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Abstract: Human viruses and viruses from animals can cause illnesses in humans after the consump-
tion of contaminated food or water. Contamination may occur during preparation by infected food
handlers, during food production because of unsuitably controlled working conditions, or following
the consumption of animal-based foods contaminated by a zoonotic virus. This review discussed the
recent information available on the general and clinical characteristics of viruses, viral foodborne
outbreaks and control strategies to prevent the viral contamination of food products and water.
Viruses are responsible for the greatest number of illnesses from outbreaks caused by food, and risk
assessment experts regard them as a high food safety priority. This concern is well founded, since
a significant increase in viral foodborne outbreaks has occurred over the past 20 years. Norovirus,
hepatitis A and E viruses, rotavirus, astrovirus, adenovirus, and sapovirus are the major common
viruses associated with water or foodborne illness outbreaks. It is also suspected that many human
viruses including Aichi virus, Nipah virus, tick-borne encephalitis virus, H5N1 avian influenza
viruses, and coronaviruses (SARS-CoV-1, SARS-CoV-2 and MERS-CoV) also have the potential to
be transmitted via food products. It is evident that the adoption of strict hygienic food processing
measures from farm to table is required to prevent viruses from contaminating our food.

Keywords: norovirus; rotavirus; hepatitis; adenovirus; astrovirus; acute viral gastroenteritis; enteric
viruses; foodborne infections; food safety
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1. Introduction

Viruses cannot grow on lifeless substrates since they are obligate intracellular parasites
that require living cells in which to replicate. At the same time, all currently known
viruses are host-specific. Worldwide, it is becoming apparent that foodborne illnesses are
increasingly contributing to human morbidity in spite of the fact that approaches to reverse
this trend are available. More than 200 diseases in humans can occur following exposure to
food contaminated by bacteria, viruses, parasites or chemicals. Each year, approximately
one in ten people get infected after eating contaminated food worldwide, and this represents
600 million foodborne illnesses, and ultimately 420,000 deaths [1]. Although the United
States (US) has one of the safest food supplies in the world, the federal government
estimates that more than 48 million foodborne cases with 128,000 hospitalizations and
3000 deaths occur each year. This means that one in six Americans suffer at least one
episode of foodborne illness each year [2,3].

Enteric viruses are represented by those genera that invade and replicate in the mucosa
or epithelial cell lining of the small intestine [4]. Although viruses cannot grow in food, they
are associated with large numbers of foodborne outbreaks and caused 59 % of all foodborne
illnesses which occurred in the US according to CDC [2,5]. Noroviruses were the leading
cause of foodborne illnesses, with about 5.46 million cases annually, and they are considered
the second and fourth leading cause of hospitalizations and deaths, respectively [2,5,6]. Five
enteric viruses, namely norovirus, rotavirus, hepatitis A virus, astrovirus, and sapovirus,
were among the 31 major foodborne pathogens identified by the CDC [2]. Other viruses,
such as adenovirus and hepatitis E virus, are also associated with foodborne diseases [7].
Zoonotic viruses that are harbored by animals and birds including tick-borne encephalitis
virus, coronaviruses, ebola virus, avian influenza virus, nipah virus, and aichi virus have
the potential to be transmitted via foods and cause foodborne illnesses [8].

The contamination of food with viruses may be managed either by inactivation or
by preventing viral occurrence [9,10]. Effective antiviral measures involve: implementing
specific controls for raw materials as well as for food production; adopting appropriate
food safety management systems such as Good Agricultural Practices (GAP) and Good
Manufacturing Practices (GMP) from farm to fork; food-handling education; effective
sanitation measures; and adequate hand hygiene along with suitable strategies to manage
ill workers [11]. In addition, recent preservation technologies including irradiation, pulsed
electric field, high pressure processing, ultra violet (UV) light, and cold plasma can be
used to inactivate viruses in foods [12–16]. The objective of this review is to discuss the
information available on the general and clinical characteristics of viruses, viral foodborne
outbreaks, and control strategies to prevent the viral contamination of food products
and water.

2. Common Foodborne Viruses

Foodborne viruses are increasingly recognized as causes of illnesses in humans. Enteric
viruses persist well in the environment, on different surfaces and preparation areas in food
service establishments and allied industries, as well as on human hands [17].

2.1. Norovirus

Noroviruses, a non-enveloped, positive-sense, single-stranded (ss)RNA viral group,
belongs to the family Caliciviridae. Previously, noroviruses were named Norwalk or
Norwalk-like viruses after the original Norwalk strain caused an outbreak of gastroen-
teritis in a school in 1968 in Norwalk, Ohio [18]. Currently, noroviruses are divided into
10 genogroups (GI to GX). GI, GII, GIV, GVIII and GIX are identified to infect humans [19,20].
GII.4 is more often spread via person-to-person contact. In comparison, non-GII.4 geno-
types, such as GI.3, GI.6, GI.7, GII.3, GII.6 and GII.12, are more often transmitted to humans
via foodborne routes [21]. Norovirus genotypes GII.2 and GII.4 are mostly implicated
in outbreaks of gastroenteritis, especially in closed institutions such as schools, nursing
homes and summer camps [22]. However, genogroup GI strains are more often linked to



Life 2024, 14, 190 3 of 36

waterborne outbreaks of norovirus [23]. In the United States, 24,995 single-state norovirus
outbreaks were reported between 2009 and 2019 [24]. In another cross-continental study
involving 16 countries, the predominance of GII.4 (>50% of cases), especially among
adults, was shown, whereas genotypes GII.2, GII.3 and GII.6 were more common among
children [25]. In China, it was reported that noroviruses are the predominant cause of
gastroenteritis among young children < 2 y and among those aged ≥ 65 y [26].

The human norovirus infection is self-limiting; however, worldwide, it is usually
associated with mortality among the immunocompromised patients, the elderly, and
children [27,28]. Norovirus shows considerable variability in the risk of infection and
the severity of the symptoms depending on its genotype, host susceptibility, and the
dose of the ingested virus [29]. Noroviruses cause highly contagious disease, which is
believed to represent almost 20% of all acute gastroenteritis cases, with about 20,000 deaths
globally [30–32]. The general and clinical characteristics of noroviruses are listed in Table 1.
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Table 1. General and clinical characteristics of common foodborne viruses.

Discovery
Date

Particle/
Genome

Genus/
Family

Structure
and Size

Disease
Caused

Incubation
Period Duration Transmission Symptoms Prevention and

Control References

Norovirus

1968
Non-

enveloped/
ssRNA

Norovirus/
Caliciviridae

Size of
7.5–7.7 kb

length and a
diameter of

27 nm

Gastroenteritis 0.5–3 days 2–3 days

Person-to-
person contact,

fecal–oral
transmission,

foodborne
transmission,
waterborne

transmission

Vomiting,
watery

diarrhea,
abdominal

cramps, fever,
headache,

mucus in stool,
myalgia and

chills

Proper hand
hygiene,

washing fruits
and vegetables

before preparing
and eating,
preventing

infected persons
from preparing
food for others,

cleaning and
disinfecting

surfaces

[10,18,33–37]

Rotavirus

1973

Non-
enveloped/
segmented

dsRNA

Rotavirus/
Reoviridae

Large,
icosahedral,

and a
triple-layered
protein coat,

up to 76.5 nm
in diameter

Gastroenteritis 2 (1–4) days 3–8 (up to
22) days

Fecal–oral
route

Vomiting,
fever,

abdominal
pain, severe

watery
diarrhea

Routine
vaccination of

infants
[10,33,38–40]

Sapovirus

1977
Non-

enveloped/
ssRNA

Sapovirus/
Caliciviridae

Small
(27–40 nm),
genome of

about
7.5–8.5 kb in

length

Gastroenteritis 0.5–2 days 2–6 days Fecal–oral
route

Diarrhea,
vomiting,
nausea,

abdominal
cramps, chills,

headache,
myalgia and

malaise

Cooking
shellfish

adequately,
proper hygienic

practices and
sanitize surfaces
with a chlorine

solution

[10,41,42]
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Table 1. Cont.

Discovery
Date

Particle/
Genome

Genus/
Family

Structure
and Size

Disease
Caused

Incubation
Period Duration Transmission Symptoms Prevention and

Control References

Astrovirus

1975

Non-
enveloped

single-
stranded RNA

Astrovirus/
Astroviridae

Genome
approximately

7 kb in size,
and 38–40 nm

in diameter

Gastroenteritis 3–5 days

2–3 days;
recurrence

possible
7–10 days

later

Person-to-
person contact

fecal–oral
route via

contaminated
water or food,

Nausea,
diarrhea,
vomiting,
malaise,

abdominal
pain, and

fever

Avoidance of
shellfish from

polluted waters,
decontamina-
tion of food

contact surfaces
and good hand

hygiene

[10,43,44]

Adenovirus

1953

Non-
enveloped

double-
stranded DNA

with an
icosahedral

capsid

Mastadenovirus/
Adenoviridae

Diameter of
70–100 nm,

genome
28–45 kb long

Gastroenteritis,
conjunctivitis 2–14 days 1–2 weeks

Respiratory or
environmen-

tal routes,
waterborne

spread,
fecal–oral

route

Fever,
headache,
abdominal

pain, vomiting,
and diarrhea

Good hygiene
practices,
chlorinate

swimming pools

[6,10,45,46]

Hepatitis A

1973

Non-
enveloped or

quasi-
enveloped/

ssRNA

Hepatovirus/
Picornaviridae

Size of 7.5 kb
and a diameter

of 27 nm
Hepatitis 2–4 weeks

(15–50 days) 2 months Fecal–oral
route

Nausea,
anorexia,
diarrhea,
vomiting,

malaise, and
myalgia.

Other
symptoms

may be
present, such

as:
light-colored

stools,
dark-colored

urine, jaundice

Vaccination,
good personal

hygiene,
avoidance of
eating raw
shellfish,

prevent infected
persons from

preparing food
for others,

cooking foods
and heating
drinks for at
least 1 min at
85 ◦C (185 ◦F)

inactivates
hepatitis A virus

[10,33,47–50]
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Table 1. Cont.

Discovery
Date

Particle/
Genome

Genus/
Family

Structure
and Size

Disease
Caused

Incubation
Period Duration Transmission Symptoms Prevention and

Control References

Hepatitis E

1983

Non-
enveloped or

quasi-
enveloped/

ssRNA

Orthohepevirus/
Hepeviridae

Diameter of
27–34 nm, size
of ∼7.2 kb in

length

Hepatitis 2 weeks to
2 months

4 weeks
(2–18 weeks)

Fecal–oral
from water
and food

Jaundice,
vomiting,

diarrhea, and
abdominal

pain

Good sanitation,
vaccination

which is only
available in

China

[10,33,51–57]



Life 2024, 14, 190 7 of 36

Norovirus spread can take place via direct contact with an infected individual, contact
with vomitus particles, consumption of contaminated food or water or through contact
with contaminated surfaces [58]. Patients infected with norovirus may shed large numbers
of noroviruses for protracted periods even after the symptoms resolution and may act as
a source for nosocomial transmission [59]. Shellfish and frozen raspberries have served
as vehicles for the transmission of noroviruses as a result of being contaminated with
human fecal material or through using sewage-contaminated water for irrigation or by
contact with infected food handlers during harvesting and processing [60,61]. Norovirus
can be harbored by a wide range of hosts including humans, canines, sheep, cattle, pigs,
rodents, bats and felines [35,41]. Although some serological studies suggested the possible
transmission of animal-derived norovirus to humans, there is no evidence that animal
norovirus can infect humans [35,62]. Norovirus transmission can be airborne and can also
take place via fomites, which have the potential to spread the virus and magnify the size of
illness outbreaks [46]. The CDC suggested that norovirus may spread through the air where
the small droplets of oral discharge from an infected person contact surfaces or are inhaled
by a healthy person [63]. Norovirus RNA was detected in 24% (21/86) of air samples from
rooms housing 10 patients [64]. Recently, the fomite transmission of norovirus was detected
by re-analyzing the transmission routes of a previously reported hotel restaurant outbreak.
The results showed that the attack rate distribution matched well with that of the infection
risk via the fomite route [65]. In another study, it was confirmed that the fomite-mediated
exposures significantly contributed to large portions the of attack rates in outbreaks with
multiple transmission modes [66].

Leafy greens, fresh fruits and shellfish are the foods commonly involved in norovirus
outbreaks [67]. Culinary herbs, lettuce (romaine, iceberg, mesclun), green onions, straw-
berries and deli ham have also been implicated in norovirus outbreaks [68]. Food plant
workers can spread the virus when touching ready-to-eat foods with their bare, inade-
quately washed hands [67]. Of the different means for transmission of norovirus in food,
the most common setting was eating out (37%). Others include: open-headed lettuce during
retail sale (30%), takeaway foodservice (26%), raspberries at retail sale (4%), and oysters
during retail sale (3%) [31]. Norovirus is also associated with outbreaks in restaurants,
schools, cruise ships, and with healthcare situations including in hospitals [69].

Noroviruses are thought to possess different mechanisms to circumvent and antago-
nize host immune responses. This necessarily leads to lengthy norovirus infections and
subsequent protracted viral shedding. Immune system antagonistic activity results from
the actions of specific nonstructural norovirus proteins such as p22 and p48, which interfere
with functional protein transferring and cellular secretory pathways. Subsequently, the
Golgi apparatus can be disassembled, and this interferes with the ability of the infected
cell to develop an effective immune response [70]. Additionally, impairing protein transfer
reduced the secretion of cytokines [71]. Further, it has been reported [70] that norovirus
protein VF1 antagonizes the expression of antiviral genes, and that norovirus protein VP2
restricts antigen presentation and overall protective immunity induction.

It is notable that noroviruses showed great survivability on food surfaces. In human
norovirus genogroup II, genotype 4 virus-like particles were able to attach to lettuce leaf
surfaces and cut edges [72]. It has been demonstrated that the virus–lettuce attachment is
due to the presence of Histo-Blood Group Antigen (HBGA)-like carbohydrates on lettuce
leaves and the ability of norovirus to bind the exposed fucose moiety in the cell wall
of lettuce [73]. This attachment was also mediated through the viruses’ HBGA binding
sites [74]. In another study, murine norovirus, a virus genetically more closely related to
human norovirus, persisted on lettuce for 14 d at 4 ◦C and for 3 d at room temperature [75].
Furthermore, human norovirus transported from the roots of lettuce and spinach to the
leaves were internalized in the leaves and remained stable within leaves and roots at similar
inoculated RNA titers for 6 d [76]. The recovery and adhesion of noroviruses on foods is
affected by the physicochemical parameters of food. For example, the recovery of infectious
norovirus particles from turkey was 68% compared to 9.4% from strawberries [77]. A
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murine model norovirus persisted well and remained in an infective state, with only a
1.29–2.28 log decline in infectivity from 105 plaque forming unit (PFU) inoculated on food
contact surfaces made of ceramic, glass, plastic rubber, stainless steel, and wood for 28 d at
room temperature [78].

Noroviruses were found to be resistant to freezing and to relatively high temperatures
up to 60 ◦C and have even been detected in steamed shellfish. Also, noroviruses may persist
in chlorine solution up to 10 ppm. However, practices such as minimizing the handling of
foods, using disposable gloves, chilling cooked food, and the proper, frequent washing of
hands were advised to substantially reduce the foodborne transmission of noroviruses [79].
Some non-thermal strategies including cold atmospheric plasma, irradiation, ultra violet
light, and high hydrostatic pressure can be used to inhibit noroviruses in foods [80].

2.2. Rotavirus

Rotaviruses are a genus of positive-sense, double-stranded (ds)RNA viruses belonging
to the family Reoviridae. Since their discovery in 1973, rotaviruses have become known
as the leading cause of severe childhood diarrhea worldwide [81–83]. Rotaviruses are
organized into nine species: A to J [81,82]. There are four specific subgroups within group
A. Groups A, B, C and H are the major groups that infect humans and animals, and, of
these, group A is predominant, while strains that belong to species D, F, and G mainly
infect animals [81,82].

Epidemiologically, rotavirus A has the highest clinical impact in humans, as it causes
the most severe gastroenteritis among children, worldwide, compared to the other
groups [38,81,84,85]. However, rotavirus group B has been found responsible for adult and
child diarrheal illness in China [40]. Group C has also been linked to sporadic cases of acute
diarrhea among humans, worldwide. Zhao et al. (2022) reported that the infection rates
of rotavirus C in humans has decreased from 3% before 2009 to 1%, whereas the infection
rates in animals increased from 10% to 25% [86].

The mortality rate of rotavirus infection is 0.3–1.8% [81,87]. In general, adults’ symp-
toms tend to be milder than infants’ and young children’s because immunity is developed
with previous infections [88]. The general and clinical characteristics of rotavirus are
presented in Table 1.

The virus is mainly spread via the fecal–oral route [84], and upon ingestion the virus
primarily attacks the enterocytes of the small intestine villi. A usual cycle of viral replication
results in the compromise of the enterocyte cell function, leading to the inadequate absorp-
tion of nutrients, fluids and electrolytes. The subsequent replication of secretory crypt cells
results in fluid and electrolyte accumulation in the gut lumen. Moreover, compromised
enterocyte function results in reduced digestive enzyme expression, which causes sugars
to be concentrated in the gut lumen. The above two developments result in the classical
clinical symptoms of rotavirus-associated diarrhea [81,87,89,90].

A low dose of rotavirus can be infectious, and it has been reported that one plaque
forming unit (PFU) is sufficient to cause infection in humans [91]. Rotavirus exhibits
considerable environmental stability, which allows it to persist in fresh water and foods,
even when exposed to light, which can inactivate other enteric RNA viruses. This resistance
is due to its presence as highly persistent viral vesicles which can also transmit more than
25 virions to the host cell at once [28]. This facilitates the development of illness outbreaks
following the consumption of contaminated water or ice and foods including seafood and
salads [88,92].

Rotavirus can persist well at refrigeration temperatures, and can also persist in soil for
more than a week, even at temperatures up to 37 ◦C. In contrast, sand has been observed to
decrease the infectivity of the virus. Additionally, following a temperature change from 4
to 37 ◦C, viral populations have also been observed to decrease. This is an encouraging
observation, as it indicates that the virus may not be very thermostable [93]. Bovine
rotavirus was observed to decrease in infectivity by up to 8 log on stainless steel surfaces
when stored for 21 d at 21 ◦C. However, it did not lose infectivity on blueberries or in bottled
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water even up to 21 d at 4 ◦C or −20 ◦C [94]. In juices, rotavirus was observed to persist
well up to 3 h in papaya and honeydew melon juices at room temperature. However, viral
infectivity decreased linearly within 1 h in pineapple juice stored at the same temperature.
The acidity and other pineapple juice constituents may explain this observation [95].

2.3. Sapovirus

Sapovirus was first recognized during a large outbreak in 1977 in Sapporo, Japan.
Sapovirus is a genus of non-enveloped, positive-sense ssRNA viruses belonging to the
family Caliciviridae [42]. Sapovirus are classified into 19 genogroups (GI through GXIX),
where GI, GII, GIV and GV are specific to humans, while other genogroups infect animals
including bats, sea lions, dogs, pigs, minks and rats [96,97]. Sapoviruses are enteric viruses
that cause gastroenteritis in both developed and developing countries, affecting people
of all age groups including infants and children [98]. According to systematic research
by Magwalivha et al. (2018), who examined 45 sapovirus prevalence studies published
between 2004 and 2017 in 19 low-and middle-income countries, the overall prevalence of
sapovirus was 6.5%, with a significantly higher frequency in lower-income countries [99].
Most these studies (78.6%) investigated the prevalence of sapovirus in children, and the
sapoviruses GI and GII were most dominant [99].

Sapovirus infections follow a seasonal pattern, with most cases occurring during the
winter months [58,100,101]. Tang et al. (2022) found that sapovirus significantly contributed
to the overall burden of diarrhea in Chongqing, China, particularly in children < 4 y old,
with sapoviruses GI and GII being most frequently detected [101]. Similarly, sapovirus
genotypes I and II were detected in 3.5% of 742 stool specimens from children < 5 y hospi-
talized with viral etiologies in southwestern India [102]. In the US, sapovirus was identified
in 10% of children < 18 y who were receiving care for diarrhea in both outpatient and
inpatient settings [103]. Similarly, sapovirus was responsible for 13% of the gastroenteritis
outbreaks reported in north–east England from July 2016 to July 2018 [104]. Sapovirus
was detected in 24.7% of diarrheal stools collected from children ≤ 24 months old in eight
countries including Brazil, Bangladesh, Peru, Pakistan, Tanzania, South Africa, India and
Nepal [105].

The viral capsid proteins of sapovirus play a crucial role in its attachment and entry
into host cells. Furthermore, the replication of sapovirus within the epithelial cells lining
the small intestines lead to inflammation and the characteristic symptoms of gastroenteri-
tis [97]. The clinical and epidemiological characteristics of sapovirus show similarities
with norovirus. However, sapovirus causes a lower number of foodborne outbreaks and
illnesses [106,107]. Occasionally, the symptoms of sapovirus infection are followed by dehy-
dration, malnutrition, secondary infection, and finally hospitalization in severe cases, par-
ticularly among infants, young children, and immunocompromised individuals [108,109].
The general and clinical characteristics of sapoviruses are presented in Table 1.

Sapovirus is usually transmitted through the fecal–oral route, and when the virus is
shed in the feces of an infected individual it can be transmitted to others if they come in
contact with contaminated surfaces, food, or water [10]. Sapovirus has been detected in
water, untreated and treated sewage and shellfish including oysters and clams [10,110].
Moreover, sapoviruses have been associated with outbreaks linked to the consumption of
raw or undercooked shellfish. These can become contaminated if they are harvested from
waters contaminated with human sewage [107]. The virus can also spread from person-to-
person via close contact (hospitals, nursing homes, child care centers and schools), while
caring for an infected individual, or sharing contaminated personal items [111]. In addition,
contacting contaminated surfaces and then touching the nose, eyes or mouth can result in
transmission of sapovirus [111].

Sapovirus can persist on surfaces for a significant amount of time, depending on the
environmental conditions. For example, the virus can persist for days to weeks on hard
surfaces, such as stainless steel and plastic, especially in cool and damp environments [112].
Esseili et al. (2015) reported that porcine sapovirus persisted on spinach and lettuce leaves
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for 7 d at 4 ◦C, and the phytopathogen, Xanthomonas campestris pv. vitians 701a, promoted
sapovirus persistence on lettuce [113]. In another study, sapovirus persisted on lettuce for
up to 3 d at room temperature or for 14 d at 4 ◦C [75].

2.4. Astrovirus

Astroviruses are a group of positive-sense, ssRNA viruses belonging to the family
Astroviridae, genus Mamastrovirus, with four species affecting humans: 1, 6, 8, and 9 [44].
Mamastrovirus-1 includes eight genotypes of classical human astrovirus (human astrovirus
-1 to -8) known to cause gastroenteritis in humans. Mamastrovirus-6 has the Melbourne
(MLB) clade and includes novel MLB-1, -2, and -3 genotypes. Mamastrovirus-8 clade
includes the novel Virginia/Human-Mink-ovine-like (VA/HMO) -2, -4, and -5 genotypes.
Mamastrovirus-9 clade includes the Virginia/Human-Mink-ovine-like (VA/HMO)-1 and
-3 genotypes [114]. Recently, a receptor was identified for Mamastrovirus-1 called the
neonatal Fc receptor (FcRn) which is a functional receptor for human astroviruses [115].
Reviewing the recently published literature on astrovirus infections has revealed infections
characterized by gastroenteritis from acute inflammation commonly affecting school age
children (<5 y) during spring and autumn, with differences in the prevalence of genotypes
in different geographical areas. Further, individuals infected with one strain do not acquire
immunity against other strains. Globally, human astrovirus-1 and MLB-1 were the predom-
inant genotypes detected in gastrointestinal tract infections [116–119]. Additionally, the
most frequent viral co-infections reported with astrovirus illness involved norovirus and
rotaviruses [120].

Astroviruses are spread worldwide, and they are accountable for 2–9% of acute, non-
bacterial diarrheal illnesses in children, even though their occurrence in clinical specimens
was higher and reached 61% in symptomatic and asymptomatic individuals [116,118,121].
In other works, it was found that human astrovirus causes 10% of acute gastroenteritis
sporadic cases in children of <3 y, and that most outbreaks occurred mainly in healthcare
and daycare centers, while in some developing countries, infection rates reached 20% [117].
The symptoms of gastrointestinal tract and inflammatory lesions affecting the meninges
and brain tissue as encephalitis and meningitis were also reported [122,123]. The general
and clinical characteristics of astrovirus are presented in Table 1.

Astroviruses, although less frequently reported in gastrointestinal tract infections than
noroviruses, were detected in symptomatic and asymptomatic cases [124]. Water and food
contamination routes are most commonly reported for the transmission of astroviruses
with a relatively low infectious dose [10,116]. Persistence time investigations showed
that the virus persists for two months at cold temperatures on surfaces, and this was
relatively shorter than rotaviruses or noroviruses [125]. Human astroviruses can infect the
epithelium of the duodenum, and have been detected in children’s stool. The virus was
also found in the feces of some animals (e.g., cattle, sheep, poultry, deer, cats, dogs, rats
and bats) [67]. Astroviruses are transmitted mainly through the fecal–oral route, either by
the ingestion of contaminated water and food or direct contact and cause human infections
when present in a relatively low dose [10]. Most astrovirus foodborne illnesses resulted
from foods contaminated by infected food handlers, or the consumption of contaminated
shellfish or produce originally grown or irrigated with contaminated water [126]. Recently,
some reported foodborne outbreaks were linked to the consumption of bivalve mollusks
contaminated by polluted water [10].

2.5. Adenovirus

Adenovirus was first identified in 1953, isolated from human adenoid tissue. Aden-
oviruses are non-enveloped viruses containing an icosahedral nucleocapsid with a dsDNA,
and they belong to the family Adenoviridae and the genus Mastadenovirus [46]. The family
Adenoviridae contains five genera: Atadenovirus (infects sheep, cattle, ducks and possum);
Aviadenovirus (infects birds); Ichtadenovirus (infects sturgeon); Mastedenovirus (infects mam-
mals), and Siadenovirus (infects reptiles and birds) [6]. There are 51 serotypes of human
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adenovirus which are further divided into seven subgroups (A–G). Adenovirus can infect
and reproduce in the respiratory tract, GI tract epithelial cells, urinary bladder, and eyes.
Adenovirus may cause hidden infection in lymphoid cells and lytic infection in epithelial
cells [127]. Human adenovirus serotypes 40 and 41 in group F are the major causes of
gastroenteritis in young children [46,128]. Recent reports showed that a remarkably high
burden of gastroenteritis among children in low- and middle-income countries was caused
by adenovirus serotypes 40 and 41 [128]. The incidence of adenovirus serotypes 40 and
41 infections in children with diarrhea was 13% in Guatemala [129], 5.1% in Nigeria [130],
and 1.5% in Brazil [131].

Other serotypes might also attack the upper respiratory tract or eyes [132]. Although
adenovirus infection is rarely associated with serious illnesses and deaths, patients with
respiratory or cardiac diseases, immunocompromised individuals, or infants are at higher
risk of developing severe illnesses [10,133]. The general and clinical characteristics of
adenovirus are presented in Table 1.

Adenoviruses are spread via aerosolized droplets, blood, and the fecal–oral route [134].
In addition to these, the surfaces of objects or materials (fomites) play an important role
in the transmission of adenovirus [135]. The incubation period of adenovirus depends
on the viral serotype and transmission mechanism, and may range from two days to two
weeks [134]. Clinical symptoms often occur in children; however, infected adults are asymp-
tomatic. Common symptoms associated with adenovirus infection include gastroenteritis,
conjunctivitis, acute respiratory illness and fever [136]. Uncommon symptoms include
bladder inflammation/infection and neurological complications [137]. The treatment of
adenovirus infection is not required in most cases, and there is no specific treatment or
approved antiviral medicine; however, in severe cases, hospitalization and rehydration
may be required [138]. Outbreaks of adenovirus have been reported globally in closed
or crowded settings, such as dormitories, healthcare facilities, and among military re-
cruits [136], since adenovirus transmission is facilitated in congregate environments [139].
Waterborne outbreaks of human adenovirus have been found to be associated particularly
with swimming pools, and clinical findings involve conjunctivitis [46]. Adenoviruses have
been reported in wastewater, sludge, shellfish, and marine, drinking, and surface waters [6].

Compared to other enteric viruses, adenovirus can persist better in wastewater and
can remain infectious for extended periods of time in untreated waters. The high rate of
and prolonged adenovirus shedding by infected individuals suggests that adenovirus can
spoil surface water resources via contaminated domestic wastewater [140]. Adenoviruses
were detected in water and shellfish samples collected from a number of coastal oyster
breeding farms and fishing ports in Taiwan during 2016–2017. The primary source of this
viral contamination stemmed from the direct discharge of wastewater from livestock farms,
domestic sewage, and fish markets into the coastal environment [141]. Adenovirus can
persist on inanimate objects for an extended period, sometimes for several weeks following
contamination [142]. Adenoviruses are resistant to UV light, which causes damage to DNA
without affecting the proteins that are associated with adenoviruses’ capacity to infect
and replicate [143]. Adenovirus is often resistant to many lipid disinfectants due to its
non-enveloped nature; however, it is inactivated by formaldehyde, bleach and heat [134].
In swimming pools, chlorine levels must be adequate, as chlorination failures are often a
major factor contributing to illness outbreaks [46].

2.6. Hepatitis A Virus

Hepatitis A virus is a tiny non-enveloped member of the Hepatovirus genus within
the Picornaviridae family. It contains positive-sense, single-stranded RNA that exhibits
substantial genetic variability worldwide [144]. Like norovirus, it is often transmitted via
the fecal–oral route. However, recent studies reported that hepatitis A virus is released from
liver host cells and is capable of circulating in the bloodstream as membrane-cloaked ‘quasi-
enveloped’ virions [53,57]. Human hepatitis A virus is grouped into several genotypes
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including I, II, and III, which are subdivided into six sub-genotypes, named IA, IB, IIA, IIB,
IIIA, and IIIB [144].

Hepatitis A virus is one of the most well-studied foodborne viruses. The virus was
identified for the first time in the feces of hepatitis A patients in 1973 [145]. Hepatitis A
illness is a public health problem involving 1.4 million detectable cases worldwide, yielding
an estimated 15,000 to 30,000 deaths per year [146,147]. However, the incidence rate of
hepatitis A infection is underestimated due to the self-limited nature of the disease, and it is
estimated that 100 million individuals are infected annually [147]. According to the Global
Burden of Disease data, the worldwide incidence of hepatitis A infections raised by 13.9%
to reach 158.9 million in 2019 compared to 139.5 million in 1990 [148]. The prevalence of
hepatitis A infection in many countries is variable and dependent upon the level of hygiene
practiced. As a result, the infection is common and endemic in several regions of the world
including Africa, Central and South America, Asia, and the Western Pacific region [149]. In
the US, 12,474 cases of acute hepatitis A were documented by the CDC in 2018; however,
the widespread use of childhood hepatitis A immunization has reduced the prevalence
of hepatitis A illness [149]. In contrast, the average rate of severe hepatitis A-associated
hospitalization and hepatitis A-related deaths have increased recently [149].

Hepatitis A virus usually causes acute, asymptomatic, self-limited hepatitis [47]. These
infections are most often contracted by very young children [150,151]. The general and
clinical characteristics of the hepatitis A virus are listed in Table 1. In less than 1% of
human cases, hepatitis A infection can progress to severe liver disease [47]. The mortality
rate associated with acute hepatitis A infection in children and adults aged < 50 y ranges
from 0.3% to 0.6%, whereas the mortality rate associated with acute hepatitis A infection
in adults older than 50 y ranges from 0.8 to 5.4%. Hepatitis A infection usually confers
lifelong immunity, and it is a vaccine-preventable disease [152]. Several internationally
available vaccines are safe and effectively provide good levels of protection with minimal
side effects [153].

The most common manner of hepatitis A transmission is through the fecal–oral route
and involves the ingestion of contaminated water or food and by direct contact with infected
individuals [47]. It has been reported that food products contaminated with hepatitis A
virus are responsible for 2–7% of all worldwide hepatitis A illness outbreaks [154]. Rarely,
cases of hepatitis A infection have been reported to occur following blood transfusion or
organ transplantation [146,149].

Hepatitis A virus infection has been associated with the consumption of contaminated
raw shellfish, fruits, vegetables, ready-to-eat foods, and water [47,155]. The consumption of
raw or undercooked shellfish grown in contaminated water is the major reason for hepatitis
A virus outbreaks [47,156]. The incubation period of hepatitis A virus ranges between
15–50 d with a mean of 28 d [156].

Hepatitis A virus is highly resistant to environmental stresses because it has a non-
enveloped highly cohesive capsid [157]. Foods can be contaminated with hepatitis A virus
at any point in the food chain, and the virus can persist for months in food and related
environments (on inanimate surfaces, water, soil, bivalve mollusks and sediments). It
is more resistant than bacteria to commonly used control interventions including heat,
radiation, disinfection, refrigeration, freezing, pH and high-pressure processing [47]. The
virus can persist for several hours or even days on human hands and environmental
surfaces indoors, respectively [158]. Additionally, hepatitis A virus can remain intact
and infectious under freezing conditions, and it can remain in salt or fresh water for
12 months [159]. The large numbers of hepatitis A virus particles in feces and the extended
incubation period significantly contribute to the occurrence of hepatitis A illness outbreaks,
mainly those linked to food handlers [47,160].

2.7. Hepatitis E Virus

Hepatitis E virus is a positive-sense, single-stranded RNA virus, and it is classified
into at least eight genotypes (1–8) based on genetic differences, and it belongs to the family
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Hepeviridae. Genotypes 1 and 2 primarily infect humans and are linked to large outbreaks
in developing countries. Genotypes 3 and 4 infect both humans and animals, with pigs
being the primary reservoir. Genotypes 3 and 4 are responsible for most cases of hepatitis
E in developed countries [161,162]. Similar to hepatitis A virus, hepatitis E virus was
also considered non-enveloped. However, recent studies designated the virus as ‘quasi-
enveloped’ [53,57]. The virulence factors of hepatitis E virus are not well understood, but
Smith et al. (2014) found that specific mutations in the viral genome may contribute to
differences in pathogenicity and clinical outcomes [163].

The clinical presentation of hepatitis E infection can vary from mild to severe. Most
infections are asymptomatic or cause a self-limiting acute hepatitis. However, in certain
populations, such as individuals with pre-existing liver disease and pregnant women, hep-
atitis E infection can lead to fulminant hepatitis and increased mortality [164–166]. Chronic
hepatitis E, characterized by persistent viremia and liver inflammation, has been observed
in immunocompromised individuals, including HIV-infected patients and organ transplant
recipients [6,167]. The general and common clinical characteristics of the hepatitis E virus
are presented in Table 1.

The epidemiology of hepatitis E virus varies across different regions. In developing
countries, hepatitis E virus is primarily transmitted through contaminated water, leading
to large outbreaks. In these areas, hepatitis E illness is most commonly associated with
genotypes 1 and 2 [168]. In developed countries, sporadic cases of hepatitis E virus are
more common, with genotypes 3 and 4 prevalent. Recent studies have shown an increasing
number of autochthonous (locally acquired) cases in developed countries due to zoonotic
transmission. These cases are predominantly associated with genotypes 3 and 4 [169].

Hepatitis E virus can spread via several routes, including the fecal–oral route, in
regions with contaminated water and water supplies of insufficient sanitation. The con-
sumption of contaminated water or food, mainly raw or undercooked shellfish, is linked
to hepatitis E infection. In developed countries, zoonotic transmission is a significant
concern, primarily through the consumption of undercooked or raw pork products. Addi-
tionally, hepatitis E virus can be transmitted through blood transfusion or following organ
transplantation, although these routes account for a small proportion of cases [6,170].

Meat products from hepatitis E virus-infected animals may transmit the virus to
humans [171]. Replicative hepatitis E virus was detected primarily in the liver of infected
animals, and also in the gastrointestinal tissues, mesenteric and hepatic lymph nodes, and
the spleen [171,172]. Furthermore, after inoculating pigs intravenously, hepatitis E virus has
been recovered from their salivary glands, tonsils, lungs, stomach, kidneys, and multiple
muscle masses [171]. In addition to pigs, some other animal species also serve as potential
reservoirs for hepatitis E virus, including rats, rabbits, chickens, ferrets, wild boar, domestic
swine, mongoose, cutthroat trout, bats, and deer [173].

Studies have demonstrated the stability of hepatitis E virus in water, including both
freshwater and seawater, for several weeks [174]. Hepatitis E virus has also been detected
on surfaces such as stainless steel and plastic, although the length of its persistence may
vary depending on environmental conditions [174]. The virus can persist in pork meat for
extended periods, especially when stored at low temperatures.

3. Other Potential Emerging Viruses

Different definitions have been suggested for the term ‘emerging pathogens’. In this
review, “emerging foodborne viruses” include viruses that have been known as pathogens
but have only recently been shown to be transmitted via foods [175]. Recently, several new
viruses were isolated from food products, and these might be considered emerging food-
borne pathogens, which is alarming because of the potential risk for transmission to humans
through the food chain. Zoonotic viruses including nipah viruses, ebola viruses, avian in-
fluenza viruses, aichi virus, tick-borne encephalitis virus, and coronaviruses (SARS-CoV-1,
SARS-CoV-2 and MERS CoV) may have the potential to be transmitted to humans and
cause gastroenteritis via the consumption of contaminated foods, particularly raw or under-
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cooked meat products from infected animals [67,138,176]. However, the reliable detection of
viruses in food products is a challenge due to the absence of viral culture methods, variable
effectiveness of detection methods, low levels of contamination, the presence of inhibitors,
and the heterogeneity of viral distribution in foods [11,177]. It worth mentioning that the
detection of the nucleic acid of these emerging viruses in food products using polymerase
chain reaction (PCR) and other techniques says nothing about their infectivity, since it does
not distinguish between viral genome particles and viral infectivity. The detection results
are varied based on the food products, the virus distribution in the food matrix, and the
presence of PCR inhibitors [178,179]. Indeed, numerous studies have determined that even
under ideal conditions, the particle-to-PFU ratios of many animal viruses are in the range of
hundreds to one and may be as high as thousands to one. This particle-to-PFU ratio likely
increases when viral particles are subjected to conditions that may affect infectivity without
destroying the physical particle. Therefore, experimental methods for the inoculation of
viruses in animals or on cell culture techniques are required to determine the infectivity
of viruses detected in food samples [178,179]. Furthermore, it is difficult to demonstrate a
direct epidemiological correlation between the detection of emerging viruses’ genomes in
food and the occurrence of foodborne outbreaks. Yet, the detection of the genomes of these
viruses in food should be taken as a sign of potential risk.

3.1. Tick-Borne Encephalitis Virus

Tick-borne encephalitis virus (TBEV) is an enveloped, positive-sense, ssRNA virus that
belongs to the genus Flavivirus and family Flaviviridae. It is a zoonotic virus transmitted to
sheep, goats, and cows via ticks. The virus was detected in several dairy products including
milk and cheese. In Poland, the RNA of tick-borne encephalitis virus was detected in raw
milk samples from 7 of 63 cows (11%), 6 of 29 goats (21%), and 6 of 27 sheep (22%) [180]. In
Norway, the virus was detected in 6 of 112 (5%) cow milk samples [181]. The virus was
also detected in 5 samples out of 22 (22%) different types of cheeses including soft, cream,
and ripened cheeses [182]. Tick-borne encephalitis virus spread to humans by ingesting
unpasteurized dairy products from infected animals. There were several tick-borne en-
cephalitis foodborne outbreaks reported in the EU [183,184]. The number of infections
of tick-borne encephalitis virus has increased in the EU over the last decade [183,185].
Therefore, preventive strategies including the pasteurization of milk and TBEV vaccines
are available and can be used to prevent illness from this virus.

3.2. Nipah Virus

Nipah virus is a negative-sense ssRNA virus belonging to the family Paramyxoviridae
and the genus Henipavirus. The fruit bat is the main host for the virus, which causes severe
respiratory and neurological illnesses with a high mortality rate [186]. Nipah virus was first
recognized in Malaysia and Singapore in 1998–1999 after a large outbreak with 283 illnesses
and 109 deaths [187]. It was suggested that fresh date palm sap was linked to some cases of
infection where the nipah virus may have been transmitted to humans from fruit bats that
drank at night from the clay pots used to collect the sap [188]. A subsequent study proved
that the nipah virus was able to infect Syrian hamsters which drank palm sap containing
the virus [189]. Recently, in 2018, a nipah virus outbreak with 23 cases and a case-fatality
rate of 91% was reported in the Kozhikode district of Kerala, a South Indian state, and it
was suspected that the patients had contracted nipah virus from fruit-eating bats [190].

3.3. Ebola Virus

Ebola viruses are negative-sense filamentous ssRNA viruses that belong the genus
Ebolavirus and the family Filoviridae. Ebola virus causes severe human and animal illnesses.
It was first revealed in 1976 in the Democratic Republic of Congo after a fatal outbreak
occurred. The average ebola virus disease case fatality rate is around 50% [191]. Ebola virus
probably spreads by the transfusion of blood or other body fluids of infected persons and
via person-to-person contact [192]. Following the discovery of ebola virus in bushmeat,
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which is raw or minimally processed meat from wild animals, bushmeat was considered a
vehicle for ebola virus outbreaks in humans. The virus also can be directly spread from one
person to another [193,194].

3.4. Avian Influenza Virus

Avian influenza viruses are a group of viruses that have enveloped negative-sense,
ssRNA with segmented genomes and belong to the genus Alphainfluenzavirus and the family
Orthomyxoviridae [33]. Different samples from live birds including chicken and ducks as
well as their meats were positive for the infectious H5N1 avian influenza virus [195–197].
Although no foodborne outbreaks related to the avian influenza virus have been reported,
some experiments showed that the consumption of duck blood transmitted the virus to
carnivorous animals such as tigers, leopards, and domestic dogs and cats. This suggests
that consumption of contaminated products may be responsible for H5N1 avian influenza
virus infection in humans [197]. In addition, the CDC stated that all reported infected cases
with avian influenza virus had a recent exposure to sick or dead poultry. However, people
who are in direct contact or have recreational exposures to infected poultry may be at high
infection risk. Moreover, direct human-to-human transmission mostly occurs as a result of
family or healthcare worker exposure [198].

3.5. Aichi Virus

Aichi virus is a small non-enveloped positive-sense, ssRNA virus in the genus Kobu-
virus in the family Picornaviridae with positive-sense and icosahedral morphology. It was
first detected in 1989 in the stool samples of patients with gastroenteritis following the
consumption of oysters in Aichi, Japan [199,200]. The virus was also isolated from the vero
cells of 12.3% (6/47) patients from different gastroenteritis outbreaks, and 2.3% (5/222)
of Pakistani children with gastroenteritis [201,202]. Le Guyader et al. (2008) reported in
a retrospective study performed in France among children between 2001 and 2004 that
0.9% of the collected stool samples were positive for aichi virus [203]. Aichi virus was
isolated from the fecal specimens of patients involved in an acute gastroenteritis outbreak
in Germany [204]. Moreover, Aichi virus was detected in the randomly selected stool
specimens of children with diarrhea in Brazil [204]. Therefore, it has been anticipated to be
the cause of human gastroenteritis with the potential for transmission via the fecal–oral
route by contaminated food or water [10]. Furthermore, aichi virus was detected in 6.6%
(4 of 60) shellfish samples collected in Tunisia [205]. More recently, aichi virus was detected
in 3/170 (1.8%) of retail shellfish including oysters and mussels in the Apulia region of
Italy [206].

3.6. Coronaviruses (SARS-CoV-1, SARS-CoV-2 and MERSCoV)

Coronaviruses are group of enveloped viruses with a positive-sense ssRNA genome
belonging to the family Coronaviridae. Coronaviruses cause illnesses mainly in mammals
and birds. These viruses may also cause human respiratory tract infections ranging from
mild to lethal disease [207]. During the period 2002–2004, an outbreak of a new disease of
severe acute respiratory syndrome (SARS) involving more than 8000 people with 774 deaths
caused by coronavirus was reported in 29 countries [208]. Another outbreak linked with a
different coronavirus, Middle East respiratory syndrome coronavirus (MERS-CoV), was
first identified in 2012 in the Middle East region and expanded to reach 27 countries where
it infected more than 2600 individuals and caused 880 deaths [209].

The global coronavirus 2019 (COVID-19) pandemic caused by severe acute respira-
tory syndrome coronavirus 2 (SARS-CoV-2) has diseased > 772 million individuals with
6.99 million deaths [210].

Several studies showed that coronaviruses can persist on different foods types such
as milk, fresh produce (blueberries, strawberries, apples, avocado shells and pulp, grapes,
mushrooms, spinach, and tomatoes), seafood (salmon, oyster and shrimp), ready-to-eat
deli food products (cheese, salami and roasted turkey), and meat and poultry products
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(chicken, beef, plant-based meat alternative and pork) during storage in refrigerators (4 ◦C)
and freezers (−10 to −80 ◦C) [211–218]. Coronaviruses may also persist on stainless steel
and plastic food contact surfaces for up to 72 h [217,218]. In another study, SARS-CoV-2
persisted on plastic wrap, fruit wax, and cardboard takeout container surfaces kept for 7 d
at 4 or 20 ◦C and a relative humidity of 30–70%. However, the half-life for the infectious
virus was ~24 h at 4 ◦C and ~8 h at 20 ◦C on all surfaces tested. In addition, the genomic
material of SARS-CoV-2 was detected at both temperatures up to 7 d with negligible to no
loss compared to the initial inoculum [219].

Furthermore, it was suggested that SARS-CoV-2 identified in frozen food products and
food packaging may be capable of initiating illnesses after the cold-chain distribution of
contaminated food products [220,221]. In a large survey in China, SARS-CoV-2 was detected
in 1455 frozen food-related samples (1398 samples of foods/food packaging and 52 samples
of storage environments) out of the 55.83 million samples collected [222]. However, SARS-
CoV-2 was only detected in one sample (automated teller machine) out of 2055 surfaces
in public spaces and food surfaces in Lima, Peru [223]. Furthermore, SARS-CoV-2 was
not detected in 9354 cold-chain food-related environmental samples (4708 dining utensils,
1933 supermarket environment, 1543 food freezers or fish tanks, 1032 fire or sewer hydrants,
and 138 clothing batches of food workers) collected in Xiangyang in China. Meanwhile, the
virus was extracted from two samples among 23,187 various cold-chain foods (13,859 meats,
3483 seafoods, 1046 fruits, 2973 fresh water samples, 164 vegetables, and 1661 refrigerated
drinks) sold in different business premises [224]. In another work, 957 surface samples at
food retail stores in Ontario, Canada were negative for SARS-CoV-2 [225]. These viruses
are zoonotic pathogens that can be spread from animals to humans. Although WHO,
USFDA, and EFSA suggested that food products are unlikely to serve as sources or routes
of SARS-CoV-2 transmission and currently there is no evidence that food products are
associated with COVID-19 illnesses, some reports indicated that foods contaminated with
these viruses have the potential to cause illnesses [211,212].

4. Viral Foodborne Outbreaks and Illnesses

In recent years, many viral foodborne outbreaks have been documented worldwide.
According to the U.S. Food and Drug administration (FDA), an outbreak occurs when
two or more people eat or drink the same contaminated food or water, respectively. In
general, viruses have low infectious doses with around 100 infectious viral particles or
fewer able to cause disease. In addition, their level of virulence can lead to large outbreaks
in a relatively short time. These make viral foodborne illness outbreaks very different
from bacterial outbreaks, although with foodborne viruses the mortality rate is lower than
with bacteria including Listeria monocytogenes, hemorrhagic Escherichia coli, and Clostridium
botulinum [226,227].

Epidemiological outbreak reports in the last decade have indicated that enteric viruses,
particularly noroviruses, were the foremost cause of foodborne illness in developed re-
gions [228–230]. Other enteric viruses, including rotavirus, hepatitis E virus, sapovirus,
astrovirus, adenovirus and hepatitis A virus were also linked to foodborne illnesses, and
they can be transmitted via contaminated foods [138,229].

Scallan et al. (2011) expected that viruses are responsible for about 59% of foodborne
cases in the US. According to CDC data during 1970–2020, 57,649 foodborne outbreaks
with more than 2 million illnesses and 2205 deaths were reported in the US. Viruses were
responsible for 28,214 (49%) outbreaks involving 0.92 million (45%) illnesses with 990
(45%) deaths [2]. Furthermore, viruses were responsible for 55, 68, 35 and 54% of the
total outbreaks, illnesses, hospitalizations and deaths, respectively, that occurred during
2010–2020 (Figure 1). Among viral outbreaks, norovirus was linked to 27,621 outbreaks
with 0.9 million illnesses and 957 deaths, followed by sapovirus (199 outbreaks with
8172 illnesses and 3 deaths), rotavirus (199 outbreaks with 6237 illnesses and 20 deaths),
and viral hepatitis (143 outbreaks with 3945 illnesses and 11 deaths). Adenovirus, astrovirus,
and other viruses were also linked to outbreaks (Table 2).
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Figure 1. Percentages of viral outbreaks, illnesses, hospitalizations and deaths reported in the US during 1970–2020 (data extracted from CDC, 2022) [228].
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Table 2. Numbers of outbreaks, illnesses, hospitalizations and deaths associated with viruses spread
by water, food, person-to-person contact, environmental sources, animal contact and unknown
sources in the US from 1971–2022.

Foodborne Virus Contamination Route Outbreaks Illnesses Hospitalizations Deaths

Norovirus

Foodborne 6662 164,740 1664 17
Waterborne 130 21,341 77 1

Person-to-person 18,996 663,775 9652 887
Environmental contact 58 2679 20 1

Animal contact 0 0 0 0
Unknown 1775 46,162 753 51

Viral Hepatitis

Foodborne 109 3051 479 11
Waterborne 34 894 17 0

Person-to-person 0 0 0 0
Environmental contact 0 0 0 0

Animal contact 0 0 0 0
Unknown 0 0 0 0

Rotavirus

Foodborne 17 449 7 7
Waterborne 1 1761 0 0

Person-to-person 156 3515 125 11
Environmental contact 0 0 0 0

Animal contact
Unknown 25 512 10 2

Adenovirus

Foodborne 2 11 0 0
Waterborne 4 708 1 0

Person-to-person 16 350 29 3
Environmental contact 0 0 0 0

Animal contact 0 0 0 0
Unknown 3 36 0 0

Astrovirus

Foodborne 3 49 1 0
Waterborne 0 0 0 0

Person-to-person 25 1505 7 0
Environmental contact 0 0 0 0

Animal contact 0 0 0 0
Unknown 5 80 0 0

Sapovirus

Foodborne 20 294 3 0
Waterborne 0 0 0 0

Person-to-person 157 6926 26 2
Environmental contact 0 0 0 0

Animal contact 0 0 0 0
Unknown 22 952 7 1

Other viruses

Foodborne 103 3049 24 0
Waterborne 1 36 0 0

Person-to-person 0 0 0 0
Environmental contact 0 0 0 0

Animal contact 0 0 0 0
Unknown 0 0 0 0

Unknown viruses

Foodborne 0 0 0 0
Waterborne 3 7 0 0

Person-to-person 0 0 0 0
Environmental contact 0 0 0 0

Animal contact 0 0 0 0
Unknown 0 0 0 0

Data extracted from National Outbreak Reporting System (NORS) Dashboard [231]. NORS includes data starting
in 1971 for waterborne outbreaks, 1998 for foodborne outbreaks, and 2009 for other types of outbreaks.

In Canada, norovirus is recognized as the pathogen that caused most hospitalizations
and was the second highest cause of deaths [232,233]. In 2021, about 4005 foodborne
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illness outbreaks were reported in the European Union (EU), with norovirus and other
caliciviruses being the third most regularly documented agent causing foodborne outbreaks.
These viruses were the foremost causative agents in Sweden, Finland, Denmark, Latvia,
Czechia, and Belgium. France attributed 112 (43.6%) outbreaks to norovirus and other
caliciviruses. Furthermore, norovirus and other calicivirus were the most frequent agents
linked to foodborne outbreaks associated with crustaceans, shellfish, mollusks and other
fish products in the EU [234]. Hashemi et al. (2023) reported that the incidence rates of
norovirus foodborne illnesses ranged from 418–9,200,000 in the US and Europe and from
11–2643 cases in Asia [235].

Norovirus is the leading cause of acute gastroenteritis outbreaks and has the highest
illnesses burden in many countries including the US, Australia, the UK, the Netherlands,
New Zealand, and France [2,34,232,236–238]. It is estimated that one in five acute gas-
troenteritis cases is infected with norovirus, and this represents a total of 685 million cases.
Children aged < 5 years account for about 200 million cases, which means noroviruses
cause approximately 50,000 deaths in children each year, commonly in developing na-
tions. However, norovirus illness happens in both developed and developing countries,
where together it is expected that the global cost of these illnesses is USD 60 billion due
to lost productivity and healthcare needs [239]. There are differences in the seasonal and
geographical occurrence of norovirus. Outbreaks occur more commonly in cold winter
months, with the peaks occurring from November to April in above-equator countries,
and May to September for below-equator countries [239]. Mattison et al. (2021) found that
123 rotavirus, 107 sapovirus, 10 astrovirus, and 4 adenovirus gastroenteritis outbreaks were
reported in the US during 2009–2018 [240].

In the United Kingdom (UK), it is thought that around 380,000 cases of norovirus are
linked to food, annually [69]. Furthermore, in Europe and European Free Trade Association
(EFTA) countries, it is estimated that noroviruses cause nearly 200,000 hospitalizations
every year [241]. In contrast to the US and other western countries, norovirus is rarely
implicated in foodborne outbreaks in the Middle East–North Africa (MENA) region, but it
is clearly present in Egypt [242]. In contrast, Kreidieh et al. (2017) reported that norovirus is
an important causative agent for acute gastroenteritis among all age groups in the MENA
region, but many outbreaks and cases are under-investigated and under-reported [243].
In most cases, and in order to accurately identify norovirus outbreaks, it is important
to have detailed virological analyses of stool samples and epidemiological analyses of
patients [244,245]. The laboratory testing of norovirus must focus on detecting its genetic
material (viral RNA) or its viral antigens [246].

A large norovirus outbreak involving 176 cases linked to the consumption of raw
oysters from British Columbia, Canada, was reported in 2018 [247]. Raw oysters also from
the same source were recently linked to an international norovirus outbreak with 192 ill-
nesses after oysters were distributed to restaurants and retailers in multiple states in the US
and provinces in Canada [248]. Another outbreak with 60 cases of gastrointestinal illness
occurred in Canada in 2022 due to the consumption of spot prawns contaminated with
norovirus [233]. The Public Health Agency of Canada also investigated a large norovirus
outbreak involving 339 cases associated with raw oysters from British Columbia [233]. A
norovirus outbreak occurred among guests at a wedding reception in Salzburg, Austria,
and it was linked to the consumption of a mushroom dish. Investigations showed that
kitchen workers and guests were positive for norovirus. It was also reported that the
employee and kitchen staff restroom lacked functional hand hygiene facilities [249].

Hepatitis A infection is common and frequently contributes to a more severe and
prolonged epidemic, making up 2–7% of the total disease load [10]. Hepatitis A virus
infection has been linked to the ingesting of contaminated raw or undercooked shellfish,
ready-to-eat foods, fresh fruits and vegetables, and water [47,155,160]. A large outbreak
of hepatitis A illness with over 310,000 cases including more than 8000 hospitalizations
and 47 deaths happened in 1988 in Shanghai, China, and was linked to the eating of raw
clams after contact with contaminated hands [250]. In 2003, another large hepatitis A
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illness outbreak was identified among guests of a single restaurant in Pennsylvania, US,
arising from contaminated green onions. The outbreak resulted in 601 identified illnesses
including three deaths and at least 124 hospitalizations [251]. In 2013, an outbreak included
about 160 individuals infected with hepatitis A virus, and 69 people were hospitalized
after the consumption of a frozen berry mix containing contaminated fruits from the US,
Chile, Turkey and Argentina [252]. Recently, a multistate outbreak involving 19 hepatitis
A virus illnesses linked to fresh, organic strawberries was reported in four states [253]. In
2023, a hepatitis A outbreak occurred with nine illnesses due to the consumption of frozen
organic strawberries [254]. In Canada, an outbreak with 10 cases of hepatitis A illness was
reported in 2022 due to the consumption of imported fresh organic strawberries. Another
outbreak with three cases of hepatitis A was described in 2021 and was associated with
frozen mangoes [233].

Hepatitis E disease is considered an important public health concern in many parts
of the world [255]. The WHO estimated that there are around 20 million cases of hepatitis
E viral infections annually with 44,000 deaths, and these are associated primarily with
contaminated water use, most commonly in eastern and southern Asia [153]. Hepatitis E
virus infections occur worldwide but are common in low- and middle-income countries,
due to limited water supplies, poor environmental sanitation, and inadequate hygiene
practices and health services [153]. In the UK in 2008, a hepatitis E virus outbreak occurred
among passengers during a three-month world cruise, and the investigations showed that
three factors including gender, age and shellfish consumption were linked with confirmed
acute hepatitis E infection in four passengers. The investigations also revealed that 195
of 789 were seropositive and another 33 had elevated IgM levels, indicating that they
had experienced a recent infection [256]. In China in 2018, a hepatitis E outbreak with
41 illnesses occurred due to the consumption of undercooked pig liver [257].

In the US, 123 rotavirus, 107 sapovirus, 10 astrovirus, and four adenovirus gas-
troenteritis outbreaks were reported to the National Outbreak Reporting System during
2009–2018 [240]. It is estimated that rotaviruses cause up to one million cases of foodborne
illnesses with 15,433 cases of gastroenteritis and 34 hospitalizations in the US and are
responsible for a burden of USD 18 million in direct healthcare costs and lost productiv-
ity [83]. An outbreak with 108 cases occurred among college students at a Washington
DC university campus in 2000 associated with eating deli sandwiches from the university
dining hall. Stool specimens were collected from students and dining hall employees, then
samples were screened for bacterial, parasitic, and viral pathogens. The specimens tested
were negative for any bacterial and parasitic pathogens, but were positive for group A
rotavirus [258].

Outbreaks of sapoviruses may occur in environments that include narrowed locations,
for example: nursing homes and cruise ships [100]. In 2010, an outbreak of gastroenteritis
associated with sapovirus happened in Gifu, Mie, and Aichi Prefectures in Japan. The out-
break was linked to the consumption of a lunch box prepared and delivered by a catering
company. A total of 655 individuals of the 3827 served developed gastrointestinal symp-
toms [106]. Another sapovirus outbreak with a total of 279 cases was reported in different
branches of a childcare and education facility chain in Gauteng Province, South Africa in
2018, and it was suggested that the source of the virus was the catered food [259]. In one
study, it was found that sapoviruses were responsible for about 4% of acute gastroenteritis
outbreaks in Europe [96]. Sapovirus was detected in 8% of 2545 stool samples from acute
gastroenteritis patients in Valencia, Spain between 2018 and 2020, and most sapovirus
positive samples belonged to infants and children aged < 3 years [96]. Selected worldwide
viral foodborne outbreaks reported in the last two decades are presented in Table 3.



Life 2024, 14, 190 21 of 36

Table 3. Selected worldwide norovirus and hepatitis A virus foodborne outbreaks in the period
2002–2022.

Virus Year Country Food item Illnesses Hospitalizations Deaths Reference

Hepatitis A
virus

2002 New Zealand Raw blueberries 81 18 1 [260]
2003 USA Green onions 601 124 3 [251]
2009 Australia Semi-dried tomatoes 562 253 1 [261]
2010 France Semi-dried tomatoes 59 28 0 [262]
2010 Netherlands Semi-dried tomatoes 13 0 0 [263]

2012 Canada Frozen pomegranate
arils 9 0 0 [264]

2012 Germany Bakery products 83 ND ND [265]

2013 10 European
countries

Frozen blackberries
and redcurrants 1444 ND 0 [266]

2013 USA Pomegranate seeds 165 71 0 [267]
2016 USA Frozen strawberries 143 56 0 [268]
2016 USA Raw scallops 292 74 0 [269]

2018 Australia Frozen pomegranate
arils 30 25 1 [270]

2018 Australia,
Sweden Frozen berries 34 ND ND [271]

2020 China Shellfish 110 ND ND [272]
2021 Canada Frozen mangoes 3 2 0 [273]
2022 New Zealand Raw blueberries 32 14 0 [274]

2022 USA Fresh organic
strawberries 19 13 0 [253]

2022 Canada Fresh organic
strawberries 9 0 [233]

2023 USA Frozen organic
strawberries 9 3 0 [254]

Norovirus

2002 Italy Raw mussels 103 ND ND [275]
2005 Denmark Frozen raspberries 400 23 0 [276]
2006 Sweden Frozen raspberries 12 ND ND [277]
2009 Finland Frozen raspberries 46 ND ND [278]
2010 Denmark Lettuce 264 ND ND [279]
2012 Germany Frozen strawberries 11,000 38 ND [280]
2016 USA Unknown 45 0 0 [231]
2018 USA Oysters 100 1 0 [231]
2018 USA Raw oysters 16 2 0 [231]
2018 Canada Raw oysters 176 ND 0 [247]
2022 USA Raw oysters 192 ND 0 [248]
2022 Canada Spot prawns 60 ND 0 [233]
2022 Canada Raw oysters 339 ND 0 [233]

ND: not determined.

Seasonal variation is a recognized feature of many viral outbreaks and illnesses.
However, the mechanisms underlying seasonality are still not fully understood. It appears
that the persistence of viruses and host susceptibility may be enhanced at cold temperatures,
and this likely contributes to the high numbers of viral outbreaks and illnesses during
wintertime [281]. Sorensen et al. (2021) detected the presence of different viruses in
groundwater-derived public water systems using quantitative polymerase chain reaction
(qPCR) or reverse transcriptase qPCR (RT-qPCR) and found that the enteric viruses were
most prevalent during November and January. Noroviruses and rotavirus are mainly
responsible for viral illnesses in winter months, whereas hepatitis viruses cause illnesses
during the year, with the greatest illnesses occurring in the summer semester (June to
August) [282]. The monthly patterns of viral outbreaks reported in the US during 1970–
2020 are represented in Figure 2.
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Figure 2. The monthly pattern of viral outbreaks reported in the US during 1970–2020 (data extracted from National Outbreak Reporting System (NORS)
dashboard [228].
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Viruses are usually difficult to detect in food [245] because of the need to use a number
of steps including virus extraction, the purification of the viral genomic material, and
molecular detection. However, the detection of viruses has undergone a remarkable evolu-
tion due to reverse transcription-polymerase chain reaction (RT-PCR) technology [246,283].
RT-PCR is considered the method of choice for the virological analysis of food and water
due to the small number of viruses usually present [284,285]. In addition, these low viral
numbers may not be uniformly distributed, and some of the components in the food matrix
may be potent inhibitors of traditional detection assays [11,33]. Typically, water, foods, or
food surface samples are treated to concentrate the virus. Then, the nucleic acid is extracted
and different types of PCR like monoplex RTqPCR, viability PCR, multiplex RTqPCR,
digital RTdPCR and next generation gene sequencing are performed [33]. Such molecular
techniques, while potentially very sensitive, do not provide information about whether the
virus detected is infectious and thus capable of causing disease. The determination of infec-
tious viruses requires other types of assays that are capable of detecting viral replication
(i.e., TCID50 assays, plaque assays, focus-forming assays, cytopathology induction), all of
which also could be interfered with by inhibitors in the food matrix.

5. The Control of Foodborne Viruses in Food Chains

Viruses present in the surrounding environment are progressively documented as
a source of disease in all ages. The viruses with the most shared causes of disease being
environmental contact are norovirus, hepatitis A virus, adenovirus, rotaviruses, hepatitis E
virus, astrovirus, and sapovirus. Most ways these viruses become harmful to humans are
via human or animal feces, sewage, or organic waste decomposition. The mismanagement
of farm waste disposal can contribute where the decomposition of exposed food and crops
may contaminate water sources through rain. In addition, the illegal slaughter of animals
where unacceptable sanitizing or inadequate hygienic standards are used increases the risk
of transmitting viruses of animal origin [46].

Most recognized outbreaks of foodborne viruses can be linked to foods that have been
handled manually by a diseased food handler, rather than to foods processed industri-
ally [228]. Emphasis should be placed on exercising good agricultural and manufacturing
practices to prevent viruses from being transferred from raw materials to retail products.
Bivalve shellfish should not be eaten raw or undercooked [47]. If viruses exist in food
products after processing treatments, they remain contagious in most situations and in
many foods for numerous weeks or days, especially if kept at or near 4 ◦C [125]. A variety
of methods that are used against viruses and their effectiveness follow:

• Heat treatment: cooking or processing food at high temperatures can inactivate most
viruses. It has been found that foodborne viruses including hepatitis A virus, norovirus,
and hepatitis E virus in foods were efficiently inactivated by heat [286];

• Radiation: ionizing radiation can be used to inactivate all types of viruses in food. The
US FDA approved the use of 4 kGy irradiation, which reduces viruses by about 1.0 log.
Therefore, higher levels would be required to deliver control over greater quantities of
viral contamination [11,16].;

• High pressure processing (HPP): the HPP treatment of foods involves treating pack-
aged samples suspended in liquid with pressure which is rapidly released. It was
found that HPP is very effective for inactivating food viruses [14];

• UV light: this technology alters the genetic material and the proteins of viruses. UV
treatment is an effective method for inactivating viruses on foods or food-processing
surfaces. The method is most effective in water and high aw foods [13];

• Cold plasma: cold plasma can be created by the application of an electric field to
gases like helium, nitrogen, oxygen, argon, or their mixtures, which are partially
or completely ionized to form reactive chemical species. Cold plasma successfully
inactivated foodborne viruses including hepatitis A virus and norovirus without
affecting the quality attributes of foods. This new option has significant potential
value for use in the food industry [15,287];
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• Pulsed Electric Field (PEF): PEF is a technique that generates a short time electrical
treatment by using a pulse electric field. Although few studies have investigated
the inhibitory effect of PEF against foodborne viruses, this technology may have the
potential to be applied in a variety of foods [12];

• Sanitizers: sanitizers including chlorine, hydrogen peroxide and ozone showed sig-
nificant efficiency in the viral decontamination of fresh produce. However, activity
depended on the sanitizer type and concentration, food item, type of virus, inoculation
level, and method used for decontamination [11];

• Lactic acid bacteria: Fermenting foods with lactic acid bacteria can create an acidic
environment and may produce antiviral bacteriocins that could potentially be used as
food additives that are hostile to viruses [288].

It is important to note that the above treatments inactivate viruses; that is, they
decrease their infectivity without necessarily decreasing their genetic material. Therefore,
monitoring virus inactivation by molecular techniques would not accurately measure
infectivity and could lead to erroneous conclusions that the inactivation method(s) did
not work. It is essential to distinguish between virus removal and virus inactivation, and
this is very critical in approving the accurate steps and identifying the affecting factors
that may enhance the activity of the target method to reduce the infectivity of viruses.
Generally, the removal or inactivation processes of viruses should remove or inactivate the
viruses’ infectivity to a greater extent than the levels of viruses in the starting materials, thus
yielding safe food products [179]. With viral infections from organisms like norovirus being
very common, it is prudent to prevent the contamination of the food with these viruses in
the processing chain by applying strict hygienic practices. Food handlers contacting people
suffering from gastroenteritis such as children are at high risk of becoming soiled and of
spreading the viruses during the manufacturing of the food products. The food handlers
should be conscious of practicing good personal hygiene. Increasing the consciousness of
food handlers to prevent the spread of the enteric virus (often involving oral discharge) is
necessary, with exceptional highlighting of the “silent” risk of asymptomatic ill people and
virus carriers (who shed viruses after recovery) [228].

Since the potential for very large numbers of cases of viral foodborne illness occurs
with each outbreak event, the adoption of strategies for the prevention and control of
foodborne viral contamination is prudent [228,289]. These strategies include the following:

• Cleaning and disinfecting regular environmental surfaces touched by various individ-
uals. The proper washing of vegetables and fruits should occur before consumption.
Only potable water should contact food. Sources of water must be protected from all
types of untreated wastewater contamination;

• Increasing the awareness of safety issues regarding foodborne viruses among workers
at different stages of responsibility in the supply chain;

• Emphasizing good hand washing with appropriate sanitizers located near the sink.
Food preparation equipment and surfaces must be disinfected regularly. Hand wash-
ing with soap and maintaining good sanitary hygiene will certainly help in reducing
viral contamination [290];

• Reinforcing strict personal hygiene practices for everyone since symptomatic, colo-
nized or asymptomatic individuals can transmit pathogens.

• Displaying clearly visible signs accompanied by frequent verbal and written reminders
for food handlers to frequently wash hands after visiting the toilet and before consum-
ing foods.

• Educating food workers and handlers about gastrointestinal illness symptoms;
• Educating the public at large about microbial safety guidelines and hygiene rules;
• Workers who are sick should not be allowed to handle the equipment involved in food

processing. Employees must be made aware that at the beginning of gastrointestinal
illness symptoms, it is necessity to stop working, and only re-continue work after
symptoms ceased after at least 2 days;
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• Retailers, distributers, and manufacturers must have an effective system in place for
appropriate recalls and enhanced trace-back systems for assumed contaminated water
or foods;

• Developing precise interventions for reducing the frequency of viral foodborne illness
outbreaks by focusing on shellfish, produce, and food workers;

• Facilitating improvement in viral diagnostics, including the development of efficient,
rapid and sensitive viral detection methods;

• Developing specific, effective viral vaccines, and antiviral sanitizers and drugs;
• Developing efficient cell culture systems and robust animal models for the recovery

and identification of human foodborne viral agents.

6. Conclusions

Foodborne viruses constitute the leading cause of foodborne illnesses worldwide,
which result in hefty public health and economic burdens. Foodborne viral infections
including rotavirus, hepatitis A, norovirus, and E viruses, adenovirus, astrovirus, and
sapovirus are considered major contributors to foodborne illness. with the noroviruses
contributing the majority of acute gastroenteritis illnesses in humans worldwide.

Viruses can be transmitted easily via the fecal–oral mode to contaminate water, food,
and food-contact surfaces. Infected food handlers serve as a major portal for the entry
of viruses into the food system. During epidemiological studies, the improper handling
of food is more frequently identified as being responsible for spreading viruses than
properly processed food. The incidence of norovirus outbreaks is more predominant in the
cold winter season, whereas hepatitis (A and E) outbreaks are more common in summer.
Hepatitis A and E viruses are quite resistant to heating, freezing, irradiation and chemical
preservation approaches. Ebola virus, on the other hand, is an example of a virus that may
be transmitted through the consumption of exotic meats of wild animals and by contact
with infected persons. Therefore, the consumption of such meats is not recommended.

Although viruses cannot multiply in food or water, they can persist for days and
even weeks in the food chain. Hence, control strategies are needed to preclude their
persistence and infectivity. Strict hygienic practices such as conscientious hand washing
and preventing infected individuals from coming into close proximity with prepared food,
washing fruits and vegetables before preparation and consumption, plus cleaning and
disinfecting surfaces are crucial interventions that limit the presence of viruses in food.
Adequate food heating, vaccination against hepatitis A and E viruses and rotaviruses,
avoiding the consumption of foods treated with contaminated water and avoiding eating
minimally processed and exotic meats are other vital measures to prevent viral foodborne
illnesses. The chlorination of water used in washing food contact surfaces, plus its use
for washing fresh produce and in swimming pools, are effective approaches to control
waterborne viruses.
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