Next Article in Journal / Special Issue
Integrated in silico Analyses of Regulatory and Metabolic Networks of Synechococcus sp. PCC 7002 Reveal Relationships between Gene Centrality and Essentiality
Previous Article in Journal
Bending Elasticity Modulus of Giant Vesicles Composed of Aeropyrum Pernix K1 Archaeal Lipid
Previous Article in Special Issue
How Close We Are to Achieving Commercially Viable Large-Scale Photobiological Hydrogen Production by Cyanobacteria: A Review of the Biological Aspects
Article Menu

Export Article

Open AccessArticle
Life 2015, 5(2), 1111-1126; doi:10.3390/life5021111

Enhancing Alkane Production in Cyanobacterial Lipid Droplets: A Model Platform for Industrially Relevant Compound Production

Department of Biology, California State University Northridge, 18111 Nordhoff St., Northridge, CA 91330-8303, USA
*
Author to whom correspondence should be addressed.
Academic Editors: John C. Meeks and Robert Haselkorn
Received: 27 December 2014 / Revised: 10 March 2015 / Accepted: 19 March 2015 / Published: 26 March 2015
(This article belongs to the Special Issue Cyanobacteria: Ecology, Physiology and Genetics)
View Full-Text   |   Download PDF [1438 KB, uploaded 26 March 2015]   |  

Abstract

Cyanobacterial lipid droplets (LDs) are packed with hydrophobic energy-dense compounds and have great potential for biotechnological expression and the compartmentalization of high value compounds. Nostoc punctiforme normally accumulates LDs containing neutral lipids, and small amounts of heptadecane, during the stationary phase of growth. In this study, we further enhanced heptadecane production in N. punctiforme by introducing extrachromosomal copies of aar/adc genes, and report the discovery of a putative novel lipase encoded by Npun_F5141, which further enhanced alkane production. Extra copies of all three genes in high light conditions resulted in a 16-fold higher accumulation of heptadecane compared to the wild type strain in the exponential phase. LD accumulation during exponential phase also increased massively to accommodate the heptadecane production. A large number of small, less fluorescent LDs were observed at the cell periphery in exponential growth phase, whereas fewer number of highly fluorescent, much larger LDs were localized towards the center of the cell in the stationary phase. These advances demonstrate that cyanobacterial LDs are an ideal model platform to make industrially relevant compounds, such as alkanes, during exponential growth, and provide insight into LD formation in cyanobacteria. View Full-Text
Keywords: alkane; cyanobacteria; lipid droplet; acyl-acyl carrier protein reductase (Aar); aldehyde decarbonylase (Adc) alkane; cyanobacteria; lipid droplet; acyl-acyl carrier protein reductase (Aar); aldehyde decarbonylase (Adc)
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

SciFeed Share & Cite This Article

MDPI and ACS Style

Peramuna, A.; Morton, R.; Summers, M.L. Enhancing Alkane Production in Cyanobacterial Lipid Droplets: A Model Platform for Industrially Relevant Compound Production. Life 2015, 5, 1111-1126.

Show more citation formats Show less citations formats

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Life EISSN 2075-1729 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top