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Abstract: Artificial intelligence (AI) has emerged as a powerful tool in healthcare significantly
impacting practices from diagnostics to treatment delivery and patient management. This article
examines the progress of AI in healthcare, starting from the field’s inception in the 1960s to present-day
innovative applications in areas such as precision medicine, robotic surgery, and drug development.
In addition, the impact of the COVID-19 pandemic on the acceleration of the use of AI in technologies
such as telemedicine and chatbots to enhance accessibility and improve medical education is also
explored. Looking forward, the paper speculates on the promising future of AI in healthcare while
critically addressing the ethical and societal considerations that accompany the integration of AI
technologies. Furthermore, the potential to mitigate health disparities and the ethical implications
surrounding data usage and patient privacy are discussed, emphasizing the need for evolving
guidelines to govern AI’s application in healthcare.

Keywords: artificial intelligence; machine learning; telemedicine; chatbots; digital health; personal-
ized medicine; neural networks; regulatory considerations

1. Introduction

Artificial intelligence (AI) has emerged as an increasingly useful and reliable tool for
various applications, particularly in healthcare. It has the potential to enhance the practice
of physicians by facilitating improved efficiency and organization, thus improving patient
care and outcomes. For patients, AI can improve access to care, which would likely lead to
improved patient satisfaction and follow-up. However, like other technological advance-
ments, AI has many limitations and potential pitfalls that must be thoroughly characterized
and addressed before it can be trusted to be further integrated into healthcare. The im-
portance of contextualizing this review broadly lies in understanding AI’s transformative
potential in healthcare while acknowledging its limitations and ethical implications. In
contrast to previous reviews, our focus extends beyond mere technological advancements
to encompass a comprehensive examination of AI’s impact on healthcare delivery, patient
outcomes, and societal implications.

The purpose of this review is to characterize the current state of AI use in healthcare
starting from the field’s inception in the 1960s to present-day innovative applications in
areas such as precision medicine, public health and immunization, medical education, and
telemedicine. Furthermore, we emphasize the critical need to address social and ethical
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considerations associated with the expansion of AI usage in healthcare, particularly as they
relate to health disparities. Lastly, the review will build from the identified limitations and
considerations to provide guidance for effectively developing the next generation of AI in
healthcare in a manner that promotes patient safety, accessibility, and inclusivity.

2. Section 1: Groundwork and Historical Evaluation
2.1. Artificial Intelligence: A Historical Perspective

AI is a broad term that encompasses an expansive landscape of research that attempts
to model intelligent behavior without direct human involvement [1]. The very first question
of AI dates to the 1950s with the “Turing Test”. Alan Turing posed a deceptively simple
question: could a man-made device act and make decisions indistinguishable from those
of humans [2]? This statement transformed AI from an amorphous concept to a well-
defined goal for researchers and thinkers of the time to work towards. Turing posed the
question, but many scholars credit the true conception of AI to the 1956 Summer Dartmouth
Conference on AI. This conference drew the world’s leading data scientists, engineers, and
mathematicians. They traveled to Dartmouth University to share ideas and collaborate
with one another—all in the hope of laying the framework for practical applications of AI.
Many of these experts stated that AI was indeed possible and, with keen foresight, claimed
that AI would one day rival and surpass human intelligence [3,4].

The origins of industrial AI also date back to the 1950s and the primary goal of these
primitive systems was for machines to emulate human decisions and actions [5]. The first
robotic arm was developed in 1955 by General Motors [6]. Then, in 1964, Eliza, the world’s
first chatterbot, was developed by Joseph Weizenbaum at the MIT AI Laboratory. Eliza’s
system detected key words within the input text and then generated response based on
reassembly rules. In this way, Eliza curated text responses that could simulate conversation
with a human therapist [7]. Indeed, research in AI rapidly expanded in the 1960s, but
many consider Shakey to be the crowning achievement of the decade. Shakey was the first
robot that could interpret human instruction and then perform actions based upon those
instructions. These contributions revolutionized the research landscape and proved that
true AI was not simply a pipedream but a viable field of study with tangible results.

AI with demonstrable medical applications began taking off in the 1970s [8]. INTERNIST-1,
the world’s first artificial medical consultant, was created in 1971. The system utilized a
search algorithm to arrive at clinical diagnoses based on patients’ symptoms. INTERNIST-
1 represented a major shift in AI in clinical research because it had clear potential to
take some of the onus of clinical diagnosis from healthcare providers and provided a
mechanism for physicians to cross-check their differential diagnoses. By this point, it was
so clear that AI had promising applications in medicine that the National Institutes of
Health sponsored the very first AI in Medicine conference at Rutgers University [9]. The
explosion of medical AI came, in part, from interdisciplinary meetings in which researchers
in different aspects of AI shared both ideas and systems. One such system birthed from
network integration was MYCIN. MYCIN was a system that used a set of input criteria to
aid physicians in prescribing the correct antibiotics for patients diagnosed with infectious
diseases [10]. The next major advancement took place in the 1980s at the University of
Massachusetts. DXplain was a program that was designed to support clinicians in arriving
at a medical diagnosis [11]. Clinicians could input symptoms and the system would return
a potential diagnosis. The system was like INTERNIST-1 but expanded on the total number
of clinical diagnoses that the system could derive and provided an early information bank
for physicians to look for up to date medical information.

The modern era of AI began in the early 2000s and saw some of the most expansive
leaps for AI both in its applications to healthcare and also to human daily living. IBM
created a question answering system in 2007 called Watson, which was able to outcompete
top contestants and champions on the television show Jeopardy. This system used DeepQA,
which used language processing to analyze data from different contexts and extract infor-
mation from a wide array of sources to arrive at an answer [12,13]. This created opportunity
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for applications in the healthcare field, as inputs no longer needed to be symptoms and
outputs could be more complex than purely clinical diagnosis. For example, in 2017, the
Watson system was able to determine RNA binding proteins that were associated with
amyotrophic lateral sclerosis [14]. New systems were made to support patient care in
various capacities. Pharmbot, for example, was developed in 2015 to provide education
regarding medication and treatment processes for patients and their families.

2.2. Machine Learning and Neural Networks in Healthcare

Within the broad and often difficult to navigate landscape of AI, machine learning
(ML) is the process of using data and algorithms to make predictions. The goal of ML is
to make these decisions purely through information gleaned from data rather than direct
user input [15]. The specific types of algorithms used, therefore, are the primary focus of
ML. ML algorithms are classically derived from mechanisms of statistical learning. Some
common statistical learning methods include logistic regression, linear regression, and
random forest (RF) [16]. K-nearest neighbor is a statistical learning mechanism that is used
for data classification and regression [17]. These algorithms can be used in isolation or in
rapid succession to assist in data processing, training, and task execution that are at the
heart of ML as an entity. Figure 1 illustrates a concentric circle diagram delineating the
hierarchical relationships within AI, progressively delving into more specific facets of the
field. The diagram culminates in the innermost circles, emphasizing neural networks and
deep learning as among the most sophisticated applications in AI.
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Among the numerous frameworks of statistical inference that make up ML, we focus
this discussion on deep learning and neural networks. Deep learning is a subset of ML
that relies on mathematical models to emulate neuronal information processing. Artificial
neural networks (ANNs) are generated to emulate the neuronal interconnections within
the human brain. The nodes in ANNs are meant to represent neurons, receiving input from
surrounding nodes in the network and sending output to other nodes [19]. This generates
an interdigitating pathway that can allow information to be processed and relayed from
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node to node, much like the neuronal network that makes up the human central nervous
system. Convolutional Neural Networks (CNNs) are a subclassification of ANNs that
can both receive and send out multidimensional data. These networks can transmit more
complex data and are useful for tasks like spatial recognition, audio processing, and
language processing. These CNNs can, for example, use disease symptomology and
clinical imaging to arrive at a clinical diagnosis, much like a trained physician would [20].
Research on CNNs surged in the 1970s, and the first neural networks were already put
to clinical use by 1995 [21,22]. The later portion of this section will focus on clinical
application of the various ML frameworks that we just described. Next, we review some of
the most well-documented medical applications of ML: radiological image interpretation
and dermatological pathology identification.

Radiological image interpretation is classically performed by highly trained physicians
who use a methodical approach of comparing normal and abnormal imaging to arrive
at clinical diagnosis [23]. Computer-Aided Detection (CAD) is an application of ML that
assists clinicians and decreases the number of missed diagnoses when reviewing imaging
studies [24]. These algorithms are designed to highlight potentially anomalous patterns
on imaging to draw clinicians’ attention. Of note, these applications are not intended to
replace the clinician, rather they are designed to aid the clinician with guided interpretation,
thereby reducing the clinician’s false negative rate. Autonomous pathology detection
without physician aid is also a rising application of ML. Since the 1970s, pixel analysis
enabled ML algorithms to identify irregularities upon imaging studies, with the goal of
detecting malignancy and metastatic disease [25]. Now, newer algorithms enable Magnetic
Resonance Imaging (MRI) and ultrasound interpretation on par with that of practicing
physicians [26]. Although diagnostic image interpretation is one of the many applications
of ML in medicine, it provides meaningful evidence to support the overall value of ML in
patient care.

Lastly, we turn our attention to another major application of ML: the detection of
skin pathology. There are multiple dermatological applications of ML including image-
guided disease classification, pathology slide interpretation, assessment of skin disease
using digital devices, and epidemiological studies [16]. Of note, skin cancer is by far the
most common human malignancy, and thus, a great portion of the research is aimed at
disease prevention and screening [27]. CNNs have been developed to recognize, detect,
and classify dermatological images. These networks are trained using datasets containing
thousands of normal and pathological images. For example, the GOOGLE Inception V3
was a CNN trained with over 1 million nonspecific images, and 129,450 dermatological and
clinical images [16]. The CNN was able to detect dermatologic malignancy at levels on par
with trained physicians [28]. In another study, the CNN was trained with 49,567 images
and was able to accurately detect onychomycosis, a fungal infection of the nails, using only
photos of the patients. The system achieved diagnostic accuracy that was superior to that
of most dermatologists involved with the project [29].

The applications of ML algorithms to radiological image processing and dermatology
are only a few examples of the great storehouse of research conducted regarding medical
applications of ML. AI has also been used for predicting patient risk for disease, triage
and diagnostics, genetic engineering, as well as many more applications [30]. As research
continues and AI becomes more integrated with the healthcare system, more applications
are sure to arise, which are represented in Figure 2. With these advancements there may be
even greater possibilities for improved patient care and more favorable outcomes—which
are at the heart of medical research.
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3. Section 2: Current Innovations and Applications
3.1. Advancing Personalized Medicine: Leveraging AI across Multifaceted Health Data Domains

In the traditional, one-size-fits-all approach of utilizing evidence-based medicine from
high-quality experimental designs such as clinical trials, individual patient differences
are often considered the undesired reality that adds complexity to the question being
addressed. However, in precision medicine, this individuality is leveraged, and healthcare
delivery is tailored to individuals’ unique health data such as genetics, lifestyle, and
environment [31,32]. With the increasing adoption of wearables, improvements in next-
generation sequencing, and increased implementation of electronic health records (EHRs),
the health sphere has had a recent boom of individual healthcare data [32,33]. However,
these personalized healthcare data are being collected at a rate leagues faster than they can
be processed and analyzed, creating a bottleneck [34]. AI can address this bottleneck by
increasing the quality and usability of these quickly growing data [35]. Various techniques
can automate data cleaning, handling, and standardization of diverse data sources, which
is crucial in making the data actionable. For example, Generative Adversarial Networks
(GANs) and Autoencoders have shown promise in forecasting missing values and fixing
tabulation mistakes in datasets [36]. The development of AI systems has paved the way for
possible solutions to analyzing big datasets in a timely and cost-effective manner [37].

Multiple analysis techniques fall under the umbrella of AI, which employs various
methods, algorithms, and data science approaches to analyze large datasets to extract mean-
ingful information depending on the data type [38–40]. For example, ML techniques can
be employed to analyze histological and genomics data, such as for classifying cancer [41].
Additionally, analysis of large amounts of health information stored as text data, such as
EHR, might utilize Natural Language Processing (NLP) techniques [40,42], but analysis of
medical imaging, such as CT scans, might utilize computer vision techniques [39]. This
relationship is illustrated in Figure 3. It is important to note that these use cases are not
rigid, and various techniques can be applied to the data to extract meaningful information.
Examples of specific use cases along with AI analysis techniques are listed in Table 1. It is
critical to ensure the quality of diverse data types when trying to leverage AI in healthcare.
Advanced AI methods can play a key role in upgrading data accuracy and reliability across
different data types, from EHR to medical imaging. As a result of reducing artifacts, errors,
and noise, AI can improve the integrity and validity of personalized clinical treatment plans.
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As an example, deep learning models such as the Residual Encoder–Decoder Convolutional
Neural Network (RED-CNN) employ CNNs and autoencoder architecture to remove noise
from CT scans to improve the quality of the image itself, thereby guiding diagnosis and
treatment planning [43]. This can be vital in conditions like COVID-19 when better imaging
quality can help determine severity of infection and thereby changing management [35].
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Table 1. Summary of AI in personalized medicine case studies.

Study/Case AI Technique Used Application Area Key Findings Implications for
Personalized Medicine

Dermatologist-level
classification of skin
cancer [44]

Convolutional Neural
Networks (CNNs)

Dermatology Classification of skin
lesions with a level of
competence comparable to
dermatologists

Enhances early diagnosis
and treatment
personalization along with
increasing access in areas
with low number of
dermatologists

Patient-centered pain care
using AI and mobile
health tools [45]

Reinforcement Learning Chronic pain AI-driven cognitive
behavior therapy (CBT)
non-inferior to
traditional CBT

Improves individualized
treatment approaches and
access to care

Improved referral process
for specialized medical
procedures like epilepsy
surgery [46]

Natural Language
Processing

Epilepsy and Neurological
surgery

Detection of high-risk
individuals who would
benefit from epilepsy
surgery

Ensuring timely and
appropriate referrals for
at-risk patients

Delineating ulcerative
colitis from Crohn’s
Disease [47]

Guided Image Filtering
(GIF)

Gastrointestinal diseases Improved diagnostic
accuracy in complex
presentation of
inflammatory bowel
disease

Enhanced diagnostic
accuracy leading to
targeted treatment
strategies

Chemotherapy selection
for gastric cancer [48]

Random Forest Machine
Learning Model

Oncology Able to predict which
subset of patients would
benefit from paclitaxel in
gastric cancer

Development of predictive
biomarkers to guide
personalized drug
treatment regiment

In genomics, AI algorithms can analyze sequences of DNA to identify genetic varia-
tions or mutations that may be linked to specific diseases or conditions. By recognizing
patterns in these sequences, AI can help in diagnosing genetic disorders, predicting disease
risks, or identifying potential therapeutic targets [41]. In proteomics, variations in protein
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types and quantities within an organism can result from different health conditions or
responses to treatments. AI can identify these variations, offering the potential to uncover
novel disease biomarkers or enhance our understanding of disease mechanisms. One group
developed an AI model to aid with the diagnosis of thyroid malignancy from the proteomic
samples of thyroid nodules with an estimated sensitivity of over 90% [49]. In addition to
diagnostics, AI can also help in understanding which subsets of patients might benefit from
a drug and which may not. One study was able to utilize AI models to detect which subset
of gastric cancer patients would be sensitive to paclitaxel by analyzing their genome and
uncovering a predictive biomarker [48].

The rise in EHR use globally provides vast amounts of data that can be leveraged to
discover new insights [50]. AI algorithms are adept at analyzing EHRs, extracting patient
histories, and uncovering trends that aid in clinical decision making and personalized
treatment plans. For example, Fu et al. developed NLP algorithms using the Confusion
Assessment Method (CAM) to detect delirium events from EHRs. These algorithms analyze
patient charts for risk factors of delirium and, as a result, early interventions can be
implemented to target high-risk patients [51].

The potential use cases of AI are not limited to biological aspects of disease, as AI can
also be utilized to analyze psychological and sociological aspects of disease. In the realm of
mental health care, AI-driven chatbots and virtual assistants represent a groundbreaking
shift towards accessible and immediate support [52]. These AI applications extend their
utility by aiding in behavioral intervention, offering users personalized strategies and
exercises based on cognitive behavioral therapy principles. They augment traditional
therapy by maintaining engagement between sessions through reminders and self-help
tasks. The customization and adaptability of these chatbots, tailored to individual user
needs and preferences, enhance user experience and engagement [52,53].

The use case extends beyond personal psychology and into sociological aspects of
disease as well by tackling social determinants of health. In a study by Carroll et. al, an
AI model was developed to analyze a wide array of data including patient demographics,
medical histories, and, importantly, social determinants of health factors such as housing
stability, access to transportation, and nutritional status. As a result, the model could
predict a patient’s risk of hospital readmission by considering not just their medical history,
but also factors like their living conditions and social support systems [54]. A patient
identified as high risk due to factors like housing insecurity and limited access to nutritious
food can be connected with social services for housing support and nutritional counseling,
alongside their medical treatment. If the system picks up that the patient is in a financially
precarious position, it can help recommend generic versions of medications or alert the
healthcare team about prescription assistance programs that may exist to help address this
need and improve adherence. In addition, if the patient is identified as having issues with
access to transportation, then treatment modalities that require fewer in-person visits might
be suggested such as larger proportions of telehealth visits.

AI’s potential not only comes from its ability to extract meaningful information from
large datasets, but also through its ability to integrate findings from different sources [37,38,55].
The combination of molecular data such as genomics and proteomics with phenotypic
information like patient history from EHRs plays a pivotal role in advancing personalized
medicine [33]. The integration of individual health information, from the genomic level
all the way to the sociological level, can allow for individualized treatment targeting each
level. Utilizing AI to treat disease through this biopsychosocial lens allows for holistic
comprehension and treatment of disease.

3.2. Real-Time Monitoring of Immunization: Population-Centric Digital Innovations in Public
Health and Research

Globally, an estimated 18 million children do not receive lifesaving vaccines, with an
additional 25 million failing to complete the recommended vaccination schedule, as many
communities in the low- and middle-income countries (LMICs) face barriers related to the
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accessibility of routine immunization services [56,57]. Lockdowns during the COVID-19
pandemic further disrupted the routine immunization services, worsening vaccination
coverage and equity, affecting the vaccine demand in general and increasing the risk for
secondary outbreaks of vaccine-preventable diseases [58–60]. With the increased accessibil-
ity of mobile phone technologies, digital health interventions have played a significant role
in prioritizing immunization gaps by getting children caught up on their vaccinations and
improving access to immunization programs to prevent outbreaks [56,61].

Alongside routine immunization, digitization has also improved the immunization
information system (IIS) for COVID-19 vaccine programs through high-quality and com-
prehensive data capturing at the time of vaccine administration [62]. Studies highlight
that 10–60% of immunization records have errors or lack important information, such as a
patient’s demographics and lot numbers on vaccine vials, which is traditionally entered
manually by the vaccine provider, including public health workers, nurses, or physi-
cians [62]. However, in recent times, vaccine administration has become highly fragmented,
with multiple providers administering vaccines, including pharmacists, workplace and
school-based programs, travel medicine clinics, etc. [62–64]. Innovations in cloud sys-
tems and mobile technologies have opened new doors of possibilities to ensure the use
of effective and comprehensive information systems to track vaccine uptake in complex
immunization programs in upper-middle and high-income settings [62]. With tools like 2D
barcoding, scanning of vaccination vials can help limit data slips and transcription errors
by directly uploading the information into the IIS [62]. A similar approach can be used for
streamlining the data entry procedures for demographic information and previous immu-
nization records through scanning patient identification barcodes to extract all relevant
information from the built-in electronic medical record software.

The use of digital health technologies including interactive dashboards and geographi-
cal information systems (GIS) has benefitted immunization campaigns by providing access
to real-time information to assist policymakers and stakeholders to capture emerging out-
breaks and enhance surveillance performances of eradication programs [65]. AI can also
aid in reducing navigation barriers that influence immunization rates through features
like immunization reminders and promotion campaigns [62]. In Africa, digital tools have
supported polio eradication drives by leveraging the use of mobile phones to disseminate
information for community mobilization and evaluating a campaign’s success through
evaluations, through the use of GIS when producing maps for microplanning for better
supervision and locating vaccination teams in northern Nigeria, and by the transmission of
real-time data to support campaign monitoring [65].

Data dashboard systems also played an integral part in tracking COVID-19 cases
and vaccine distributions, and have played a key role in strengthening equitable vaccine
distribution, vaccination uptake, and preparedness for future disease outbreaks [66]. Soon
after the World Health Organization (WHO) declared the global pandemic in early 2020,
digital dashboards were created and made available to the public, such as the one created
at Johns Hopkins University [66]. These digital dashboards used visual representations
through translated data, positively influencing the general public’s understanding of
health disease reporting and progression [67,68]. These advancements in digitalization of
data reporting transformed health information systems during the pandemic [66]. Open-
source web-based software have supported effective and precise reporting of pandemic
indicators such as caseload and mitigation measurements, expanding beyond local or
regional shadowing [66,69].

3.3. Revolutionizing Healthcare: The Synergy of Telemedicine and Artificial Intelligence

The term “telehealth”, as defined by the World Health Organization (WHO), refers to
the delivery of healthcare services across distances through the use of information and com-
munication technologies. This includes the exchange of valid information for the diagnosis,
treatment, and prevention of diseases and injuries, as well as for research and evaluation,
and the ongoing education of healthcare providers, with the overarching goal of advancing
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the health of individuals and communities [70]. In parallel, the Federation of State Medical
Boards characterizes “telemedicine” as the practice of medicine facilitated by electronic
communication, information technology, or other means between a physician in one loca-
tion and a patient in another, with or without an intervening healthcare provider [71]. For
the purposes of this manuscript, the term “telemedicine” will be employed as an umbrella
term encompassing both telemedicine and telehealth. Over the decades, telemedicine has
emerged as a crucial tool for delivering healthcare remotely [72]. This approach leverages a
diverse array of technologies, including phone calls, video conferences, online health por-
tals, mobile applications, and wearable devices [73–76]. Telemedicine applications can be
broadly categorized into “real-time” and “store-and-forward” methodologies. “Real-time”
applications involve active interaction between clinicians and patients through phone or
video calls. On the other hand, “store-and-forward” applications entail the storage and
transmission of data, such as images or vital sets, to clinicians for subsequent assessment
and interpretation [73].

The utilization of telemedicine has significantly enhanced healthcare accessibility,
particularly for individuals residing in rural areas with limited access to clinicians and
those without means of transportation [73,77]. Moreover, telemedicine has demonstrated
cost-effectiveness compared to traditional in-person visits, leading to reduced healthcare
expenditures for patients [73,74,77]. The efficiency gains are further underscored by time
savings for both patients and clinicians, as virtual appointments eliminate the need for
travel and offer scheduling flexibility for physicians [73,77]. Beyond these advantages,
virtual healthcare appointments mitigate unnecessary exposure to infections, a critical con-
sideration amid the challenges posed by crowded waiting rooms in healthcare settings [78].

An additional consideration is the difficulty of travel for patients with physical dis-
abilities who require a high level of coordinated services to get to a medical appointment.
For some patients, like someone with advanced Parkinson’s disease [79], it can take an
entire day to go back and forth to their medical appointment, which may only last about
15 min. This often requires multiple family members taking time off work as well as time
spent waiting for transportation if the family does not have the appropriate vehicle to
transport the patient. A telemedicine visit would relieve a great deal of strain on the many
people tasked with helping this patient go to their appointment. Yet another challenge is
transportation insecurity [80], which affects many patients in low-income communities.
This can make it difficult for them to attend vitally important medical appointments, which
could lead to worse outcomes.

Notably, the onset of the COVID-19 pandemic triggered a substantial surge in telemedicine
usage [78,81–86]. Many healthcare facilities swiftly transitioned from in-person to virtual
visits during the early stages of the pandemic, ensuring the continued provision of care,
especially for patients with chronic conditions [78,82]. This pivotal role of telemedicine in
maintaining continuity of care was facilitated by various factors, including the rapid ex-
pansion of coverage by U.S. insurance companies for telemedicine visits, the allowance for
clinicians to provide care across state borders, and the temporary relaxation of regulations
by the U.S. Department of Health and Human Services (HHS) to facilitate telemedicine
through personal devices and third-party applications without penalties under the Health
Insurance Portability and Accountability Act (HIPAA) [82,87]. The significant increase
in telemedicine usage during the pandemic is evidenced by data from the FAIR Health
database, a nonprofit organization managing a vast repository of private health insurance
and Medicare claims data in the US. Analysis of these data reveals a marked expansion
in telemedicine usage during the pandemic and sustained elevation post pandemic, as
depicted by the percent change in the telemedicine health claims’ volume compared to the
corresponding month in 2019 (Figure 4). Notably, behavioral and mental health conditions
emerged as the most common diagnoses associated with telemedicine claims during the
pandemic, a trend consistent with pre- and post-pandemic periods (Figure 5) [85].



Life 2024, 14, 557 10 of 25

Life 2024, 14, x FOR PEER REVIEW 10 of 26 
 

 

to virtual visits during the early stages of the pandemic, ensuring the continued provision 

of care, especially for patients with chronic conditions [78,82]. This pivotal role of tele-

medicine in maintaining continuity of care was facilitated by various factors, including 

the rapid expansion of coverage by U.S. insurance companies for telemedicine visits, the 

allowance for clinicians to provide care across state borders, and the temporary relaxation 

of regulations by the U.S. Department of Health and Human Services (HHS) to facilitate 

telemedicine through personal devices and third-party applications without penalties un-

der the Health Insurance Portability and Accountability Act (HIPAA) [82,87]. The signifi-

cant increase in telemedicine usage during the pandemic is evidenced by data from the 

FAIR Health database, a nonprofit organization managing a vast repository of private 

health insurance and Medicare claims data in the US. Analysis of these data reveals a 

marked expansion in telemedicine usage during the pandemic and sustained elevation 

post pandemic, as depicted by the percent change in the telemedicine health claims’ vol-

ume compared to the corresponding month in 2019 (Figure 4). Notably, behavioral and 

mental health conditions emerged as the most common diagnoses associated with tele-

medicine claims during the pandemic, a trend consistent with pre- and post-pandemic 

periods (Figure 5) [85]. 

 

Figure 4. Visualization of the substantial surge in telemedicine usage during the COVID-19 pan-

demic and its sustained elevation post pandemic, presented through the percentage change in tele-

medicine health claims’ volume compared to the corresponding month in 2019. Data retrieved from: 

https://www.fairhealth.org/fh-trackers/telehealth (accessed on 17 November 2023). 

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

2020 2021 2022 2023

P
e

rc
e

n
t 

C
h

an
ge

 (
%

)

Year

Percent Change in Volume of Telemedicine Insurance Claims From 2019

April

August

December
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Telemedicine played a pivotal role in responding to and mitigating the spread of
COVID-19 during the pandemic [78,82,88,89]. One such telemedicine service, known as
“forward-triage”, was instrumental in managing the rising cases of infection. This service
facilitated video consultations between clinicians and patients with suspected or confirmed
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COVID-19, enabling the evaluation of their condition to determine whether they required
emergency department care or could continue remote management and isolation [78,88].
The implementation of “forward-triage” telemedicine not only reduced the unnecessary
use of resources in emergency departments but also curtailed the unnecessary spread of
the virus and minimized the exposure of healthcare providers [78,82,88]. Furthermore,
telemedicine was employed for in-patient care to reduce nosocomial spread of COVID-19
and optimize the use of personal protective equipment (PPE). Providers conducted virtual
rounds and communicated with patients using devices, demonstrating the versatility of
telemedicine in diverse healthcare settings [89,90].

An integral facet of telemedicine, particularly evident post pandemic, is its significant
role in mitigating physician burnout [91,92]. A survey encompassing 103 physicians
at the Mayo Clinic revealed that 76% of respondents experienced heightened flexibility
and control over patient care activities. Furthermore, approximately 30% reported an
amelioration in burnout symptoms [92]. A similar trend was observed in a study by
Chang et al., where physicians engaged in telemedicine exhibited lower burnout rates
compared to their counterparts practicing traditional medicine [93]. Moreover, telemedicine
has been linked to a comparatively lower incidence of medical malpractice claims than
traditional in-person visits. It is noteworthy, however, that this disparity could stem from
the relative novelty of telemedicine pre-COVID and the tendency of healthcare providers
to employ it less frequently for serious medical issues [94].

The integration of AI has significantly enhanced telemedicine, with numerous stud-
ies highlighting its potential benefits [95–100]. AI’s ability to continuously update itself
through learning from feedback and swiftly analyze data presents an opportunity to save
considerable time and funds for healthcare providers and patients while also aiding clini-
cians in decision making [96–98]. Notably, AI algorithms have exhibited high sensitivity
and specificity in interpreting medical images, rivaling the performance of healthcare
professionals [95,101–103]. Approved by the Food and Drug Administration (FDA), these
AI algorithms are proving instrumental in diagnosing conditions such as large vessel occlu-
sion stroke [104,105], intracranial hemorrhage, pulmonary embolism, oncological lesions,
seizures [46], acute abdominal abnormalities, breast cancer, tuberculosis, ophthalmologic
diseases, skin lesions, and COVID-19, among others [101–103,106], and can lead to earlier
intervention in a life-threatening situation like large vessel occlusion stroke.

Clinicians providing remote care through “store and forward” telemedicine stand to
benefit significantly from AI algorithms, particularly in efficiently interpreting medical
images and making accurate diagnoses. AI’s impact extends beyond image analysis to
enhancing remote monitoring and management of patients’ conditions through smartphone
software and wearable devices [96,97,99,107]. The existing capabilities of smartphones
to support AI deep learning have led to applications designed to promote medication
adherence and combat the spread of COVID-19 [96,99,107]. These applications use AI to
remind patients to take medication and confirm its ingestion through video verification,
reporting any discrepancies in real time to clinicians [96,107]. In response to the pandemic,
AI-equipped smartphone applications were developed to remotely assess the likelihood
of a patient being infected by analyzing their voice during speaking or coughing [99].
Smartwatches, incorporating AI algorithms, have been pivotal in monitoring vital signs
and detecting conditions such as atrial fibrillation. During the COVID-19 pandemic,
smartwatches were utilized to accurately monitor the activity of chronic stroke patients
during remote rehabilitation exercises [96,97]. As we move forward, further research
should explore leveraging the myriad sensors within smartphones and wearable devices,
pairing them with AI to monitor physiological parameters such as vital signs [75,96].
Such advancements hold the promise of revolutionizing telemedicine and improving
healthcare outcomes.

AI-driven chatbots have gained substantial popularity in recent years [108,109]. These
chatbots have found application in telemedicine and exhibit considerable potential for
further advancements [89,96,110,111]. During the COVID-19 pandemic, an AI chatbot
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was deployed for screening and triaging patients, alleviating the strain on manned triage
hotlines overwhelmed by incoming calls. This chatbot effectively classified patients based
on their symptoms, directing them to the hotline, home quarantine, a COVID-19 clinic, or
the emergency department as deemed appropriate [89]. Additionally, a separate chatbot
has been successfully employed to notify patients of the results of genetic sequencing, with
a positive reception reported among patients [96]. In Indonesia, a health-focused chatbot
underwent testing, addressing patient inquiries related to appointment scheduling, general
health information, registration, diseases, and drugs [110]. Impressively, this chatbot
demonstrated a high rate of accurate responses, reaching 93.1% [110]. Furthermore, similar
chatbots have been specifically trained to assess whether a patient is afflicted with COVID-
19 or heart disease [111]. A comprehensive study evaluated the diagnostic capabilities
of ChatGPT, a widely utilized chatbot in medical contexts [108]. The study focused on
ChatGPT’s proficiency in providing intelligent medical diagnoses based on presented
symptoms. While the findings indicated that ChatGPT holds promise in offering potential
diagnoses and medical information, limitations were observed in terms of consistency in
delivering accurate diagnoses and providing in-depth medical advice [112]. These results
underscore the importance of integrating medical chatbots with the expertise of clinicians.
It is imperative to recognize that, while medical chatbots show promise, further research
and refinement are essential to enhance their reliability and seamless integration into
telemedicine practices.

Researchers have pioneered AI-based systems designed to diagnose specific diseases
or establish a differential diagnosis by leveraging patient information, thereby facilitating
clinicians in making accurate diagnoses and streamlining workflow [113–122]. Numerous
studies have showcased the efficacy of AI algorithms in diagnosing various conditions,
including suicidal ideation in pregnant women [114] and heart disease [115], by extracting
information from electronic medical records (EMRs) with variable accuracy [113]. Further-
more, AI algorithms have demonstrated their diagnostic capabilities in Alzheimer’s Disease
through the analysis of transcripts of spontaneous speech, autism spectrum disorder by
evaluating behavioral features [116], acute appendicitis in children through blood analy-
sis [117], and mood disorders based on cytokine profiles [118], and distinguishing between
Parkinson’s and essential tremor using tremor data from wearable sensors, achieving accu-
racy rates ranging from 82% to 94.69% [113,119]. Additionally, AI has been instrumental in
automating the classification of pathology reports [123], assigning ICD-10 codes to diag-
noses in EMRs [121], and making broad diagnoses from clinical notes [120,122], with the
accuracy ranging from 80% to 92% [113]. Another noteworthy AI system was developed to
diagnose patients based on their symptoms and medical inquiries, achieving an accuracy
rate of 84.9% [113]. These AI-based systems, designed for intelligent classification and diag-
nosis, exhibit promising results and significant potential for integration into telemedicine,
thereby assisting clinicians in efficient and accurate diagnoses.

However, despite the advancements, further research is imperative to enhance the
accuracy and safety of these systems, ensuring their definitive usefulness in clinical practice.
Telemedicine has emerged as an indispensable component of healthcare, particularly
highlighted during the COVID-19 pandemic. Yet, several challenges to the widespread use
of AI-based telemedicine persist. One of these challenges is resistance from individuals
unfamiliar with technology [77,98]. This issue will likely resolve over time as the population
turns over. However, action that can be taken sooner includes designing simple, user-
friendly interfaces and programming AI to clearly direct patients through instructions
for using the technology. Another challenge is the lack of or inability to afford necessary
technology in certain regions [77,78,98], which is compounded by insufficient political
support and policy frameworks to facilitate increased access and ease of use [78]. This is
a pervasive societal issue that limits the effectiveness of healthcare as a whole, let alone
telemedicine and AI. Initiatives should be launched that aim to raise funds to provide
necessary technology to underserved communities. These initiatives should also focus
on designing AI-driven telemedicine platforms that are cost-effective and can function
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efficiently on basic technology that is more likely to be accessible to these communities.
Privacy and security concerns, particularly with AI implementation, compose another
challenge [96,98]. To combat these concerns, those that are designing AI to operate in
the sphere of healthcare should focus intensively on safeguarding patient information
and privacy. AI should include a built-in defense against data breeches and effective
contingency plans for when this occurs. Any entity that hopes to employ AI in healthcare
should make sure that the AI was designed with sufficient mechanisms for patient data
protection. Lastly, usability issues related to device battery life, compatibility, and network
coverage remain a challenge [75,98]. Mitigating issues stemming from battery life and
network coverage may prove difficult, as these are reliant on device manufacturers and
service providers. However, compatibility can be addressed by healthcare providers and
corporations by requiring designers of AI-driven platforms to develop these platforms to
be compatible with as many devices as possible in order to increase patient access.

Incorporating AI into telemedicine is constrained by suboptimal accuracy and con-
sistency of performance [98]. Therefore, it is essential that AI applications in telemedicine
be supervised by trained clinicians to mitigate concerns and ensure the delivery of high-
quality care. As the role of AI in telemedicine continues to expand, it is crucial to reiterate
that AI should not replace healthcare professionals but rather complement their functions
and assist in achieving the ultimate goal of effective patient care. Ongoing research efforts
should focus on improving both telemedicine and AI to continually enhance our ability to
care for all patients.

4. Section 3: AI in Healthcare Engagement and Education
4.1. Exploring the Impact of Chatbots on Patient Engagement, Mental Health Support, and
Medical Communication

The COVID-19 pandemic underscored a significant gap in healthcare accessibility,
prompting many healthcare systems to leverage AI chatbots for information dissemination
and patient engagement [124,125]. Across 37 institutions spanning nine countries, the
Watson Assistant AI conversational agent facilitated communication about COVID-19
and addressed patient queries, yielding over 6.8 million responses within a five month
period, with interactions lasting two to three conversational turns on average [124]. In the
post-COVID era, the utilization of chatbots in medicine has continued to surge [125].

One of the biggest implications of the utilization of these chatbots is that it results in
higher patient engagement resulting in improved patient adherence to treatment because
of shifting to patient-centric care [126]. Patients can ask these chatbots directly about
any questions they might have at any hour of the day to explain common questions
and even give recommendations to see a healthcare professional in person if appropriate
given the context. Furthermore, these chatbots can be modified so that their explanations
are appropriate to the literacy level the patient is comfortable with [127]. This is critical
considering the abysmal rates of medical literacy in the United States which is a direct
barrier to patient adherence [128].

Among these, Woebot has emerged as a noteworthy chatbot, incorporating cognitive
behavioral therapy (CBT) into its algorithm [129]. In a study involving college students
with self-identified depression, those utilizing Woebot experienced a notable decrease
of 2.53 points in their Patient Health Questionnaire-9 (PHQ-9) scores, contrasting with
no change observed in students provided only depression information [129]. Woebot’s
empathetic conversational style and regular progress check-ins facilitated increased en-
gagement and higher retention rates throughout the study [129]. The perceived empathy
from the chatbot has proven pivotal in patients’ willingness to interact with the pro-
gram [125,129,130]. Woebot also demonstrated efficacy in reducing drug cravings among
substance abuse patients over a nine week period, along with improvements in depression
and anxiety symptoms as measured by PHQ-8 and GAD-7 screenings [131]. Additionally,
Woebot’s application in assisting new mothers experiencing postpartum depression led
to a significant decrease in PHQ-9 scores compared to non-users [132]. Further research
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investigating the prior depression history of these patients is warranted to validate these
findings. Notably, chatbots have effectively engaged special needs teenagers in managing
their health, demonstrating increased self-care and sustained engagement [133].

For patients dealing with sensitive issues like substance abuse or depression, chatbots
offer a convenient and stigma-free means of accessing support, especially for adoles-
cents [131,134]. The concern arises, however, that the integration of chatbots into medicine
may exacerbate health disparities for those without phone or computer access or those lack-
ing tech proficiency. Navigating medical jargon proves challenging for many patients, as
highlighted by an analysis of commonly asked questions revealing a predominant concern
with radiology reports [135]. Chatbots aimed at simplifying complex radiology reports
have shown varied effectiveness, with errors and missing information posing potential risks
to patient well-being [136]. Hallucination, a process arising from assumptions made by the
AI due to insufficient context, contributes to these errors. ChatGPT, like other chatbots, may
also exhibit variability in responses, raising reliability concerns [136,137]. Despite these
challenges, ChatGPT and Bard have demonstrated significant knowledge in radiology,
lung cancer, neurosurgery, and ECG interpretation, with ChatGPT outperforming Bard in
radiology board questions [137,138]. Both chatbots have been utilized in the education of
radiology residents, showcasing their potential in enhancing medical training [139,140].

Beyond patient engagement, chatbots have been explored for their utility in triaging
during mass casualty incidents, with Bard outperforming ChatGPT in accuracy [141]. The
reasons for this difference warrant further investigation. Additionally, healthcare providers
can leverage chatbots to impart educational information to patients, with ChatGPT ex-
celling in providing understandable information on obstructive sleep apnea compared to
Bard [142].

In summary, while chatbots offer promising avenues for improving healthcare commu-
nication and education, careful consideration and ongoing research are essential to address
challenges and optimize their effectiveness in various healthcare contexts.

4.2. AI Integration in Medical Education: Transformative Trends and Challenges

AI has emerged as a potentially transformative force within the field of medical educa-
tion, profoundly altering the methods by which students acquire knowledge, educators
impart their wisdom, and healthcare professionals apply their expertise. In this section
of the review article, we delve into the burgeoning integration of AI into medical educa-
tion, encompassing its various applications in personalized learning, the introduction of
AI-infused curricula in undergraduate medical programs, and the manifold challenges
encountered in its implementation. The considerations surrounding the utilization of AI
in medical education are two-fold. The first facet examines how educators can harness AI
tools to enhance the pedagogical experience for medical students. The second dimension
focuses on the imperative of incorporating a curriculum that equips students with the skills
and knowledge to adeptly employ AI in their clinical practice upon completion of their
medical training.

Despite its introduction in the 1950s, the integration of AI into medical education re-
mained relatively stagnant until the early 2000s. Its adoption was cautious, and skepticism
about its role persisted, contributing to its limited utilization in the field [143]. Numerous
calls have emphasized the necessity of incorporating AI more prominently in medical edu-
cation, particularly in response to its growing prominence in medical practice [144–146].
Advocates of AI suggest that it can serve as a bridge between traditional medical school
curricula, which rely heavily on textbook-based learning and lectures, and modern teach-
ing strategies that prioritize standardized content delivered through personalized video
instruction, allowing students to progress at their own pace [147]. While there is a growing
interest in AI’s application in medical education, comprehensive documentation of its
implementation remains limited, with most information being anecdotal. Notably, AI’s
most emphasized use in the classroom context is in personalized learning and its ability
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to offer specific feedback that might be otherwise challenging to provide due to time and
faculty constraints [147].

Medical education places significant emphasis on the development of critical thinking
skills [148]. Physicians are required to acquire, synthesize, and apply information effectively
to make sound clinical decisions. This critical thinking process relies on a broad under-
standing of medical processes and pathologies, and the ability to integrate information
from various sources to create well-informed treatment plans. While the pre-clinical phase
of medical education primarily focuses on knowledge acquisition, medical institutions
have long recognized the need to nurture critical thinking skills among students to facilitate
their transition into the clinical phase [149–151]. The primary challenge in fostering critical
thinking skills among pre-clinical students is the allocation of appropriate resources. In this
context, researchers posit that AI can play a pivotal role. Instead of relying on one-on-one or
small group interactions to assess and provide feedback on students’ critical evaluation of
patient cases, AI offers the advantage of immediate and individualized feedback, allowing
students to monitor their progress effectively [152,153].

Additional underexplored areas in the context of AI’s role in medical education
include its potential to assist faculty in curricular development and assessment. In response
to the dynamic nature of medical education, educators are increasingly challenged to
deliver compelling and concise lectures that can effectively compete with the content
available from external learning resources [154]. A recent article advocated the utilization
of AI for evaluating existing curricula, positing that it could streamline the process of
assessing effectiveness and student satisfaction [155]. With proper planning, AI can not
only streamline the assessment process but also contribute to the creation of curricula that
harmonize with external resources, fostering an engaging in-class learning environment.
Given the scarcity of time among both faculty and students, AI-generated lecture materials
hold the promise of striking a balance between providing distinctive learning experiences
for students and minimizing the time commitments required for faculty to develop and
implement such experiences.

A prominent theme within the literature is the imperative for AI technology to be
integrated into the pre-clinical phase of medical education, similar to the teaching of
biomedical sciences. Many experts contend that the mastery of AI is a skill that necessitates
nurturing, akin to other competencies acquired during medical school [156,157]. Given
the ubiquitous presence of AI in contemporary medical practice, the days of physicians
opting out of its use in patient care are past. As a result, it has been proposed that AI, both
in practical application and ethical considerations, should be incorporated into evidence-
based medicine curricula as a complementary component [158,159]. Nevertheless, as with
any paradigm shift, the integration of AI into medical education presents its share of
challenges. The substantial volume of information that medical students are expected to
grasp makes educators understandably cautious about introducing additional content into
undergraduate curricula, particularly if it entails an increase in class time [160]. Teaching
students how to effectively employ AI in their studies and future medical practice would not
only demand additional time during the pre-clinical phase but also necessitate that faculty
themselves feel sufficiently confident with the subject matter to instruct on it [160,161].

5. Section 4: Ethical Considerations, Limitations, and Future Directions
Ethical and Societal Considerations in Integrating AI into Medical Practice

To integrate AI technology more extensively into medical practice, numerous ethical
considerations must be thoroughly addressed. One prominent concern pertains to the
handling of data, particularly patient information, as AI heavily relies on the analysis of
preexisting data. A notable instance occurred in 2016 when the Royal Free London NHS
Foundation Trust collaborated with DeepMind, providing patient information without
affording patients autonomy over their data [162]. The acquisition of patient data by private
entities, exemplified by Alphabet Inc.’s acquisition of DeepMind, poses additional risks
amid the escalating frequency of healthcare-related data breaches [163]. Even deidenti-
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fied patient data, compliant with HIPAA guidelines, may inadequately protect against
reidentification through triangulation [164].

Furthermore, the implementation of AI in healthcare must address its potential in-
fluence on healthcare disparities. It will be important to ensure diversity in the people
who are creating the AI algorithms, otherwise there will be an increased likelihood of
having biases embedded in the algorithms leading to more health disparities [165]. A
study by Obermeyer et al. revealed racial bias in a widely used commercial algorithm,
indicating that Black patients were clinically sicker than their White counterparts for a
given predicted risk score [166]. This bias stems from the definition and measurement
of quality care and the utilization of data [164]. If not rectified, hidden flaws in quality
measures may perpetuate healthcare disparities through AI models [167]. Additionally, the
development of AI programs by researchers introduces the risk of bias, emphasizing the
need to rectify preexisting disparities in data collection and quality care definition before
advancing AI implementation. Furthermore, there is a great difference in the accuracy,
sensitivity, and multimodality capabilities of various AI systems. For example, the progress
made from GPT-3 to GPT-4 is a prime example of substantial advancements in AI’s capac-
ity to comprehend and handle intricate data. To illustrate this point, GPT-4 was able to
pass the bar exam and score within the top 10% of all test takers, while GPT-3.5 scored
in the bottom 10%. The differences in outcomes are due to GPT-4’s ability to handle a
broader range of data types including texts and images along with the benefit of being
trained on 45 gigabytes of data compared to 17 gigabytes of data for GPT-3. However,
this improvement in performance results in it being more expensive to implement GPT-4
compared to GPT-3 [168]. Therefore, it will also be important to ensure that when AI is
used in underserved communities, that these communities are not relegated to cheaper,
less effective forms of AI that can further perpetuate health disparities. Furthermore, it is
crucial to consider that societies and individualistic cultures rapidly evolve, underscoring
the need for AI programs to be updated with the help of experts in those particular societies
to convey information in line with their evolving values. The relevant stakeholders in
this case may be clinical leaders, social workers, case managers, medical ethicists, patient
advocacy groups, and diversity, equity, and inclusion leaders [169]. Moreover, as the ethics
of a society itself rapidly evolve, it is imperative to train AI to generate valuable outputs
that align with contemporary ethical standards.

The safety of AI-driven healthcare is a critical ethical consideration. While studies
demonstrate AI’s potential to enhance patient outcomes, issues persist, including a lack of
standardization in reporting findings, limited comparison to current care practices, and
the potential for unsafe recommendations [170–173]. The “AI chasm”, representing the
gap between statistically sound algorithms and meaningful clinical applications, adds
complexity to evaluating safety outcomes [174].

Establishing trust in AI-assisted healthcare systems is pivotal for ethical care delivery.
Addressing concerns about data use, privacy, bias, and safety is crucial for fostering patient
trust [164]. Robust privacy and security measures should be implemented to protect patient
data in AI-driven healthcare systems. This can involve the use of encryption, access controls,
and transparent compliance with regulations such as HIPAA. Transparency in AI healthcare
is imperative, especially considering the “black box” nature of many algorithms. Failure
to explain reasoning may undermine patient values, necessitating informed consent from
patients before AI involvement in their care [175]. Ultimately, properly addressing these
ethical considerations is essential to prevent harm, mitigate healthcare disparities, and
foster trust between patients and the healthcare system.

Future directions in AI integration into healthcare should prioritize the development
and implementation of standardized ethical frameworks and guidelines. Collaboration
among stakeholders, including clinicians, researchers, ethicists, and policymakers, is es-
sential to ensure that AI technologies align with ethical principles and patient-centered
care. Additionally, ongoing research into improving AI algorithms’ fairness, transparency,
and accountability is crucial to mitigate biases and ensure equitable healthcare delivery.
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Furthermore, investment in AI education and training for healthcare professionals will
be instrumental in promoting responsible AI use and fostering trust among patients and
providers. By addressing these challenges and advancing ethical AI practices, the healthcare
industry can harness the full potential of AI to improve patient outcomes while upholding
ethical standards and protecting patient privacy and autonomy.

6. Conclusions

To conclude, this manuscript underscores the transformative role of AI and telemedicine
in reshaping healthcare. The integration of AI into telemedicine has significantly expanded
its capabilities, with FDA-approved algorithms enhancing diagnostic accuracy, enabling
remote monitoring through wearable devices, and contributing to efficient healthcare
delivery. However, challenges such as accuracy, consistency, and ethical considerations
necessitate careful supervision by healthcare professionals.

The manuscript further explores the impact of AI-driven chatbots on patient engage-
ment and mental health support. While promising, concerns about reliability and potential
exacerbation of health disparities underscore the need for ongoing research and refinement.

On the telemedicine front, the text delves into its pivotal role, especially during
the COVID-19 pandemic. Telemedicine, encompassing real-time and store-and-forward
methodologies, has become a crucial tool, enhancing accessibility, reducing healthcare
expenditures, and mitigating unnecessary exposure to infections. The acceleration of
telemedicine adoption during the pandemic highlights its indispensable contribution
to maintaining care continuity, optimizing resource utilization, and improving overall
healthcare accessibility.

Additionally, the manuscript illuminates AI’s role in advancing personalized medicine
by leveraging diverse health data domains. From genomics and proteomics to electronic
health records and sociological factors, AI’s ability to analyze vast datasets presents oppor-
tunities for tailored, holistic patient care. Ethical considerations, including data privacy
and bias, must be addressed to ensure responsible AI integration.

In summary, the convergence of AI and telemedicine represents a formidable force in
healthcare transformation. Ongoing research, collaboration between AI and healthcare pro-
fessionals, and a cautious approach to ethical considerations are crucial for harnessing the
full potential of these technologies. Together, they have the capacity to reshape healthcare
delivery, improve patient outcomes, and pave the way for a more efficient, accessible, and
patient-centered healthcare system.

While this manuscript highlights the transformative potential of AI and telemedicine
in healthcare, it is important to acknowledge its limitations. One limitation is the rapidly
evolving nature of both AI and telemedicine technologies, which may outpace the scope of
this study. Additionally, the ethical considerations discussed are complex and evolving, re-
quiring ongoing vigilance and adaptation. Furthermore, the impact of AI and telemedicine
on specific patient populations, healthcare settings, and geographic regions may vary
and warrant further investigation. Future research could delve deeper into these areas to
provide a more comprehensive understanding of the challenges and opportunities associ-
ated with AI and telemedicine integration. Moreover, exploring the long-term effects of
AI-driven interventions on patient outcomes and healthcare delivery models would be
valuable for guiding future developments in this field.
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Hankiewicz, A.; Ułańska, M.; et al. The incidence and clinical analysis of non-melanoma skin cancer. Sci. Rep. 2021, 11, 4337.
[CrossRef] [PubMed]

28. Chen, S.C.; Bravata, D.M.; Weil, E.; Olkin, I. A comparison of dermatologists’ and primary care physicians’ accuracy in diagnosing
melanoma: A systematic review. Arch. Dermatol. 2001, 137, 1627–1634. [CrossRef]

29. Han, S.S.; Park, G.H.; Lim, W.; Kim, M.S.; Na, J.I.; Park, I.; Chang, S.E. Deep neural networks show an equivalent and often
superior performance to dermatologists in onychomycosis diagnosis: Automatic construction of onychomycosis datasets by
region-based convolutional deep neural network. PLoS ONE 2018, 13, e0191493. [CrossRef] [PubMed]

30. Habehh, H.; Gohel, S. Machine Learning in Healthcare. Curr. Genom. 2021, 22, 291–300. [CrossRef] [PubMed]
31. Kosorok, M.R.; Laber, E.B. Precision Medicine. Annu. Rev. Stat. Its Appl. 2019, 6, 263–286. [CrossRef] [PubMed]
32. Gordon, E.; Koslow, S.H. Integrative Neuroscience and Personalized Medicine; Oxford University Press: New York, NY, USA, 2011;

ISBN 978-0-19-539380-4.
33. Cirillo, D.; Valencia, A. Big data analytics for personalized medicine. Curr. Opin. Biotechnol. 2019, 58, 161–167. [CrossRef]

[PubMed]
34. Berger, B.; Peng, J.; Singh, M. Computational solutions for omics data. Nat. Rev. Genet. 2013, 14, 333–346. [CrossRef] [PubMed]
35. Isgut, M.; Gloster, L.; Choi, K.; Venugopalan, J.; Wang, M.D. Systematic Review of Advanced AI Methods for Improving

Healthcare Data Quality in Post COVID-19 Era. IEEE Rev. Biomed. Eng. 2023, 16, 53–69. [CrossRef]
36. Zhu, J.-Y.; Park, T.; Isola, P.; Efros, A.A. Unpaired Image-to-Image Translation Using Cycle-Consistent Adversarial Networks.

In Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017;
pp. 2242–2251.

37. Dlamini, Z.; Francies, F.Z.; Hull, R.; Marima, R. Artificial intelligence (AI) and big data in cancer and precision oncology. Comput.
Struct. Biotechnol. J. 2020, 18, 2300–2311. [CrossRef]

38. Wang, H.; Fu, T.; Du, Y.; Gao, W.; Huang, K.; Liu, Z.; Chandak, P.; Liu, S.; Van Katwyk, P.; Deac, A.; et al. Scientific discovery in
the age of artificial intelligence. Nature 2023, 620, 47–60. [CrossRef] [PubMed]

39. Esteva, A.; Robicquet, A.; Ramsundar, B.; Kuleshov, V.; DePristo, M.; Chou, K.; Cui, C.; Corrado, G.; Thrun, S.; Dean, J. A guide to
deep learning in healthcare. Nat. Med. 2019, 25, 24–29. [CrossRef]

40. Hossain, E.; Rana, R.; Higgins, N.; Soar, J.; Barua, P.D.; Pisani, A.R.; Turner, K. Natural Language Processing in Electronic Health
Records in relation to healthcare decision-making: A systematic review. Comput. Biol. Med. 2023, 155, 106649. [CrossRef]
[PubMed]

41. Machine Learning Classifies Cancer. Available online: https://www.nature.com/articles/d41586-018-02881-7 (accessed on
11 November 2023).

42. Abul-Husn, N.S.; Kenny, E.E. Personalized Medicine and the Power of Electronic Health Records. Cell 2019, 177, 58–69. [CrossRef]
[PubMed]

43. Chen, H.; Zhang, Y.; Kalra, M.K.; Lin, F.; Chen, Y.; Liao, P.; Zhou, J.; Wang, G. Low-Dose CT With a Residual Encoder-Decoder
Convolutional Neural Network. IEEE Trans. Med. Imaging 2017, 36, 2524–2535. [CrossRef] [PubMed]

44. Esteva, A.; Kuprel, B.; Novoa, R.A.; Ko, J.; Swetter, S.M.; Blau, H.M.; Thrun, S. Dermatologist–level classification of skin cancer
with deep neural networks. Nature 2017, 542, 115–118. [CrossRef]

45. Piette, J.D.; Newman, S.; Krein, S.L.; Marinec, N.; Chen, J.; Williams, D.A.; Edmond, S.N.; Driscoll, M.; LaChappelle, K.M.;
Kerns, R.D.; et al. Patient-Centered Pain Care Using Artificial Intelligence and Mobile Health Tools: A Randomized Comparative
Effectiveness Trial. JAMA Intern. Med. 2022, 182, 975–983. [CrossRef] [PubMed]

46. Automated, Machine Learning—Based Alerts Increase Epilepsy Surgery Referrals: A Randomized Controlled Trial—Wissel—
2023—Epilepsia—Wiley Online Library. Available online: https://onlinelibrary.wiley.com/doi/10.1111/epi.17629 (accessed on
12 November 2023).

47. Jiang, F.; Fu, X.; Kuang, K.; Fan, D. Artificial Intelligence Algorithm-Based Differential Diagnosis of Crohn’s Disease and Ulcerative
Colitis by CT Image. Comput. Math. Methods Med. 2022, 2022, 3871994. [CrossRef] [PubMed]

https://doi.org/10.1007/BF00344251
https://www.ncbi.nlm.nih.gov/pubmed/7370364
https://doi.org/10.1109/42.476112
https://www.ncbi.nlm.nih.gov/pubmed/18215875
https://doi.org/10.1038/s41568-018-0016-5
https://doi.org/10.1102/1470-7330.2005.0018
https://doi.org/10.1007/s12551-018-0449-9
https://doi.org/10.1038/s41598-017-05300-5
https://www.ncbi.nlm.nih.gov/pubmed/28698556
https://doi.org/10.1038/s41598-021-83502-8
https://www.ncbi.nlm.nih.gov/pubmed/33619293
https://doi.org/10.1001/archderm.137.12.1627
https://doi.org/10.1371/journal.pone.0191493
https://www.ncbi.nlm.nih.gov/pubmed/29352285
https://doi.org/10.2174/1389202922666210705124359
https://www.ncbi.nlm.nih.gov/pubmed/35273459
https://doi.org/10.1146/annurev-statistics-030718-105251
https://www.ncbi.nlm.nih.gov/pubmed/31073534
https://doi.org/10.1016/j.copbio.2019.03.004
https://www.ncbi.nlm.nih.gov/pubmed/30965188
https://doi.org/10.1038/nrg3433
https://www.ncbi.nlm.nih.gov/pubmed/23594911
https://doi.org/10.1109/RBME.2022.3216531
https://doi.org/10.1016/j.csbj.2020.08.019
https://doi.org/10.1038/s41586-023-06221-2
https://www.ncbi.nlm.nih.gov/pubmed/37532811
https://doi.org/10.1038/s41591-018-0316-z
https://doi.org/10.1016/j.compbiomed.2023.106649
https://www.ncbi.nlm.nih.gov/pubmed/36805219
https://www.nature.com/articles/d41586-018-02881-7
https://doi.org/10.1016/j.cell.2019.02.039
https://www.ncbi.nlm.nih.gov/pubmed/30901549
https://doi.org/10.1109/TMI.2017.2715284
https://www.ncbi.nlm.nih.gov/pubmed/28622671
https://doi.org/10.1038/nature21056
https://doi.org/10.1001/jamainternmed.2022.3178
https://www.ncbi.nlm.nih.gov/pubmed/35939288
https://onlinelibrary.wiley.com/doi/10.1111/epi.17629
https://doi.org/10.1155/2022/3871994
https://www.ncbi.nlm.nih.gov/pubmed/35419083


Life 2024, 14, 557 20 of 25

48. Sundar, R.; Barr Kumarakulasinghe, N.; Huak Chan, Y.; Yoshida, K.; Yoshikawa, T.; Miyagi, Y.; Rino, Y.; Masuda, M.; Guan, J.;
Sakamoto, J.; et al. Machine-learning model derived gene signature predictive of paclitaxel survival benefit in gastric cancer:
Results from the randomised phase III SAMIT trial. Gut 2022, 71, 676–685. [CrossRef]

49. Xiao, Q.; Zhang, F.; Xu, L.; Yue, L.; Kon, O.L.; Zhu, Y.; Guo, T. High-throughput proteomics and AI for cancer biomarker discovery.
Adv. Drug Deliv. Rev. 2021, 176, 113844. [CrossRef]

50. Cowie, M.R.; Blomster, J.I.; Curtis, L.H.; Duclaux, S.; Ford, I.; Fritz, F.; Goldman, S.; Janmohamed, S.; Kreuzer, J.; Leenay, M.; et al.
Electronic health records to facilitate clinical research. Clin. Res. Cardiol. 2017, 106, 1–9. [CrossRef] [PubMed]

51. Fu, S.; Lopes, G.S.; Pagali, S.R.; Thorsteinsdottir, B.; LeBrasseur, N.K.; Wen, A.; Liu, H.; Rocca, W.A.; Olson, J.E.; St. Sauver, J.; et al.
Ascertainment of Delirium Status Using Natural Language Processing From Electronic Health Records. J. Gerontol. Ser. A 2022, 77,
524–530. [CrossRef]

52. Monteith, S.; Glenn, T.; Geddes, J.; Whybrow, P.C.; Bauer, M. Commercial Use of Emotion Artificial Intelligence (AI): Implications
for Psychiatry. Curr. Psychiatry Rep. 2022, 24, 203–211. [CrossRef] [PubMed]

53. Gual-Montolio, P.; Jaén, I.; Martínez-Borba, V.; Castilla, D.; Suso-Ribera, C. Using Artificial Intelligence to Enhance Ongoing
Psychological Interventions for Emotional Problems in Real- or Close to Real-Time: A Systematic Review. Int. J. Environ. Res.
Public Health 2022, 19, 7737. [CrossRef]

54. Carroll, N.W.; Jones, A.; Burkard, T.; Lulias, C.; Severson, K.; Posa, T. Improving risk stratification using AI and social determinants
of health. Am. J. Manag. Care 2022, 28, 582–587. [CrossRef]

55. Srivani, M.; Murugappan, A.; Mala, T. Cognitive computing technological trends and future research directions in healthcare—A
systematic literature review. Artif. Intell. Med. 2023, 138, 102513. [CrossRef]

56. Rachlin, A. Routine Vaccination Coverage—Worldwide, 2021. MMWR Morb. Mortal. Wkly. Rep. 2022, 71, 1396–1400. [CrossRef]
57. Chaney, S.C.; Mechael, P. So Many Choices, How Do I Choose? Considerations for Selecting Digital Health Interventions to

Support Immunization Confidence and Demand. J. Med. Internet Res. 2023, 25, e47713. [CrossRef] [PubMed]
58. Chandir, S.; Siddiqi, D.A.; Setayesh, H.; Khan, A.J. Impact of COVID-19 lockdown on routine immunisation in Karachi, Pakistan.

Lancet Glob. Health 2020, 8, e1118–e1120. [CrossRef]
59. Hirani, R.; Noruzi, K.; Iqbal, A.; Hussaini, A.S.; Khan, R.A.; Harutyunyan, A.; Etienne, M.; Tiwari, R.K. A Review of the Past,

Present, and Future of the Monkeypox Virus: Challenges, Opportunities, and Lessons from COVID-19 for Global Health Security.
Microorganisms 2023, 11, 2713. [CrossRef]

60. Hirani, R.; Rashid, D.; Lewis, J.; Hosein-Woodley, R.; Issani, A. Monkeypox outbreak in the age of COVID-19: A new global health
emergency. Mil. Med. Res. 2022, 9, 55. [CrossRef] [PubMed]

61. Chopra, M.; Bhutta, Z.; Chang Blanc, D.; Checchi, F.; Gupta, A.; Lemango, E.T.; Levine, O.S.; Lyimo, D.; Nandy, R.;
O’Brien, K.L.; et al. Addressing the persistent inequities in immunization coverage. Bull. World Health Organ. 2020, 98, 146–148.
[CrossRef] [PubMed]

62. Atkinson, K.M.; Mithani, S.S.; Bell, C.; Rubens-Augustson, T.; Wilson, K. The digital immunization system of the future: Imagining
a patient-centric, interoperable immunization information system. Ther. Adv. Vaccines Immunother. 2020, 8, 2515135520967203.
[CrossRef] [PubMed]

63. Buchan, S.A.; Rosella, L.C.; Finkelstein, M.; Juurlink, D.; Isenor, J.; Marra, F.; Patel, A.; Russell, M.L.; Quach, S.; Waite, N.; et al.
Impact of pharmacist administration of influenza vaccines on uptake in Canada. CMAJ Can. Med. Assoc. J. J. Assoc. Medicale Can.
2017, 189, E146–E152. [CrossRef] [PubMed]

64. Hogue, M.D.; Grabenstein, J.D.; Foster, S.L.; Rothholz, M.C. Pharmacist involvement with immunizations: A decade of profes-
sional advancement. J. Am. Pharm. Assoc. 2006, 46, 168–179; quiz 179–182. [CrossRef] [PubMed]

65. Bello, I.M.; Sylvester, M.; Ferede, M.; Akpan, G.U.; Ayesheshem, A.T.; Mwanza, M.N.; Okiror, S.; Anyuon, A.; Oluseun, O.O. Real-
time monitoring of a circulating vaccine-derived poliovirus outbreak immunization campaign using digital health technologies
in South Sudan. Pan Afr. Med. J. 2021, 40, 200. [CrossRef] [PubMed]

66. White, B.M.; Shaban-Nejad, A. Utilization of Digital Health Dashboards in Improving COVID-19 Vaccination Uptake, Accounting
for Health Inequities. Stud. Health Technol. Inform. 2022, 295, 499–502. [CrossRef] [PubMed]

67. Brakefield, W.S.; Ammar, N.; Olusanya, O.A.; Shaban-Nejad, A. An Urban Population Health Observatory System to Support
COVID-19 Pandemic Preparedness, Response, and Management: Design and Development Study. JMIR Public Health Surveill.
2021, 7, e28269. [CrossRef] [PubMed]

68. Brakefield, W.S.; Ammar, N.; Olusanya, O.; Ozdenerol, E.; Thomas, F.; Stewart, A.J.; Johnson, K.C.; Davis, R.L.; Schwartz, D.L.;
Shaban-Nejad, A. Implementing an Urban Public Health Observatory for (Near) Real-Time Surveillance for the COVID-19
Pandemic. Stud. Health Technol. Inform. 2020, 275, 22–26. [CrossRef]
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