UUG UUU a a UUC UUA UUA UUU

= +

+ +

 

(14)

By applying the associativity axiom we can re-write the previous equation as: 

( )2
, , , , ,

, , , ,

| |

| |

UUU UUC UUU UUC UUU UUU UUC UUC UUU UUC

UUC UUG UUG UUU UUC UUA UUA UUU

E a a UUU UUU UUU UUU a a UUC UUC UUC UU

a a UUC UUG UUG UUU a a UUC UUA UUA UUU

= +

+ +

 

(15)

From orthogonality principle we know that |UUU UUU = |UUC UUC =  |UUG UUG = | 1UUA UUA = , 

so that we can re-write (15) as: 

( )2
, , , , ,

, , , , .

UUU UUC UUU UUC UUU UUU UUC UUC UUU UUC

UUC UUG UUG UUU UUC UUA UUA UUU

E a a UUU UUU a a UUC UUU

a a UUC UUU a a UUC UUU

= +

+ +
 (16)

From (16) we conclude that the probability amplitude ( )2
,UUU UUCa  can be calculated from the probability 

amplitudes of individual stages as follows: 
( )2

, , , , , , , , , .UUU UUC UUU UUC UUU UUU UUC UUC UUU UUC UUC UUG UUG UUU UUC UUA UUA UUUa a a a a a a a a= + + +  (17)

The corresponding probability for moving from state |UUU to state |UUC in two steps will be: 

( ) ( ) 2 22 2
, , , , , , , , , , ,UUU UUC UUU UUC UUU UUC UUU UUU UUC UUC UUU UUC UUC UUG UUG UUU UUC UUA UUA UUUp a a a a a a a a a= = + + +  (18)

which is clearly different from that obtained by classical Markov chain theory given by Equation (6).  

As another illustration, the probability amplitude for moving from state |UUU to state |UUU in two steps 

can be determined as: 

( )2
, , , , , , , , ,

, , , , , ,

, , , , , , .

UUU UUU UUU UUU UUU UUU UUU UUG UUG UUU UUU UUC UUC UUU UUU UUA UUA UUU

UUU UGU UGU UUU UUU UCU UCU UUU UUU UAU UAU UUU

UUU GUU GUU UUU UUU CUU CUU UUU UUU AUU AUU UUU

a a a a a a a a a

a a a a a a

a a a a a a

= + + +
+ + +
+ + +

 (19)

From a single-stage model we would expect to have only one probability amplitude. However, since 

a single nucleobase error in the first stage can be corrected for by the same nucleobase error in the 
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second stage, the number of transitions in second stage gets increased to even nine. Based on 

discussion above, the probability amplitude transition matrix for the first stage can written as: 

( )

11 12 1

1 21 22 2

1 2

,

N

N

N N NN

a a a

a a a

a a a

 
 
 = =
 
 
  





   



A A  (20)

where am,n denotes the transition probability amplitude from baseket |m to baseket |n, where m, n could be any 

of 64 basekets (the size of matrix is N × N, where N = 64). The corresponding probability amplitude is related to 
the probability by pm,n = |am,n|2. The Kraus operator Em,n is obtained as , , .m n m nE a n m=  Since the elements of the 

probability amplitude transition matrix are complex numbers, the matrix A is not stochastic. The k-th stage (step) 

transition probability matrix can be determined as: 

( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

1 1 1
11 12 1, 11 12 1, 11 12 1,

1 1 1
21 22 2,121 22 2, 21 22 2,

1 1 1
,1 ,2 ,

,1 ,2 , ,1 ,2 ,

k k k k k k
N N N

k k k k k k
Nk kN N

k k k k k k
N N N N

N N N N N N N N

a a a a a a a a a

a a aa a a a a a

a a aa a a a a a

− − −

− − −
−

− − −

     
    
    =    
    
        

  

 


          

 

A = A A .






 
(21)

Clearly, from the matrix multiplication rule, the ( )k
ija -th element is determined by: 

( ) ( ) ( ) ( ) ( )1 1 1 1
, ,1 1, ,2 2, , , , ,

1

.
N

k k k k k
m n m n m n m N N n m l l n

l

a a a a a a a a a− − − −

=

= + + + =  (22)

Since ( ) ( ) ( ); 1,.., 1k k r r r k−= = −A A A  the k-step (k-stage) transition probability amplitudes satisfy the  

Chapman–Kolmogorov equation: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
, ,1 1, ,2 2, , , , ,

1

.
N

k k r r k r r k r r k r r
m n m n m n m N N n m l l n

l

a a a a a a a a a− − − −

=

= + + + =  (23)

The superoperator expressed in terms of Kraus operators after k-stages, namely ( ) ( )
, ,
k k

m n m nE a n m= , can be 

written as: 

( ) ( ) ( ) †
, ,,

( ) ,k k k
s m n s m nm n

E Eξ ρ ρ=  (24)

where ρs is the biological system initial density matrix.  

We will now demonstrate, that this representation is quite general and that famous quantum master 

equation (QME), commonly used in quantum physics and quantum biology, is just a first order 

approximation of the operatorsum representation. Under the first order assumption, we can write: 

( ) † †
0 0

1,2,...

( ) ( ) ,k k
k

t t t O t E E E Eρ δ ρ δ ρ ρ
=

+ = + = +   (25)

where  

0 ( ) ( ) ( )E I O t I K jH t o tδ δ δ= + = + − +  and ( );k kE L t O tδ δ= +  (26)

with H and K being the Hermitian operators, while Lk are Lindblad operators. From the normalization 

condition we have that:  
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† †

0,1,... 1,2,...
2 ( ),k k k kk k

E E I I K t L L t o tδ δ δ
= =

= = + + +   (27)

which indicates that  
†

1,2,...
0.5 .k kk

K L L
=

= −   (28)

As δt→0, the Equation (25), after the substitution of (28) into (26) and then (26) into (25), becomes 

[ ] { }† †

1,2,...

, 0.5 , ,k k k k
k

jH L L L L
t

ρ ρ ρ ρ
=

∂  = − + − ∂   (29)

where we use {A, B} = AB + BA to denote the anticommutator. Therefore, the QME (29) is just the 

approximation of the operator-sum representation (24), when δt→0. (For simplicity, we omitted the 

reduced Plank constant / 2h π=  from the discussion above.) In other words, for Markovian 

approximation, the quantum channel model description given by the operator-sum representation and 

QME description are equivalent to each other. The particular use of representation is dictated by the 

biological problem at hand. Notice that superposition principle has not been used at all in deriving the 

operator sum representation (24), indicating that it is also applicable to cases when the linearity 

assumption of quantum mechanics is not valid [19,20]. 

Now we apply the Holevo-Schumacher-Westmoreland (HSW) theorem [24] to calculate the quantum 

biological channel capacity as follows:  

( ) ( )( ) { }
( ) ( ) ( ) ( )( )

,
max ,

x x

k k k k
x x x xx xp

C S p p Sξ ξ ξ  = −   ρ
ρρ  (30)

where the maximization is performed over px and ρx. In (30) we use the ensemble {px, ρx} to denote the 

ensemble of density matrices corresponding to different amino acids. With S(⋅) we denoted the von Neumann 
entropy ( )S ρ . The quantum biological channel capacity describes the maximum amount of genetic 

information transferred from DNA to protein, and it is expressed in bits/residue. It can also be used as a figure of 

merit to determine the fitness and healthiness of the cell, tissue, organ, or organism as a whole. For instance, if 

several cells in an organ have a low cell channel capacity, but average channel capacity of organ, normalized per 

cell, is high, and close to the maximum possible, the corresponding organ is still in excellent condition. 

However, as the number of abnormal cells increases, the corresponding average channel capacity of the organ 

decreases and once a critical threshold is achieved the organ functionality gets affected. In this scenario, a cancer 

cell generating nonsense proteins is considered to have zero channel capacity. Additionally, the cells in either a 

senescence state or an apoptosis state have zero capacity. In this context, measuring biological channel capacity 

would be a more reliable measure of “real” aging than any specific chemical change, such as glycation, blood 

pressure, skin elasticity, etc. Reliable markers of aging are highly important, in particular brain aging markers. 

The biological channel capacity can be used as such relevant marker. By measuring the average number of 

bits/residue would provide a more accurate measure of the biological age of a tissue or an organ than any single 

chemical measure. This can help in an early diagnosis of the detrimental effects of aging. 

Orgel noticed in reference [25] that translation errors, given that the translation process has lower fidelity 

than the replication process, decreases further fidelity of the translation process affecting, therefore, the gene 

expression machinery and, as such, contribute to the reduction of cell vitality, which is related to the aging 

process. In the unified aging model discussed in the introduction, this will modify the transition probabilities in 

the damage Markov chain-like model. Therefore, the models introduced in this paper are consistent with Orgel’s 
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observations. In our previous article [8], we classify various types of quantum errors into several broad 

categories: (i) storage errors that occur in DNA itself as it represents an imperfect storage of genetic information, 

(ii) replication errors introduced during the DNA replication process, (iii) transcription errors introduced during 

DNA to mRNA transcription, and (iv) translation errors introduced during the translation process. Orgel’s errors 

are clearly of type (iv). Our proposed models above, allow us to consider the various sources of genetic 

error jointly, as it was done in this paper, or to consider them separately. In the second case, each stage in the 

Markov chain-like model needs to be split into four sub-stages, each sub-stage corresponding to one type of 

dominant errors. 

Similarly, as in our previous paper [8], we consider three scenarios. In scenario (i), we assume that the codon 

state representing an amino acid state is a completely mixed state; a statistical mixture of basekets each 

occurring with the same probability. This scenario is essentially semi-classical. In scenario (ii), we assume that 

the amino acid codon-state is a superposition of eigenkets of corresponding Hamiltonian determined as 

described by Karafyllidis [14]. In case (iii), we select one of the amino acid codon eigenkets at random. 

Therefore, we perform the optimization only with respect to the prior probabilities of codons. The results of the 

calculation are summarized in Figures 4–6, where we show biological channel capacities expressed in terms of 

bits/residue against the single nucleobase error probability. The general observations are: (i) the single stage 

quantum biological channel capacity for any of three models is always higher than corresponding classical 

biological channel capacity and (ii) the classical biological channel seems to more robust for more than 

one stages. 
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Figure 4. Channel capacity of quantum biological coherent state channel model with 

memory against the single base error probability. 

The quantum biological coherent state channel model has higher biological channel capacity than the 

corresponding classical Markovian model for two stages when the single base error probability is smaller than 

1.8 × 10−3, than for four stages for p ≤ 2.3⋅10−4. On the other hand, the quantum biological random eigenkets 

selection model has higher biological channel capacity than the corresponding classical Markovian model for 

two stages when the single base error probability is smaller than 2.2 × 10−3, than for four stages for  

p ≤ 2.6 × 10−4. Since the mixed state channel model represents the classical statistical mixture of density 

operators, it is not surprising to see that it performs only slightly better than classical biological channel model. 
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However, when the number of stages is larger than one it performs worse than the classical channel model 

except for very large single nucleobase error probabilities. When p ≥ 4 × 10−2, the two-stage mixed state model 

outperforms the classical model in terms of biological channel capacity. 

 

10-6 10-5 10-4 10-3 10-2 10-1

1.5

2.0

2.5

3.0

3.5

4.0

4.5

B
io

lo
gi

ca
l c

ha
nn

el
 c

ap
ac

ity
, C

 [b
its

/r
es

id
ue

]

Single base error probability, p

Biological channel capacity:
Markovian channel model:
      1 stage
      2 stages
      4 stages
Quantum (by HSW Thm)
Random eigenket 
selection model:
       1 stage
       2 stages
       4 stages

 

Figure 5. Channel capacity of quantum biological randomly selected eigenkets channel 

model with memory against the single base error probability. 
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Figure 6. Channel capacity of quantum biological mixed state channel model with memory 

against the single base error probability. 

From [26,27] we learned that the environment helps to suppress most of the exotic biological states 

and yields to the preferred state of the biological system. Therefore, the environmentally-induced 

decoherence is beneficial to the biological system. As such, it appears to make sense to study the 

hybrid quantum-classical biological channel models. Notice that these hybrid models are different 

from the synergetic model of DNA due to Koruga [28], which is essentially a tensor product of 
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quantum and classical channel models. Our biological hybrid model is composed of kq quantum stages 

and kc classical stages. The density matrix after kq quantum stages can be described as: 

( ) ( ) ( )†
, ,,

,q q qk k k

m n s m nm n
E Eρ ρ=  (31)

where the Kraus operators are given by ( ) ( )
, , ,q qk k

m n m nE a n m=  while the elements of probability amplitudes are 

determined based on Equation (21). 

The Markovian transition probabilities matrix to be used in kc classical stages is determined by: 

( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

2 2 2

11 12 1,

2 2 2

1 1 11 1 1

2 2 2

21 22 2,

2 2 2

2 2 21 1 1

2 2

,1 ,2 ,

2 2 2

1 1 1

q q q

q q q

q q q

q q q

k k k

N

N N Nk k k

n n nn n n

k k k
N

N N Nk k kij
n n nn n n

k k k
N N N N

N N Nk k k

Nn Nn Nnn n n

a a a

a a a

a a a

p
a a a

a a a

a a a

= = =

= = =

= = =

 
 
 
 
 
 
 
  = =   
 
 
 
 


 

  

  

  





   



P ,





 

(32)

where the normalization per row ensures that the P-matrix is stochastic. The Markovian transition probabilities 

matrix after kc classical steps is determined by: 

( ) .c ck k=P P  (33)

The codon transition probabilities determined by (32) are employed to evaluate the classical biological 

channel capacity, defined as 

max[ ( ) ( | )],C H Y H Y X= −  (34)

where H(Y) and H(Y) stand for the biological Shannon (classical) channel input and output entropies, while 

H(Y|X) represents the conditional entropy of the biological channel output given the biological channel input X. 

The Shannon (classical) entropy of biological channel output and conditional entropy are defined respectively as: 

2
,

( ) ( | ) ( ) log [ ( | ) ( )]n m m n m m
m n m

H Y p Y X P X p Y X p X= −   
(35)

2( | ) ( | ) ( ) log ( | )m m m n m
m n

H Y X p Y X p X P Y X= − (36)

where we use {p(Xi)} to denote the probability of occurrence of codons in DNA, and {p(Yj|Xi)} to denote the 

conditional probabilities of the received codons {Yi} given the transmitted codons {Xi}. The results of 

calculations are summarized in Figure 7. Clearly, the hybrid biological channel model with kq quantum stages 

and kc classical stages always has higher biological channel capacity than the Markovian classical channel 

model with k =kq + kc classical stages for all values of the single codon error probability. So it appears that the 

hybrid biological channel model is the most robust among different biological channel models described above. 

From these results we can conclude that it is beneficial for the biological system to be, initially, in a quantum 

state as it exhibits, then, a higher channel capacity, while the later transition into a classical state helps improve 

robustness against genetic noise. 
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Figure 7. Channel capacity of hybrid biological coherent state—classical channel model 

with memory against the single base error probability. 

The problem of aging is closely related to mutations. It is present in multicellular organisms. The 

single cell organisms do not really age in an ordinary sense. In single cell organisms, if the cell gets 

damaged, it either adapts or dies. The aging of multicellular organisms is due to change or loss of 

genetic information [5]. Namely, aging can be associated with the accumulation of mutation errors that 

eventually leads to partial loss of genetic information. In particular, the nuclear DNA damage can 

contribute either directly (by increased cell dysfunction) or indirectly (through apoptosis or cellular 

senescence) to the aging process. In tissues where the cells divide frequently, the somatic mutations are 

not that dangerous if the rate of mutations is sufficiently low. However, nerve or brain cells stop their 

replication at a certain age, and a great portion of somatic mutation on these cells is responsible for 

aging. Additionally, the somatic mutations in non-dividing cells are responsible for the aging process 

due to senescence/depletion. Different stages of Markovian-like biological channel models described 

above can be considered as different stages in life as well. As the time progresses, the number of 

possible error-event paths in genetic information increases, leading directly to the change of primary 

structure of the key enzymes. Since the key enzymes necessary to regulate metabolic processes in an 

organism are affected by the accumulation of random errors, the organism’s metabolism as a whole 

gets affected as well. The mutations could also be caused by mutagens and carcinogens. Well known 

examples of exogenous mutagens include intercalators (EtBr whose molecule can get inserted between 

the planar nucleobases of DNA and deform the structure of DNA) and base analogs (5-bromouracil (5-

BU) which pretend to be a nucleobase but act differently. Namely, the 5-BU can replace uracil, but can 

have both keto and enol forms, which act differently. The keto form of BU pairs very well with A, 

while enol form pairs very well with G, instead, introducing additional mutations. Therefore, induced 

mutations increase the codon error probability. From Figure 7 it is evident that the increase of the 

single base error probability above 10−4 leads to a dramatic decrease in genetic information for 

multistage models. In conclusion, the combination of multistage error events and codon error 

probability increases can be considered as the main sources of the aging process.  
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This theory of aging is known as damage/error theory of aging. Another relevant theory of aging is 

programmed theory of aging [18], in which the aging process is dictated by a biological clock. The 

control regulation, in this model, is dependent on gene regulation affecting the system responsible for 

maintenance, repair mechanisms, and defense responses. These two theories are not mutually 

exclusive, but might interact in a complex way as indicated by Jin [18]. Additional details on this topic 

are provided in concluding remarks section, Section 4. 

3. Quantum Biological Channel Capacity Evolution through Generations 

In the previous section, we have described the classical Markovian model and the quantum Markov-

like model to describe mutations and aging. The same model is also applicable in describing genome 

preservation through generations. The results of the calculation of evolution of biological channel 

capacity through generations, for various quantum and classical models described in Section 2, are 

summarized in Figures 8–9 for different base error probabilities p: 10−9 in Figure 8 and 10−6 in Figure 

9. The classical Markovian model shows much better robustness through generations compared to 

various quantum Markovian-like models, except the mixed state model. On the other hand, quantum 

superposition and random eigenket selection Markovian-like models exhibit higher biological channel 

capacity for up to 1455 generations when the base error probability is 10−9 (see Figure 8). However, 

for typical base error probability (around 10−6), the random eigenket selection model exhibits higher 

biological channel capacity for up to 49 generations only (see Figure 9).  
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Figure 8. Evolution of biological channel capacity through generations when the base error 

probability is set to 10−9. 
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Figure 9. Evolution of biological channel capacity through generations when the base error 

probability is set to 10−6. 

The hybrid quantum-classical model, also described in Section 2, exhibits better robustness 

(through generations) compared to purely quantum Markovian-like models. If the hybrid channel 

model preserves the coherence over generations, we have to use the HSW theorem to calculate the 

quantum biological channel capacity, based on Equation (30). In this case, as shown in Figures 8–9, 

not only that the system is more robust than the corresponding classical model, but also exhibits higher 

biological channel capacity. If, however, the coherence is not preserved, but the system faces quantum 

to classical transition, in similar fashion as described by Zurek [29], we have to use the classical 

information theory concepts, in particular Equations (34)–(36) from the previous section in calculating 

the biological channel capacity. Such a system exhibits lower than classical model biological channel 

capacity, but has similar robustness of genome information through generations when compared to the 

classical Markovian channel model. 

Some other models to describe the evolution of genetic information through generations include  

the M-ary symmetric channel model, where M = 4 (see reference [16]), and the Kimura model [17]. 

Let X = {x0, …, xI-1} and Y = {y0, …, yJ-1} denote the input and output alphabets, respectively. 

Additionally, let p(yj|xi) denote the transition probability Pr(Y = yj|X=xi) and Ps denote symbol error 

probability. Then, for the M-ary symmetric channel (MSC), the transition probability is given by 

p(yj|xi) = Ps/(M−1) when i ≠ j and p(yi|xi) = 1−Ps. The 4-ary symmetric channel model can also be used 

to develop Markovian model, whose transition probability matrix is given by: 

4SC

1 / 3 / 3 / 3

/ 3 1 / 3 / 3
.

/ 3 / 3 1 / 3

/ 3 / 3 / 3 1

s s s s

s s s s

s s s s

s s s s

T C A G

P P P PT

P P P PC

P P P PA

P P P PG

− 
 − =
 −
 −  

P
 (37)

The transition matrix of 4-ary symmetric channel (SC)-based Markovian process, corresponding to 
the n-th generation, is determined by 

4SC
nP . The classical biological channel capacity is calculated then 

by Equations (34)–(36) from the previous section. The results of calculations are summarized in Figure 
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10 for different nucleotide (symbol) error probabilities Ps. Since this model does not distinguish 

between exons and introns than corresponding channel capacity, expressed in bits/symbol, can be 

called non-protein coding DNA biological channel capacity and, strictly speaking, is not comparable to 

classical and quantum models described above, with results summarized in Figures 8–9. Moreover, Ps 

is the nucleotide error probability while p in Figures 8–9 is the single base error probability per codon. 

The Kimura model [17] can be considered as a generalization of 4-ary symmetric channel model 

whose transition matrix is given as follows: 

Kimura

1 / 3 / 3 (1 2 / 3)

/ 3 1 (1 2 / 3) / 3
,

/ 3 (1 2 / 3) 1 / 3

(1 2 / 3) / 3 / 3 1

s s s s

s s s s

s s s s

s s s s

T C A G

P P P PT

P P P PC

P P P PA

P P P PG

γ γ γ
γ γ γ
γ γ γ

γ γ γ

− − 
 − − =
 − −
 − −  

P
 

(38)

where [ ]0,3/ 2γ ∈  is the parameter of the Kimura model with typical values ranging between 0.07 and 

0.79. Clearly, for γ = 1 the Kimura model reduces to 4-ary symmetric channel. 
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Figure 10. Evolution of non-protein coding DNA biological classical channel capacity 

through generations based on 4-ary SC-inspired Markovian process for different nucleotide 

error probabilities Ps. 

What is interesting about the Kimura model is it can distinguish between transitions and 

transversions during the base substitution mutations. In transitions, the category of bases during base 

substitution is preserved and the transition probability in this case is (1-2γ/3)Ps. On the other hand, in 

transversions, the base category gets changed, from purine to pyrimidine type and vice versa, and the 

transition probability in this case is γPs/3. The transition matrix of the Kimura model-based Markovian 
process, corresponding to the n-th generation, is determined by 

Kimura
nP .  

The classical biological channel capacity, expressed in bits/symbol, is calculated then by Equations 

(34)–(36) from the previous section. The results of calculations are summarized in Figures 11 and 12, 

for different nucleotide (symbol) error probabilities Ps. In each figure the Kimura parameter γ is used 
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as the parameter. Again, since Ps is here nucleotide error probability while p in Figures 8 and 9 is the 

single base error probability per codon the results shown in Figures 11 and 12 are not really 

comparable against those shown in Figures 8 and 9. 

104 106 108 1010 1012 1014
0.0

0.4

0.8

1.2

1.6

2.0
P

s
=10-9

C
la

ss
ic

a
l b

io
lo

g
ic

a
l c

ha
n

n
e

l c
a

p
a

ci
ty

, C

Number of generations, n

 γ=1
 γ=0.1
 γ=0.01

 γ=10-4

 γ=10-7

 

Figure 11. Evolution of non-protein coding DNA classical biological channel capacity 

through generations based on the Kimura model-inspired Markovian process for different 

values of parameter γ and symbol error probability set to 10−9. 
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Figure 12. Evolution of non-protein coding DNA classical biological channel capacity 

through generations based on the Kimura model-inspired Markovian process for different 

values of parameter γ and symbol error probability set to 10−6. 
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3. Concluding Remarks  

This paper represents the continuation of our previous paper [8], in which the operator-sum 

representation of biological channel based on codon basekets and the corresponding quantum channel 

model have been derived. This memoryless quantum channel model has been extended in this paper to 

be able to describe the propagation of mutation errors in time, the process of aging, and evolution of 

genetic information through generations. The extended channel model is capable of accurately 

describing the process of the creation of spontaneous, induced, and adaptive mutations and their 

propagation in time, as well as the process of aging. The following three illustrative models, applicable 

in deferent regimes, have been proposed: (i) Markovian classical model, (ii) Markovian-like quantum 

model, and (iii) hybrid quantum-classical model. The proposed models have been applied to study 

aging and the evolution of quantum biological channel capacity through generations. The key 

differences of these models against the conventional multilevel symmetric channel-based Markovian 

model and the Kimura model-based Markovian process have been discussed. As we have shown in 

Section 2, these models are quite general and applicable to many open problems in biology, not only to 

biological channel capacity, representing the main focus of the paper. We have demonstrated that the 

famous quantum master equation approach, commonly used to describe different biological process, is 

just the first-order approximation of the proposed quantum Markov chain-like model, when the observation 

interval tends to zero. This indicates that the proposed models are more accurate and more general. 

The proposed Markovian-like quantum biological model is applicable not only to damage/error 

models of aging, but also to time-dependent programed theories of aging; in particular the programmed 

senescence theory [18,30]. The proposed Markovian-like quantum channel model can also be used to 

unify damage and programmed senescence theories of aging as follows: namely, the life cycle can be 

represented in several stages, and the transition from stage to stage is determined by particular genes’ 

activation and deactivation. This transition from previous to next life stages is characterized by the 

increase in base error probability as well as changes in transition probability amplitudes am,n among 

codon-eigenkets. The senescence stage is defined as the stage when age-associated phenomena are 

visible, when the Markov-like quantum channel model is used. This unifying model is also applicable 

to describe the evolution of genetic information through generations. 

In derivation of the operator-sum representation of the Markovian-like quantum biological channel 

model, the superposition principle has not been used at all, indicating that this model is also applicable 

to cases when the linearity assumption of quantum mechanics is not valid [19]. It is interesting to 

notice that, when the single codon error probability exceeds a certain threshold value, biological 

channel capacity decreases exponentially, which is consistent with paper by Melkikh [20].  
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