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Abstract: This review was aimed at collecting the knowledge on the pathophysiological and clinical
aspects of endocrine rhythms and their implications in clinical practice, derived from the published
literature and from some personal experiences on this topic. We chose to review, according to the
PRISMA guidelines, the results of original and observational studies, reviews, meta-analyses and
case reports published up to March 2024. Thus, after summarizing the general aspects of biological
rhythms, we will describe the characteristics of several endocrine rhythms and the consequences
of their disruption, paying particular attention to the implications in clinical practice. Rhythmic
endocrine secretions, like other physiological rhythms, are genetically determined and regulated by a
central hypothalamic CLOCK located in the suprachiasmatic nucleus, which links the timing of the
rhythms to independent clocks, in a hierarchical organization for the regulation of physiology and
behavior. However, some environmental factors, such as daily cycles of light/darkness, sleep/wake,
and timing of food intake, may influence the rhythm characteristics. Endocrine rhythms are involved
in important physiological processes and their disruption may cause several disorders and also cancer.
Thus, it is very important to prevent disruptions of endocrine rhythms and to restore a previously
altered rhythm by an early corrective chronotherapy.
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1. Introduction

Rhythmic activity is a fundamental property of living matter that persists in constant
environmental conditions, as it is the result of interaction between an individual genetically
induced chrono-organization and the cyclical variations in some environmental factors.
Recent studies have contributed to clarifying the mechanisms underlying the biological
chrono-organization in animals and humans, and their results are gaining increasing rel-
evance in Medicine [1,2]. The chrono-endocrinology studies the hormonal rhythms and
their importance in physiology, pathophysiology and clinical practice. Even if mammalian
circadian rhythms, including endocrine oscillations, are genetically determined, they can
be influenced by environmental and epigenetic factors. Disruption of the rhythmic orga-
nization may promote the onset of important diseases including cancer [1–4]. The aim
of this review is first, to summarize the general aspects of biological rhythms, drawing
attention to genetic, epigenetic and environmental factors involved in their regulation;
second, to describe the characteristics of several endocrine rhythms, discussing their role
in physiological processes, the alterations caused by their disruption and the implications
for clinical practice; third, to discuss whether such disruption may be reversed, and if
possible how to plan a successful chronotherapy. To this end, we review the results of some
personal experiences and of original and observational studies, reviews, meta-analyses and
case reports, published up to March 2024, according to the PRISMA guidelines and the
combination of these keywords: circadian, ultradian, infradian endocrine rhythms, rhythm
disruption, chronophysiology, chronopathology, and chronotherapy.
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2. General Aspects of Biological Rhythms
2.1. Rhythm Parameters

The parameters of a biological rhythm are the following: Period, phase, medium level
or mesor, and amplitude.

Period: this parameter indicates the duration of a complete cycle of a rhythmic variable.
If we consider, for example, the period of a hormonal rhythm, this goes from the time of
the starting value to the return to the basal value after reaching the highest value (zenith
or acrophase of the rhythm). Taking into account their period, rhythms are classified
as circadian, if their period ranges from 24 ± 4 h, ultradian, if their period is <20 h,
and infradian, if their period is >28 h. Infradian rhythms are classified as circaseptan,
circatrigintan and circannual for periods of approximately 7, 30, and 360 days, respectively.

Phase is given by the instantaneous value of a rhythmic physiological variable at a
predetermined time. It can be referred to as time detection in relation to the particular
system used to express the period (for example, if the period of a rhythm is indicated in
degrees, the full duration of the period will be indicated as 360◦).

Medium level or mesor is expressed by the mean value of the rhythmic variable. If we
consider, for example, a hormonal rhythm, it is expressed by the average of all hormonal
values of this rhythm).

Amplitude is the maximum deviation from the medium level of the rhythmic variable
investigated [5–9].

2.2. Molecular Circadian Machinery

Physiological processes in animal and humans are rhythmically modulated at molec-
ular level by a chain of circadian clocks. The main gene, the so-called “CLOCK” gene, is
located at hypothalamic level in the suprachiasmatic nucleus (SCN). This gene, from this
site, dictates the timing of the rhythms to central and peripheral clock genes, which con-
tribute, in a hierarchical way, at orchestrating the physiological rhythmic activity [2,10–12].
The role of the main CLOCK, biochemically identified as a histone acetyltransferase [11],
was clarified by a study in animals by Ralph and coworkers. These authors demonstrated,
through the lesion of the SCN and the subsequent transplantation, the role of CLOCK in
triggering from its hypothalamic site, the rhythms and synchronizing the action of satellite
genes in peripheral tissues to harmonize circadian periodicity [13]. Subsequent studies
discovered in Drosophila Melanogaster the Period gene (PER) and the PER activator in
the mouse. A protein encoded by PER was demonstrated to be able to repress its own
transcription, thus promoting PER rhythm [2,13,14].

Studies in mouse contributed to clarifying the chain of events leading to the circadian
rhythmicity and the related genes involved. This chain is triggered by the main pace-maker
CLOCK (circadian locomotor output cycles kaput) and includes, in a negative feed-back
loop, some activators that are able to induce the expression of their own repressors [2,15].
This loop includes (BMAL1 (brain and muscle Arnt-like protein1), CRY (cryptochrome),
PER (period), RORs (retinoic acid-related orphan receptors), and REV-ERBs (members
of the nuclear receptor superfamily of transcription factors) [2,16–19]. In particular, CRY
plays an important role in this network, especially in metabolic processes, mediating the
circadian regulation of cAMP signaling and hepatic gluconeogenesis [20]. In fact, CRY,
interacting with the small molecule KL001, prevents its ubiquitin-dependent degradation,
thus allowing its stabilization, which is able to inhibit gluconeogenesis in primary hep-
atocytes, to lower blood glucose concentrations and to improve insulin sensitivity. The
results of these studies pave the way for a possible therapeutic benefit of compounds that
enhance CRY activity in type 2 diabetes [20,21]. Recent studies have demonstrated that
CRY1 expression is androgen-responsive and is associated with a poor outcome in prostate
cancer. The mapping of the CRY1 cistrome and transcriptome revealed that CRY1 regulates
DNA repair. The results of these studies identified CRY1 as a pro-tumorigenic factor and as
a new possible target in cancer treatment [22].
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2.3. Synchronization Schedule and Chronotype

Endogenous and exogenous factors may influence the characteristics of circadian
rhythms. These factors are classified as “zeitgebers”, entraining agents or synchronizers
(Table 1) [6,7,23].

Table 1. Endogenous and environmental factors that may influence the characteristics of circadian
rhythms (Ref. [9], modified).

Light/darkness cycle
Sleep/wake alternations

Periodic food intake
Social environment (physical and mental work, travel)

Family and individual chronotype
Epigenome

Hormone variations

Among the exogenous cues, daily schedules of light/darkness, sleep/wake, periodic
food intake and exercise timing can play an important entraining action [23–28]. In particu-
lar, the light/dark cycle plays an important synchronizing role in endocrine rhythms both
directly, by exciting the light-entrainable circadian pacemaker located in the SCN of the
hypothalamus, and indirectly, through the variations in melatonin, whose secretion at the
pineal level is stimulated by darkness and inhibited by light [29]. The pineal gland plays an
intermediate role between environmental stimuli and the endocrine system. Light-feeding
phase relations have been shown to play a synergistic role in entraining circadian rhythms
in peripheral oscillators [24]. Their phase misalignment may play a desynchronizing ac-
tion, affecting the central and peripheral clock genes, respectively, causing alterations of
hormonal rhythms and metabolic disorders [23,24]. The interconnection between environ-
mental and genetic factors affects the individual chronotype, which is characterized by
an individual’s attitude, determining circadian preferences for times of different human
activities. An appropriate synchronization is important for ensuring the normal function
of physiological processes [30,31]. Even if the chronotypes range from an extremely early
(larks) to extremely late (owls) forms, they are usually classified in three general categories:
morning, evening, and intermediate chronotypes [32–35]. The evening chronotype has been
associated with several health problems such as psychological disorders, gastrointestinal
and cardiovascular diseases, and greater mortality than the morning chronotype [34]; it
has also been identified as a risk factor for cancer [35]. Moreover, people with type 2 dia-
betes and evening chronotypes may be more susceptible to inactivity and poorer glycemic
control compared with morning chronotypes. Since chronotype is potentially modifiable,
social and lifestyle factors influencing it should be evaluated to optimize the responses to
diabetes care. Recent studies have attracted attention towards a role of chrono-epigenetics
in the origin of human diseases, highlighting also the interconnections between circadian
clocks, epigenetics and cancer [36]. Cytosine variations in particular seem to display deter-
ministic temporal rhythms, which may drive ageing and complex diseases. Recent data
suggest that epigenetic changes and chromatin transitions occur in cancer cells, in particular
that key chromatin remodelers involved in histone modifications play an important role
in the development of cancer [3,36,37]. Rhythmic hormonal variations are regulated by
central and peripheral clocks; however, they may affect in a mirror-like way the genetic
chrono-pathway by acting as endogenous entraining agents of circadian clocks. In fact, the
results of recent studies in vitro have demonstrated the potential resetting mechanism at
three levels: the hormone, the direct clock gene target and the tissue clock response [38].
An adequate interconnection between all the factors regulating circadian rhythmicity is
fundamental for allowing appropriate mammalian physiology and behavior, because the
disruption of circadian harmony at any level may cause disorders in several organs, includ-
ing the cardiovascular system, with severe consequences for the individual health and with
sex-related differences in response to desynchronizing injuries [39,40].
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3. Endocrine Chronophysiology and Chronopathology

The endocrine system comprises a complex network, including the central and au-
tonomous nervous systems, central and peripheral endocrine glands and the immune
system. This network is under control of central and peripheral clocks and is entrained
by endogenous and environmental factors to ensure a harmonic physiological circadian
chrono-organization [41–43]. The main hypothalamic clock orchestrates, in cooperation
with other local clocks and with environmental synchronizers, especially the light, the
rhythmic secretions of the hypothalamus–pituitary–satellite gland axis [42–45].

3.1. Chrono-Organization of the Hypothalamic–Pituitary–Adrenal Axis

The correct chrono-organization of this axis is important for human health, as it plays
an important role in controlling stress responses and regulating the immune system and
some psycho-physiological events, such as moods and emotions in tense situations. In par-
ticular, the hormones of the hypothalamic–pituitary–adrenal axis are the main mediators of
bodily responses to stress, including physical and mental components, so all the conditions
that disturb the normal synchronization of these rhythms can negatively affect the human
health [44,45].

In 1943, Pincus described a diurnal rhythm of urinary ketosteroid excretion in young
adults [46]. In subsequent years, several studies were focused on the secretory pattern
of the hormones of this axis, and clarified the hierarchical way of the rhythmic secretion
of these hormones and the genetic and environmental synchronizing factors of these
rhythms [41–47]. In particular, recent studies in vitro and in vivo have contributed further
to the knowledge of this issue. Jones and coworkers demonstrated the role of circadian
neurons in the paraventricular nucleus in entraining and sustaining daily rhythms in
glucocorticoids [47]. Malek and coworkers, using a mathematical analysis of the role of
pituitary-adrenal interactions in ultradian rhythms of the hypothalamic–pituitary–adrenal
(HPA) axis, demonstrated the persistence of ultradian adrenocorticotropic hormone (ACTH)
and cortisol rhythms in absence of corticotropin-releasing hormone (CRH) stimulation [48].
ACTH and cortisol show circadian and ultradian rhythms with overlapping phases, with
the zenith in the morning and the nadir in late evening/night, suggesting a driving ACTH
role in these rhythmic variations [6,7,47–49] (Figure 1).
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Light is the most important entraining agent of these rhythms: in fact, the lack of light
stimulus in totally blind subjects induces an increase in melatonin secretion, and circadian
rhythm disorders and complex hormonal alterations in prepubertal, adult and elderly blind
subjects [50–54]. Moreover, combined alterations of circadian hormone rhythmicity, includ-
ing cortisol rhythm, have been shown in people with obesity, even when they have been
submitted to intermittent fasting as a losing weight strategy [55,56]. Disruption of circadian
rhythms, including cortisol oscillations, usually occurs in shift workers. This results not
only in a misalignment of the circadian and external light/dark cycles but may also involve
peripheral clock genes and transcripts of other human genomes, with important metabolic
alterations [57]. A bidirectional relationship exists between circadian rhythms and mood
disorders. Mood disorders are often associated with a disrupted circadian cortisol rhythm,
whereas disruption of this rhythm by jet lag, shift work or exposure to night-time artificial
light may induce or exacerbate mood disorders in susceptible subjects [58]. Concerning this,
very recently, Bilgin et al. investigated the diurnal salivary cortisol in young adults that had
had multiple and persistent regulatory problems (sleeping, crying or feeding problems) in
their early childhood, and showed an increased HPA axis activity in response to awakening
stress and behavior problems in these subjects [59]. A clear daily circadian rhythm has
been demonstrated for salivary dehydroepiandrosterone (DHEA), with some sex-related
differences and a flatter profile in older age [60], whereas the rhythms of the other adrenal
hormones, such as aldosterone (regulated by renin secretion rather than ACTH), adrenaline
and noradrenaline, are less characterized. Their circadian variations are strongly influenced
in a bidirectional way by metabolic pattern variations and psycho-physical activity, as
their action (especially that of adrenaline and noradrenaline) promotes the mobilization of
metabolic energy factors that are preparatory to any physical activity.

3.2. Growth Hormone

Pituitary growth hormone (GH) secretion is under hypothalamic control through a
balance between a stimulatory (Growth Hormone-Releasing Hormone, GHRH) and an
inhibitory (somatostatin) factor. Sleep is the most important entraining agent for circadian
GH variations; the highest hormone secretory peak is reached during the deep sleep
phase [5,7,25,61] (Figure 2).
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This peak usually makes its onset in both sexes from the 3rd month of life and reaches
its maximum expression at puberty and in post-pubertal phases. It then persists with the
same characteristics during adulthood and decreases to a flattened profile in senescence.
The nocturnal GH increase is linked to some electro-encephalographic phases of sleep [25]
and this correlation is maintained even during inverted sleep/wake rhythms. Some
lower peaks may be observed during inter-meal intervals and during afternoon naps.
Even if sleep plays a pivotal role in regulating the daily variations in GH secretion, a
complementary synchronizing role of the light/dark cycle on this secretion may not be
excluded, considering that in blind subjects the nocturnal peak is lacking, the response of
GH to L-Dopa stimulated test is impaired, and prepubertal subjects with total blindness
show impairment of body growth [7,61–63]. Moreover, disorders of GH secretion with
impaired or absent nocturnal peak, have been described in obese patients, in patients
with hypothalamic–pituitary diseases, and in prepubertal and adult patients with GH
deficiency [5,8]. GH plays several actions other than that on the growth. In particular, it is
involved in the regulation of intermediate metabolism, and in the trophism and function
of various organs and systems, especially the cardiovascular, muscular and bone systems,
throughout life. Therefore, if a secretory deficiency in a developmental age is responsible
for short stature, a deficiency in adulthood characterizes a nosographic picture classified
as adult GH deficiency syndrome, characterized by cardiac, muscular, bone, metabolic
and psychic alterations [64]. An interesting connection between GH variations and the
HPA axis has recently been demonstrated. The GH receptor (GHR) is present in CRH
cells, which are the dominant neuronal population responsive to GH in the paraventricular
nucleus of the hypothalamus. However, studies in mice have demonstrated that GHR
ablation in CRH-expressing neurons causes reduced energy expenditure but does not lead
to major alterations in metabolism, in the HPA axis, in acute stress response or anxiety [65].
Even if GH action is exerted at peripheral level through mediation by some growth factors,
especially insulin-like-growth factor 1 (IGF1), mainly produced by the liver, the daily
variations in IGF1 are not as well coded as those of GH.

3.3. Prolactin

Similar to GH secretion, rhythmic secretion of prolactin (PRL) is also closely related to
sleep. An increase in PRL levels occurs both during nocturnal sleep and during a daytime
nap [7,8] (Figure 3).
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Estrogen variations in women play a further synchronizing role in prolactin secretion,
by affecting both circadian and infradian prolactin rhythmic secretions. The amplitude of
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secretory prolactin peaks is higher in females than in males, reaching the highest frequency
and amplitude in correspondence with the increased estrogen levels in the pre-ovulatory
period of the circatrigintan menstrual cycle [7,8]. Moreover, a circannual prolactin rhythm
with secretory zenith in March/April has been described in prepubertal girls but not
boys [66]. PRL is also involved in the complex stress-evoked cascade of events, with
an increase in its levels induced by any stress condition [7,8] and these stress-related
variations may negatively affect the rhythmicity of other hormonal secretions, mainly
those of the pituitary–gonadal axis. Pathological hyperprolactinemia with disruption of
its rhythmic secretion is mainly associated with the presence of a prolactinoma or due to
pharmacological effects induced by drugs that interact with the dopamine system. The
consequent associated disorders of the hormones of pituitary gonadal axis frequently
induce reproductive dysfunction and may lead to infertility in both males and females [67].

3.4. Hypothalamic–Pituitary–Thyroid Axis

Thyroid hormone (thyroxine, T4, and triiodothyronine, T3) secretion is under control
of the hypothalamic–pituitary axis. Hypothalamic thyrotropin-releasing hormone (TRH)
stimulates at the pituitary level the release of thyrotropin (TSH), which in turn stimulates
the thyroid gland to produce T4 and T3. Thyroid hormones regulate, by negative feedback,
the secretion of both TRH and TSH, acting at hypothalamic and pituitary levels, respectively.
A further direct inhibiting action on TSH secretion is exerted by somatostatin, through
binding to some of its receptor subtypes that are expressed in the pituitary TSH-secreting
cells [68,69].

TSH shows circadian and ultradian variations with a secretory zenith in late evening
and during the first hours of the night, which usually doubles or quadruples the morning
value [7–9]. A direct connection with the biological clock in the SCN allows the physio-
logical diurnal oscillations of TSH and of thyroid hormones. Studies in animals suggest
a dual control mechanism for thyroid function, involving both TRH-TSH release and
thyroid gland secretion [70]. Disorders of daily TSH oscillations have been described
in shift workers, elderly subjects, people with obesity and persons with Cushing’s syn-
drome [71,72]. In subjects with type 1 diabetes mellitus, the daily oscillation of TSH may
be inversely correlated with glycemic variations, regardless of the variations in thyroid
hormone concentrations [73].

Among the environmental entraining agents, the light/darkness cycle also influences
TRH-TSH-thyroid hormone secretions both in animals [74–80] and in man [81–83] with a
stimulating action by light and an inhibiting action by darkness. TSH, in turn, has been
shown to play a pivotal role in the transduction of photoperiodic signal [74]. Studies in
mice demonstrated that under short photoperiod, melatonin inhibits the pars tuberalis
production of TSHβ, which in turn acts on tanycytes to regulate seasonal control of the
intra-hypothalamic thyroid hormone T3. This hormone, through binding to its receptor
TRα regulates RFRP-3 neurons thus contributing at synchronizing reproduction with the
seasons [75]. The lack of light stimulus in blind subjects also impairs pituitary-thyroid
function as well as the secretions of other pituitary hormones and, consequently, the
hormones of the related satellite glands [9,29,50–53,55,81,82].

The occurrence of infradian circannual variations in TSH secretion has been validated
both in children and in adults with zenith of secretion in winter [83–86]. These variations
seem to be inversely entrained by variations in environmental temperature rather than
by variations in thyroid hormone secretions [86]. Furthermore, seasonal secretory vari-
ations in thyroid hormone secretions also appear to be inversely related to variations in
environmental temperature, as they increase in winter and decrease in summer [87]. An
interconnection between infradian TSH variations and mood has been demonstrated in
subjects living in Antarctic, with zeniths in November and July and nadirs in March and
April. A negative feed-back between mood and FT3 but not FT4 variations was suggested
by the decline in only FT3 concentrations following the peak of tension-anxiety [88].
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The integrity of circadian chrono-organization is essential for the correct functioning of
the immune system [9,89,90]. Therefore, impairment of circadian organization may increase
the occurrence of immune diseases, including those of thyroid gland [9,82]. Conversely,
thyroid disorders may impair circadian clock. Concerning this, hyperthyroidism increases
and hypothyroidism disrupt, the expression of some genes with consequent alterations in
TSH but also in other pituitary hormone rhythmicity [91].

Circadian disruption and disorders of clock gene expression may favor the occurrence
of several types of cancers, including thyroid cancer [2,3,35,82,92–94]. Normal thyroid
tissue obtained by biopsy has been shown to express different levels of some clock genes
with respect to tissue from thyroid nodules. Different expression in particular of BMAL1
and CRY2 has been found in normal versus malignant thyroid cells [95].

Patients with disruption in TSH and T3 rhythmicity related to shift work, jet lag,
and chronic sleep disorders show a high prevalence of malignancy, including thyroid
cancer [82]. Considering this, it is mandatory make every effort to prevent disruptions
of the chrono-organization of HPT axis secretions, and to promptly correct them, when
occurred, with appropriate measures to avoid the effects of environmental and individual
desynchronizing factors thus preventing the possible occurrence of thyroid cancer [96].

3.5. Hypothalamic–Pituitary–Gonadal Axis

The secretory patterns of the hormones of this axis exhibit ultradian and infradian,
and, less characterized, circadian rhythmicity, which is conditioned by phenotypic sex
and regulates the stages of development, sexual maturation and senescence. The onset
of puberty is precisely announced by the appearance of the pulsatile activity (ultradian
rhythm) of the gonadotropins, especially LH, an activity that becomes increasingly marked
with the progression of the pubertal stages [7]. In young women, after the completion of
pubertal development, the classic infradian menstrual rhythm appears with the charac-
teristic ovulatory peak of LH and FSH, that is lacking in women with hypogonadotropic
amenorrhea [1,7,8] (Figure 4).

Seasonal variations in these hormones are particularly important for sexuality and
fertility, also in humans [97]. A circannual rhythm of pituitary and gonadal hormones,
already present in the prepubertal age, is consolidated in the adults and presents a se-
cretory acrophase of LH in January (Wintertime in North Hemisphere) in both sexes and
of testosterone in late summer/autumn in men [66,97,98]. The occurrence in adult men
of circannual LH and testosterone rhythms without overlapping phases but in antiphase
(shift of approximately six months = 180◦), seems to indicate that the driving role of
these rhythms is played by the testis and that testosterone variations regulate by negative
feed-back the pituitary infradian LH rhythm [66,99]. This seems to be confirmed by the
persistence of a circannual testosterone rhythm in people with hypogonadotropic hypog-
onadism, and with Klinefelter’s syndrome, even if at lower secretory levels and with a
phase shift [97–99]. The independence of serum testosterone seasonality from infradian LH
fluctuations has been confirmed by a more recent study and attributed by the authors to
the changes in environmental temperature and daylight duration [100]. Considering the
important physiological role of rhythmic gonadal secretions, daily activities, if possible,
should be planned in accordance with the most important synchronizing factors of these
rhythms, especially light/dark and sleep/awake cycles. To prevent the disruption of these
rhythms is mandatory [100–102] as it may cause hypogonadism and infertility in both
sexes [97,103–105].



Life 2024, 14, 546 9 of 17

Life 2024, 14, x FOR PEER REVIEW 9 of 18 
 

 

puberty is precisely announced by the appearance of the pulsatile activity (ultradian 
rhythm) of the gonadotropins, especially LH, an activity that becomes increasingly 
marked with the progression of the pubertal stages [7]. In young women, after the com-
pletion of pubertal development, the classic infradian menstrual rhythm appears with the 
characteristic ovulatory peak of LH and FSH, that is lacking in women with hy-
pogonadotropic amenorrhea [1,7,8] (Figure 4).  

  
Figure 4. Infradian circatrigintan rhythms of plasma LH and FSH concentrations in healthy women 
(A) and in five women with hypogonadotropic amenorrhea (B,C): occurrence of the ovulatory 
gonadotropin peak in women with normal menstrual cycle (A) and its absence from patients with 
amenorrhea (B,C) (personal observation). 

Figure 4. Infradian circatrigintan rhythms of plasma LH and FSH concentrations in healthy women
(A) and in five women with hypogonadotropic amenorrhea (B,C): occurrence of the ovulatory
gonadotropin peak in women with normal menstrual cycle (A) and its absence from patients with
amenorrhea (B,C) (personal observation).

3.6. Insulin, Leptin, and Ghrelin

The appropriate chrono-organization of mammalian genes involved in the circadian
network and the interaction with daily light/dark cycle and other environmental syn-
chronizing factors are necessary to allow the completion of metabolic processes [106–108].
These hormones play a pivotal role in regulating metabolic adaptation to the variations in
some environmental factors.



Life 2024, 14, 546 10 of 17

Insulin. Circadian insulin oscillations are strictly correlated with food intake, and
contribute, together with leptin and ghrelin, to ensure the best metabolic conditions during
daily activities. There is a bidirectional connection between circadian clocks and circadian
variations in insulin secretion. On the one hand, the circadian clock dictates the time of
the regulation of metabolism [3,108]; and, on the other, the circadian rhythm of circulating
insulin concentrations in turn plays an important synchronizing action of some clock genes,
in particular PER1 and PER2 [107–110]. In this regard, it has been demonstrated that the
loss of circadian insulin oscillations induced by a high-fat diet intake causes the disruption
of the rhythmic expression of circadian clock genes in the liver [111]. The relationship
between molecular oscillators and the secretory pattern of insulin, proinsulin and glucagon,
has been recently clarified by Petrenko and coworkers through a study on intact islet cells
and islet cell obtained from donors with T2D. Their results demonstrated a reduced insulin
and glucagon exocytosis induced by dampening of circadian oscillators [11]. Disorders of
circadian machinery, involving in particular BMAL1, may trigger an endocrine adaptation
involving GH and sex hormone pathways, leading to insulin resistance and liver disease
but also, in some cases, hypo-insulinemia and diabetes [112–116].

Leptin. This hormone is the product of the ob gene and is secreted by adipocytes.
It is involved, in co-operation with ghrelin, insulin and orexin, in the regulation of the
daily rhythmicity of blood glucose and food intake, body weight, energy homeostasis
and a wide spectrum of biological activities [116]. Leptin has also been shown to play
a role in expression of some genes; it causes up-regulation of PER2 and CLOCK gene
expression in mouse osteoblasts, which have an endogenous circadian clock [117]. Leptin
exhibits a circadian rhythm in humans with the highest concentrations during the night
and the lowest during the day, strictly correlated with metabolic processes [118,119]. A
significant circadian variation in leptin concentrations is found whatever the age, with a
peak at night and through around noon, but at higher secretory levels in older subjects
with normal-weight and with overweight [120]. Among the extra metabolic activities of
leptin, of particular importance is the chrono-regulation of the hypothalamus–pituitary axis.
A normal rhythmic secretion of leptin is necessary for triggering pulsatile gonadotropin
secretion, essential for pubertal development. However, an excessive level of leptin may
negatively affect the hypothalamic–pituitary–gonadal axis function, as demonstrated in
subjects with increased body mass index [121]. Moreover, a disruption of circadian rhythm
of leptin concentrations has been described in people with critically ill heart failure [122].

Ghrelin. The pivotal role of this hormone in regulating metabolic processes was as-
certained sometime after its identification in 1999 as a GH-releasing peptide. Plasma
ghrelin concentrations in humans show circadian variations strictly correlated with meal
times, reaching the highest levels before and the lowest after food ingestion, and show-
ing stable high levels during sleep. This suggests a role of this hormone in meal ini-
tiation, with stimulation of appetite through the activation of orexigenic hypothalamic
neurocircuits [123]. The concomitant food-intake-independent stimulation of lipogenesis,
associated with the ghrelin action on glucose metabolism [124], favors an increase in body
weight and obesity. A recent study on the circadian variations in ghrelin, leptin and appetite
in lean adults kept under controlled diurnal conditions of synchronization with respect of
day/night, sleep/wake and light/darkness cycles, showed that all these variables exhibited
circadian variations. In particular, unacylated ghrelin showed a rhythm with acrophase
occurring shortly after waking and a nadir in evening, whereas leptin showed a rhythm
with acrophase occurring shortly after lights-out and nadir at midday [125]. Finally, ghrelin,
in association with melatonin, plays a synchronizing role on the sleep–wake cycle, which
favors adequate physical activity, establishing a virtual circle with physical exercise [126].

4. Elementary Principles of Chronotherapy

The fundamental principles on which chronotherapy is based are the following: cts.

• Maintain an optimal circadian organization of the individual to be treated;
• Timing the administration of drugs and targeting the biological clock;
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• Replacement therapy carried out, if possible, mimicking the circadian rhythm of the
variable to be replaced;

• Looking for and use of chronobiotic drugs capable of recovering desynchronized rhythms.

Several studies have demonstrated that the intensity of therapeutic effects
and the severity of side effects of some drugs vary, depending on the time they are
administered [127–130]. In particular, a chronotherapeutic approach in treatment of malig-
nancy has been shown to improve the host tolerance when it is performed according to
host rhythms [127]. The respect of the chronotherapy canons is very important in subjects
with hormonal deficiencies from endocrine diseases, to whom the hormone replacement
therapy has to be aimed not only at bringing the values back to the normal range but also,
if possible, at restoring the lost circadian, ultradian and infradian rhythm of the hormone to
be replaced. Corticosteroid replacement therapy in individuals with adrenal insufficiency
is a classic example of circadian chronotherapy, because it is usually carried out by admin-
istering the highest dose in the morning and the lowest in the afternoon/evening or by
administering a once-daily, modified-release hydrocortisone that provides a time-related
release, mimicking the circadian rhythm of the hormone [7,8,131,132]. In particular, the
once-daily modified-release regimen has been shown to reduce body weight and recurrent
infections and normalize the immune cell profile by entraining clock genes in immune
cells, thus improving the quality of life of treated patients [131,132]. Following the canons
of chronotherapy, GH replacement treatment in subjects with GH deficiency should also
involve administering the hormone in late evening to favor the plasma nocturnal increase
that mimics the normal circadian pattern of this hormone. Moreover, considering the phys-
iological role of infradian testosterone variations in men, testosterone replacement therapy
in male with hypogonadism, in addition to ensuring the recovery of plasma testosterone
concentrations to the normal range, should be aimed also at restoring, if possible, the
circannual rhythm of this hormone, which is altered in these patients [98–100].

Considering the harmful effects of rhythmic disruption, it is essential to look for
chemical or natural products that can exert a chronobiotic action in regulating internal
biological clocks. These products have to be able to restore a previously disrupted rhythm
that still persists after correcting environmental desynchronizing factors. Among the
hormones playing a chronobiotic role, melatonin has certainly to be considered: it is able
to reset the sleep-wake rhythm when administered in the late evening, and to prevent the
jet lag syndrome when administered before transoceanic travel [133,134]. Moreover, it has
been shown, in relationship with leptin and adiponectin, to favor the resynchronization
of rhythm disruption in obesity [135] and to restore the circadian misalignment caused by
optic neuritis [136].

Ghrelin has also been shown to have a chronobiotic action. Cultured hepatocytes from
steatotic liver treated with ghrelin show a recovery of their circadian pattern of clock genes
such as BMAL1, CLOCK and PER, previously blunted by steatosis [96].

Promising results have been obtained by the use of nobiletin as a natural chronobiotic
factor. This polymethylated flavone with the greatest abundance in citrus peels is able
in enhancing circadian rhythms [137,138], directly targeting the molecular oscillator, and,
by this action, protecting against metabolic syndrome [137]. The chronobiotic action of
nobiletin was shown: (i) to promote bioenergetics and healthy aging [139], (ii) to mitigate
astrogliosis-associated neuroinflammation and disease hallmarks in an Alzheimer’s disease
model [140], and (iii) to play a multifunctional role in cancer chemoprevention [141].
More recently, a chronobiotic role has been demonstrated for another polymethoxyflavone,
sudachitin, which has been shown to modulate the circadian CLOCK and improve liver
physiology [142].

5. Conclusions

Molecular studies have clarified the complex chain of events driven by the master clock
located in the suprachiasmatic nucleus that coordinates peripheral clocks and daily expres-
sion of their clock and clock-controlled genes. However, a functional chrono-organization
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is the result of an interplay between the molecular clocks and several endogenous and
environmental factors. An important role in physiological processes is played by endocrine
rhythms. Disruption of circadian machinery involving hormone secretions may promote
several diseases including cancer. Considering the appropriate timing of hormonal circa-
dian rhythmicity, in clinical practice has to be taken into account to avoid desynchronizing
conditions that may negatively affect human health. Thus, it is necessary to modulate the
therapeutic procedures along the lines of a corrective chronotherapy, considering an appro-
priate time of drug or hormone administration, to avoid disruption of circadian rhythms, to
reduce the dosage, and to eliminate or at least reduce harmful side effects. Finally, further
efforts have to be aimed at searching for new chronobiotic agents, in addition to those
already known, capable of resynchronizing disrupted rhythms.
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