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Abstract: Structural atherosclerosis, as evaluated by carotid intima-media thickness (CIMT), is
reported to be positively associated with hypertension. However, angiogenesis, which plays an
important role in the progression of structural atherosclerosis, prevents hypertension by reducing
peripheral vascular resistance. These associations evoke a contradiction: characteristics associated
with the progression of structural atherosclerosis, which is related to hypertension, might prevent
hypertension. To clarify novel mechanisms underlying the association between structural atheroscle-
rosis and hypertension, multifaceted analyses are necessary. We performed several epidemiological
studies based on this concept. This study summarizes those epidemiological studies and adds some
discussion. Studies focusing on circulating CD34-positive cells, single-nucleotide polymorphisms
(SNPs) of vascular endothelial growth factor (VEGF), SNPs in BRACA1-associated protein (BRAP),
platelets, human T-cell leukemia virus type 1 (HTLV-1), and SNPs in aldehyde dehydrogenase 2
(ALDH2) have shown that active endothelial repair, which leads to the progression of structural
atherosclerosis, helps prevent hypertension. These associations indicate that the progression of
structural atherosclerosis could act as a marker of angiogenesis, which reduces peripheral vascular
resistance. In general, a positive association between structural atherosclerosis and hypertension has
been reported. However, the progression of structural atherosclerosis could act as a marker of activity
that prevents hypertension via reductions in peripheral vascular resistance.
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1. Introduction

The development of structural atherosclerosis, as evaluated based on carotid-intima
media thickness (CIMT), is an established cardiovascular risk factor [1,2]. Increased CIMT
indicates a process of endothelial repair.

Aging is a process that increases the need for endothelial repair but reduces endothelial
repair activity. Thus, the absence of CIMT development does not always indicate a healthy
endothelium, which is why no significant associations between yearly progression of CIMT
and cardiovascular disease have been observed [3].

Angiogenesis is also necessary for structural atherosclerosis to develop [4]. The
inhibition of angiogenesis induces hypertension by increasing the peripheral vascular
resistance [5].

The development of structural atherosclerosis could indicate angiogenesis, which
contributes to lower peripheral blood pressure. Since angiogenesis reduces peripheral
blood pressure, the development of structural atherosclerosis could have a beneficial
influence on hypertension prevention.

However, a significant positive association between structural atherosclerosis and
hypertension has been reported [6]. Therefore, the positive association between hyperten-
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sion and structural atherosclerosis seems to be paradoxical. The progression of structural
atherosclerosis, which is positively associated with hypertension, also plays an important
role in hypertension prevention.

Oxidative stress, which induces both hypertension [7] and structural atherosclerosis [8],
increases with aging. Since the development of structural atherosclerosis and hypertension
are biological reactions to hypoxia and oxidative stress, the development of atherosclerosis
and hypertension should have a beneficial influence on the ability to perform activities of
daily living.

Based on this concept, we have conducted several epidemiological studies that focused
on circulating CD34-positive cell count, single-nucleotide polymorphisms (SNPs) of vas-
cular endothelial growth factor (VEGF), SNPs in BRACA1-associated protein (BRAP),
platelet count, human T-cell leukemia virus type 1 (HTLV-1), and SNPs in aldehyde
dehydrogenase 2 (ALDH2).

Here, we summarize our previous epidemiological studies and add some discussion
about a novel mechanism underlying endothelial maintenance.

2. Materials and Methods
2.1. Studies

To clarify a potential novel mechanism underlying endothelial repair, we conducted
several studies which provided us with multiple perspectives.

First, we focus on the cell type that directly contributes to endothelial repair. In
conjunction with platelets, CD34-positive cells contribute to the crucially important process
of endothelial repair by differentiating into endothelial cells [9], megakaryocytes [10],
foam cells, and macrophages [11]. Therefore, to investigate the role of circulating CD34-
positive cells in vascular remodeling, we have performed a circulating CD34-positive cell-
related survey. This survey was conducted as an addition to the annual health check-up
recommended by the Japanese government. The details of the survey have been described
elsewhere [12].

Second, because angiogenesis contributes to the development of structural atheroscle-
rosis [4], we focused on a VEGF, a genetic factor that contributes to angiogenesis. [13]. Since
VEGF polymorphism rs3025039 is reported to be inversely associated with serum VEGF
levels in healthy individuals [14], we also conducted epidemiological studies with data on
rs3025039 SNPs. The details of the survey have been described elsewhere [15].

Third, the majority of HTLV-1 carriers remain asymptomatic throughout their lives [16].
HTLV-1 infection enhances inflammation by promoting the NF-κB pathway [17]. Since the
activation of the NF-κB pathway promotes the production of platelet activation proteins [18]
and platelets play an important role in endothelial repair [9–11], HTLV-1 infection might
also influence the mechanism underlying endothelial repair. Several studies using data on
HTLV-1 infection were also conducted. The details of our surveys about HTLV-1 have been
described elsewhere [19].

In addition, ethanol exposure dramatically inhibits NF-κB [20] and directly attenuates
platelet activation [21]. Therefore, avoiding ethanol exposure might have the beneficial
effect of activating endothelial repair. ALDH2 is a key enzyme in alcohol metabolism which
relates to alcohol tolerance. Since ALDH2 gene polymorphisms are widely present in East
Asians [22,23], including Japanese individuals, ALDH2 might also contribute to endothelial
repair partly by avoiding ethanol exposure. We have also conducted a survey with data on
SNPs related to ALDH2 [23].

Participants of those epidemiological studies participated in an annual health check-
up in the city of Goto and the town of Saza. Both are located in Nagasaki Prefecture, in
western Japan. The city of Goto is located on a remote island. We evaluated cardio–ankle
vascular index (CAVI), SNPs, and HTLV-1 infection only in the city of Goto. The town of
Saza is a bedroom community adjacent to the city of Sasebo. CIMT was evaluated at both
study locations.
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These studies were approved by the ethics committee of the Nagasaki University
Graduate School of Biomedical Sciences (project registration numbers, 14051404-1 to
14051404-13). Written consent forms were made available to ensure that the participants
understood the objectives of the studies. Informed consent was obtained from all par-
ticipants. All procedures performed in this study were in accordance with the ethical
standards of the institutional research committee and the 1964 Declaration of Helsinki and
its later amendments.

2.2. Data Collection
2.2.1. General Measurements

Each participant’s medical history was ascertained by a specially trained interviewer.
An automatic body composition analyzer (BF-220; Tanita, Tokyo, Japan) was used to
calculate body mass index (BMI, kg/m2) after measuring height and weight. After at least
5 min of rest, blood pressure was measured in the sitting position using a blood pressure
device (HEM-907; Omron, Kyoto, Japan). Fasting blood samples were collected in an
EDTA-2K tube and a siliconized tube. High-density lipoprotein cholesterol (HDLc), low-
density lipoprotein cholesterol (LDLc), triglycerides, glycohemoglobin (HbA1c), aspartate
transaminase (AST), alanine aminotransferase (ALT), gamma-glutamyl transpeptidase
(γ-GTP), and serum creatinine were measured using standard procedures at SRL, Inc.
(Tokyo, Japan). As a marker of renal function, estimated glomerular filtration rate (eGFR)
was calculated with an established method adapted by a working group of the Japanese
Chronic Kidney Disease Initiative: eGFR (mL/min/1.73 m2) = 194 × (serum creatinine
(enzyme method))−1.094 × (age)−0.287 × (0.739 for women) [24].

2.2.2. Carotid Intima-Media Thickness (CIMT)

CIMT in the left and right common carotid arteries was measured using a LOGIQ Book
XP with a 10 MHz transducer (GE Healthcare, Milwaukee, WI, USA). Semi-automated
digital edge-detection software (Intimascope; MediaCross, Tokyo, Japan) [25] was used to
calculate mean and maximum left and right common CIMT values. This software semi-
automatically recognizes the edges of the internal and external membranes of the artery
and automatically determines distances at a sub-pixel level, estimated to be 0.01 mm [26].
In our epidemiological studies, structural atherosclerosis was defined as CIMT ≥ 1.1 mm.

2.2.3. Cardio–Ankle Vascular Index (CAVI)

Brachial–ankle pulse wave velocity (PWV) measurements are generally used to evalu-
ate functional arterial stiffness. Since PWV measurements can be strongly affected by blood
pressure [27], the cardio–ankle vascular index (CAVI) was recently developed in Japan to
avoid the confounding effects of blood pressure [28]. In the current studies, the CAVI was
determined using a VaSera VS-1000 vascular screening system (Fukuda Denshi, Tokyo,
Japan) with the participant resting in a supine position.

2.2.4. Measurement of Circulating CD34-Positive Cell Count

To measure CD34-positive cell count, blood samples were collected in heparin sodium
tubes. CD34-positive cells were measured in blood samples from the heparin sodium
tube within 24 h of sample collection using BD TrucountTM technology (Beckton Dickin-
son Biosciences, San Jose, CA, USA), an accurate and reproducible single-platform assay
cited in the International Society of Hematotherapy and Graft Engineering (ISHAGE)
guidelines [29] and supported by automated software in the BD FACSCanto II system.
Approximately 30 min is required to measure the circulating CD34-positive cell count for
each sample. Measurement of circulating CD34-positive cell count requires a fresh sample,
within 24 h of blood collection. Therefore, CD34-positive cell count can be measured in a
maximum of 20 samples each day. Thus, we limited the measurement of CD34-positive cell
count to men aged 60–69 years who participated in an annual health check-up.
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2.2.5. Genotyping of the Single-Nucleotide Polymorphisms (SNPs)

Genomic DNA was extracted from 2 mL of peripheral whole blood using Gene Prep
Star NA-480 (Kurabo Industries Ltd., Osaka, Japan). Genotyping of the SNPs rs3025039
(VEGF), rs3025020 (VEGF), rs3782886 (BRAP), and rs671 (ALDH2) was conducted us-
ing TaqMan assays and a LightCycler 480 thermal cycling platform (Roche Diagnostics,
Basel, Switzerland).

2.2.6. Detection of Human T-Cell Leukemia Virus 1 (HTLV-1) Infection

A chemiluminescent enzyme immunoassay (CLEIA) kit (Fujirebio Inc., Tokyo, Japan)
was used to detect HTLV-1 infection at SRL, Inc. Confirmatory tests for HTLV-1 were
not performed in this study. Therefore, detection of serum anti-HTLV-1 antibodies was
performed, but not detection of HTLV-1 viral DNA. However, we believe that the lack of
confirmatory testing for HTLV-1 infection had a limited effect. Our previous study that
involved real-time reverse transcription polymerase chain reaction with a hydrolysis probe
and Western blotting showed a low false-positive rate (1.2%) [30].

3. Results

To clarify a novel mechanism underlying endothelial repair, several epidemiological
studies based on data from the city of Goto and the town of Saza were performed. Parts of
those studies are described below.

3.1. CIMT and CAVI in Relation to Circulating CD34-Positive Cell Count (Figure 1)

A cross-sectional study with 249 men aged 60–69 years [31] revealed a significant
positive association between CIMT and CAVI only in individuals with high circulating
CD34-positive cell counts (Figure 1a,d). The multivariable standardized parameter estimate
[β] was 0.22 (p = 0.028) for individuals with high circulating CD34-positive cell counts
(median≤) and −0.02 (p = 0.865) for individuals with low circulating CD34-positieve cell
counts (<median). The study also revealed that logarithmic values of circulating CD34-
positive cell count are inversely associated with CAVI among those with low circulating
CD34-positive cell counts (β = −0.22, p = 0.014) but not among those with high ones
(β = −0.04, p = 0.638), (Figure 1e,b). In this study, platelet count was significantly positively
associated with circulating CD34-positive cell count only in those with low circulating
CD34-positive cell counts. The simple correlation coefficient (r) and p-value between
platelet count and circulating CD34-positive cell count in individuals with low and high
circulating CD34-positive cell counts were r = 0.23, p = 0.009 and r = −0.02, p = 0.848,
respectively (Figure 1f,c).

3.2. Gamma-Glutamyl Transpeptidase (γ-GTP), Structural Atherosclerosis, and Hypertension in
Relation to Circulating CD34-Positive Cell Count

A cross-sectional study with 562 men aged 60–69 years [6] revealed a significant
positive association between hypertension and structural atherosclerosis; the multivariable
odds ratio (OR) (95% confidence interval [CI]) with adjustment for known cardiovascular
risk factors (age, BMI, alcohol consumption, smoking status, systolic blood pressure, HDLc,
triglycerides, and HbA1c) was 2.09 (1.30, 3.35).

For individuals with high CD34-positive cell counts (≤median), γ-GTP was signifi-
cantly and positively associated with structural atherosclerosis (OR for the log-transformed
value of γ-GTP = 2.26 (1.32, 3.86)) but not with hypertension (OR = 0.77 (0.51, 1.17)).

Among those with low CD34-positive cell counts, γ-GTP was not significantly as-
sociated with structural atherosclerosis (OR = 0.92 (0.51, 1.68)) but was significantly and
positively associated with hypertension (OR = 1.99 (1.27, 3.12)).
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3.3. Vascular Endothelial Growth Factor (VEGF) Polymorphisms and Structural Atherosclerosis
among Hypertensive Elderly Individuals

VEGF contributes to the progression of angiogenesis [13]. In a cross-sectional study
with 1793 older hypertensive Japanese individuals aged 60–89 years [15], the minor al-
lele of polymorphism rs3025039, which was reported to be inversely associated with the
serum concentration of VEGF [14], was inversely associated with structural atherosclerosis,
independent of known confounders. Since the minor allele of polymorphism rs3025020
was positively associated with the serum concentration of VEGF [14], the fully adjusted
model for this analysis was adjusted for sex, age, rs3025020 genotype, BMI, drinking status,
smoking status, HDLc, triglycerides, and HbA1c. The fully adjusted OR (95% CI) for
structural atherosclerosis with the minor allele of rs3025039 was 0.78 (0.64, 0.96).

3.4. Platelets, Circulating CD34-Positive Cells, and CIMT by Hypertension Status (Figure 2)

A cross-sectional study with 567 men aged 60–69 years indicated that platelet count
is an indicator of endothelial repair activity and that the presence of hypertension might
mask the beneficial effects of circulating CD34-positive cells [32].

In individuals without hypertension, platelet count was not significantly correlated
with CIMT (β = −0.05, p = 0.356) (Figure 2d), but platelet count was significantly positively
correlated with the natural log of circulating CD34-positive cell count (β = 0.26, p < 0.001)
(Figure 2c).
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In individuals with hypertension, a significant positive correlation was seen between
platelet count and CIMT (β = 0.19, p = 0.008) (Figure 2b), whereas no significant correlation
was seen between platelet count and the natural log of circulating CD34-positive count
(β = 0.11, p = 0.119) (Figure 2a).

3.5. Platelets and Hypertension by Levels of Circulating CD34-Positive Cell Count

To clarify the association between platelet count and hypertension in relation to
levels of circulating CD34-positive cell count, a cross-sectional study with 580 Japanese
men aged 60–69 years was conducted [33]. Platelet count was positively associated with
hypertension among participants with a low CD34-positive cell count. After adjustment for
known cardiovascular risk factors (age, BMI, alcohol consumption, smoking status, HDLc,
HbA1c, triglycerides, AST, and estimated glomerular filtration rate (eGFR), lipid lowering
medication use, and glucose lowering medication use), the OR and 95% CI for hypertension
with each 1 standard deviation (SD) increment in platelet count (5.24 × 104/µL), was 1.47
(1.12, 1.91) among participants with a low CD34-positive cell count and 0.91 (0.71, 1.18)
among those with a high CD34-positive cell count.

3.6. HTLV-1, Structural Atherosclerosis, and Hypertension (Figure 3)

A cross-sectional study with 2989 Japanese individuals aged 60–99 years [19] found
HTLV-1 infection to be significantly inversely associated with hypertension only in individ-
uals with high platelet counts (≥second tertile) (Figure 3f,g). The fully adjusted (adjusted
for sex, age, BMI, HDLc, triglycerides, HbA1c, white blood cell count, and γ-GTP) ORs
and 95% CIs were 0.75 (0.62, 0.92) overall, 0.64 (0.50, 0.82) for high platelet counts, and 1.01
(0.72, 1.42) for low platelet counts (first tertile).
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Among non-hypertensive individuals, platelet count was significantly positively
associated with structural atherosclerosis among those with HTLV-1 infection but not
among those without HTLV-1 infection (Figure 3c,b). The ORs (95% CIs) for structural
atherosclerosis with each 1 SD increment in platelet count were 1.44 (1.05, 1.97) for those
with HTLV-1 infection and 1.06 (0.88, 1.28) for those without HTLV-1 infection.

Furthermore, among non-hypertensive individuals, HTLV-1 infection was significantly
positively associated with structural atherosclerosis in individuals in the highest platelet
count tertile (2.11 [1.15, 3.86]), but not in those with low platelet count (first or second
platelet count tertiles) (0.89 [0.57, 1.39]) (Figure 3d,e).

In addition, among non-hypertensive individuals, those with HTLV-1 infection had sig-
nificantly higher platelet counts (p = 0.006) than those without HTLV-1 infection (Figure 3a).
The sex- and age-adjusted values (least mean square ± standard error (SE)) for platelet
count were 23.1 ± 0.4 (×104/µL) for those with HTLV-1 infection and 21.8 ± 0.2 (×104/µL)
for those without HTLV-1 infection.

3.7. Reticulocytes, Hypertension, and Structural Atherosclerosis (Figure 4)

A cross-sectional study with 2098 elderly individuals aged 60–89 years revealed that
reticulocyte count is significantly positively associated with hypertension and inversely
associated with structural atherosclerosis [34]. In a fully adjusted model for the analysis
between reticulocytes and hypertension, sex, age, BMI, HDLc, triglycerides, HbA1c, γ-GTP,
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white blood cell count, and eGFR were regarded as confounders. Systolic blood pressure
was further adjusted for the analysis between reticulocytes and atherosclerosis. After
adjusting for known confounders, the ORs (95% CIs) for hypertension and atherosclerosis
with each 1 SD increment in reticulocyte count were 1.12 (1.01, 1.25) and 0.83 (0.72, 0.94),
respectively (Figure 4a,c). This study also showed a significant positive association between
hypertension and structural atherosclerosis. The fully adjusted (adjusted for sex, age, BMI,
HDLc, triglycerides, HbA1c, γ-GTP, white blood cell count, and eGFR) OR (95% CI) for
structural atherosclerosis and hypertension was 1.34 (1.03, 1.74) (Figure 4b).
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3.8. Hemoglobin and Hypertension

A cross-sectional study with 3203 individuals aged 30–79 years without anemia
showed a positive association between hemoglobin levels and hypertension. For each
1 SD increment in hemoglobin, the OR (95% CI) for hypertension was 1.21 (1.05, 1.40) for
men and 1.25 (1.13, 1.39) for women after adjusting for known cardiovascular risk factors
(age, BMI, smoking status, drinking status, history of cardiovascular disease, diabetes,
triglycerides, ALT, γ-GTP, and eGFR) [35].

3.9. Hemoglobin and Hypertension by Platelet Count (Figure 5)

A cross-sectional study with 222 Japanese men aged 60–69 years was conducted to clar-
ify the influence of platelets on the association between hemoglobin and hypertension [36].
The positive association between hemoglobin levels and hypertension was limited to indi-
viduals with lower platelet count (at or under the median value) (Figure 5a,c). The adjusted
OR and 95% CI for hypertension with each 1 SD increment in hemoglobin (1.0 g/dL) was
2.09 (1.26, 3.48) for those with a lower platelet count and 1.07 (0.68, 1.67) for those with a
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higher platelet count. Among men with a lower platelet count, no significant correlations
between hemoglobin and circulating CD34-positive cell count were observed (β = −0.06,
p = 0.603) (Figure 5d), but a significant positive correlation was observed for participants
with a higher platelet count (β = 0.29, p = 0.004) (Figure 5b).
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3.10. BRAP rs3782886 and Platelet Count in Relation to Hypertension (Figure 6)

To clarify the association between SNP rs3782886 in BRAP and hypertension-related
high platelet count, a cross-sectional study with 988 Japanese individuals aged 60–89 years
was conducted [37].

High platelet count was defined as being the highest platelet count tertile. High platelet
count was found to be independently positively associated with hypertension (Figure 6a),
while rs3782886 was independently associated with high platelet count (Figure 6b). After
adjusting for classical cardiovascular risk factors, the OR and 95% CI for high platelet count
and hypertension was 1.34 (1.02, 1.77). With the non-minor homo (A/A, A/G) of rs3782886
as the reference group, the adjusted OR and 95% CI for high platelet count and minor homo
(G/G) was 2.40 (1.30, 4.42).

This study also revealed no significant associations between BRAP rs3782886 and
hypertension (Figure 6c). With non-minor homo as the reference group, the adjusted OR
and 95% CI for hypertension and minor homo was 1.08 (0.60, 1.98).
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3.11. Potential Mechanism Underlying the Association between SNP (BRAP and ALDH2) and
Hypertension (Figure 7)

A multifaceted analysis was performed with a simple model of elderly individuals
in the general population that included 1313 Japanese individuals aged 60–98 years [23].
Both platelet count and reticulocyte count were revealed to be positively associated with
hypertension; after adjusting for known cardiovascular risk factors, the ORs (95% CIs) for
hypertension and 1 SD increments in platelet count and reticulocyte count were 1.22 (1.08,
1.38) and 1.19 (1.03, 1.36), respectively (Figure 7a,b).

Participants were stratified by the median reticulocyte count. Strong linkage disequi-
librium (LD) values have been reported between rs3782886 and rs671 [38]. The simple
correlation coefficient (r) between the number of minor alleles of rs671 and rs3782886 was
0.94 (p < 0.001) for men and women (Figure 7c).

Although no significant correlations between the number of minor alleles of rs3782886
and platelet count were observed among participants with low reticulocyte counts (p = 0.480),
platelet count was significantly positively correlated with minor allele of rs3782886 among
those with high reticulocyte counts (p = 0.005) (Figure 7d). Regarding reticulocyte count, for
both individuals with high (p = 0.407) and low reticulocyte counts (p = 0.790), no significant
correlations were observed between the minor allele of rs3782886 and reticulocyte count
(Figure 7f).
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For both rs3782886 and rs671, the number of minor alleles was significantly positively
associated with never drinker status; the age-adjusted OR (95% CI) for never drinker status
and the number of minor alleles of rs3782886 was 5.20 (3.63, 7.45) for men and 3.01 (2.06,
4.39) for women. For rs671, the corresponding values were 5.47 (3.78, 7.92) for men and
3.49 (2.32, 5.25) for women (Figure 7h).

Platelet count was significantly higher in never drinkers than in non-never drinkers
only among participants with high reticulocyte counts (Figure 7g). The sex-adjusted platelet
count (mean ± standard error (8 × 104/µL)) was 23.1 ± 0.3 for never drinkers (n = 369) and
22.2 ± 0.3 for non-never drinkers (n = 288) (p = 0.046). Among the participants with low
reticulocyte counts, no significant associations were observed between sex-adjusted platelet
count and drinking status (p = 0.444). The sex-adjusted platelet count was 22.7 ± 0.3 for
never drinkers (n = 425) and 22.3 ± 0.4 for non-never drinkers (n = 231).

Independent of known cardiovascular risk factors, the minor alleles of rs3782886 and
rs671 were significantly inversely associated with hypertension in participants with high
reticulocytes counts. The fully adjusted OR (95% CI) was 0.72 (0.55, 0.96) for rs3782886
and 0.72 (0.54, 0.96) for rs6719. No associations were observed in individuals with low
reticulocyte counts. The corresponding values were 1.05 (0.79, 1.39) and 1.08 (0.81, 1.45),
respectively (Figure 7e).



Life 2023, 13, 1588 12 of 22

3.12. Structural Atherosclerosis, Functional Atherosclerosis, and LDL Cholesterol (LDLc)

To clarify the association between LDLc and atherosclerosis (structural and func-
tional) among older individuals, a cross-sectional study with 1458 Japanese individuals
aged 60–79 years was conducted. In this study, LDLc was significantly positively associ-
ated with structural atherosclerosis but significantly inversely associated with functional
atherosclerosis [39]. For each 1 SD increment in LDLc, the OR (95% CI) was 1.28 (1.10,
1.50) for structural atherosclerosis and 0.85 (0.75, 0.96) for functional atherosclerosis af-
ter adjusting for known cardiovascular risk factors (sex, age, BMI status, hypertension,
drinking status, smoking status, low HDLc, diabetes, high triglycerides, and lipid lowering
medication use).

4. Discussion

As shown in Figure 1, aggressive endothelial repair results in structural and functional
atherosclerosis, while insufficient endothelial repair results in functional atherosclerosis
but not structural atherosclerosis (Figure 1 3©, 6©).

Platelets, which are complex anucleate cells, contribute to vascular homeostasis [40].
Upon vascular injury, platelets become activated and contribute to both rapid adhesion to
the exposed subendothelial matrix [41] and induce proliferation of CD34-positive cells [11].
Platelets also induce CD34-positive cell differentiation into megakaryocytes [10], endothe-
lial cells [9], macrophages, and foam cells [11].

Megakaryocytes are a known source of platelets [10]. To increase endothelial repair,
the number of CD34-positive cells as well as the number of endothelial cells, macrophages,
foam cells, and platelets should be increased (Figure 1 1©, 2©). However, during aggressive
endothelial repair, many CD34-positive cells differentiate into mature cells (CD34-negative
cells) (Figure 1 1©). Since increases in platelet count induce decreases in CD34-positive cell
count by inducing their differentiation into megakaryocytes [10], aggressive endothelial
repair disturbs the positive correlation between platelet and circulating CD34-positive cell
counts shown in our study [31] (Figure 1 1©, 2©, 4©, 5©) (Figure 1c,f).

The development of pathological atherosclerosis, which is related to increased CIMT,
requires sufficient numbers of macrophages [42] and foam cells [43]. Therefore, sufficient
numbers of CD34-positive cells are mandatory for the development of structural atheroscle-
rosis, as evaluated based on CIMT increase [44] (Figure 1 3©). In addition, because shortages
of CD34-positive cells lead to the progression of functional atherosclerosis, circulating
CD34-positive cell count was inversely associated with CAVI only among participants with
low circulating CD34-positive cell counts (Figure 1b,e).

4.1. Aggressive Endothelial Repair and Insufficient Endothelial Repair

During aging, there is more oxidative stress [45,46]. Oxidative stress is a major factor
that disturbs vascular health among older individuals because both hypertension [7] and
endothelial dysfunction [8] are induced by oxidative stress.

However, aging is also associated with declining hematopoietic activity that results in
reducing CD34-positive cell production [47,48]. Therefore, aging is a process that increases
the need for endothelial repair and decreases endothelial repair activity. Thus, the risk for
insufficient endothelial repair is higher for older individuals than younger individuals.
Circulating CD34-positive cell count acts as a marker of endothelial repair activity [49].

In our study, a significant positive association between CIMT and CAVI was only
observed in participants with high circulating CD34-positve cell counts. This study also
revealed a significant inverse association between circulating CD34-positive cell count and
CAVI only in participants with low circulating CD34-positve cell counts [31]. Therefore,
individuals with sufficient numbers of circulating CD34-positive cells have aggressive en-
dothelial repair that leads to both structural atherosclerosis and functional atherosclerosis
(Figure 1 3©). A shortage of CD34-positive cells, which results in insufficient endothelial re-
pair, leads to the development of functional atherosclerosis but not structural atherosclerosis
(Figure 1 6©). Since aggressive endothelial repair disturbs the positive correlation between
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platelet and circulating CD34-positive cell counts via the consumption of CD34-positive
cells (Figure 1 1©), the positive association between platelet and circulating CD34-positive
cell counts was only observed in those with low circulating CD34-positve cell counts in our
study [31] (Figure 1c,f).

Since CD34-positive cells also contribute to the maintenance of the microcirculation
by promoting angiogenesis [50] and neovascularization [51], individuals with aggressive
endothelial repair also have lower peripheral blood pressure resistance, which has the
beneficial effect of preventing hypertension [5,6].

4.2. Circulating CD34-Positive Cell Counts and the Beneficial Effect of Preventing Hypertension,
Which Is Related to the Development of Structural Atherosclerosis

Serum γ-GTP could act as a marker of oxidative stress [52,53]. In a cross-sectional
study, among those with enough circulating CD34-positive cells, γ-GTP levels were re-
vealed to be positively associated with structural atherosclerosis but not with hypertension.
Among those with a shortage of circulating CD34-positive cells, no significant associations
between γ-GTP levels and structural atherosclerosis were observed, but a significant posi-
tive association between γ-GTP levels and hypertension was observed [6]. Those findings
indicate that aggressive endothelial repair, which leads to the development of structural
atherosclerosis, has the beneficial effect of preventing hypertension.

Since angiogenesis is necessary for structural atherosclerosis to develop [4], the devel-
opment of structural atherosclerosis could act as a marker of the progression of angiogenesis,
which reduces peripheral blood pressure (Figure 1 5©, 6©). Since a significant positive associ-
ation between hypertension and structural atherosclerosis has been observed [6], oxidative
stress itself induces both hypertension and structural atherosclerosis.

4.3. VEGF Polymorphisms and Structural Atherosclerosis among Elderly Individuals
with Hypertension

Increased levels of oxidative stress induce hypertension [7] and structural atherosclerosis [8].
Since angiogenesis is necessary for the development of structural atherosclerosis [4], indi-
viduals who have a genetic disadvantage in the progression of angiogenesis might have
a disadvantage in the development of structural atherosclerosis. Next, a study was per-
formed among participants with hypertension. In our cross-sectional study, the minor allele
of VEGF polymorphism rs3025039 was inversely associated with structural atherosclerosis
among elderly individuals with hypertension [15]. Since the inhibition of angiogenesis
induces hypertension [5], this study indicates that individuals who have a genetic disad-
vantage in regard to the development of angiogenesis also might have a disadvantage in
terms of developing structural atherosclerosis (Figure 1 5©, 6©).

4.4. Platelet Count as a Marker of Endothelial Repair Activity

In conjunction with CD34-positive cells, platelets contribute to endothelial repair.
Activated platelets induce the proliferation of CD34-positive cells [11]. Platelets also
induce CD34-positive cell differentiation into megakaryocytes [10], endothelial cells [9],
macrophages, and foam cells [11].

Hypertension is the most common factor that injures the endothelium. Among the
general population, an analysis limited to individuals with hypertension could more clearly
show the influence of aggressive endothelial repair. An analysis limited to individuals
without hypertension could more clearly show the influence of appropriate endothelial
repair. According to this concept, analyses stratified by hypertension status were performed
to focus on the role of platelets in endothelial repair [32]. No significant correlations between
platelet count and circulating CD34-positive cell count were observed among hypertensive
participants (Figure 2a). However, in non-hypertensive participants, platelet count was
significantly positively associated with circulating CD34-positive cell count (Figure 2c).
Since aggressive endothelial repair reduces the circulating CD34-positive cell count, those
associations indicate that analyses among hypertensive participants could be influenced
by the aggressive endothelial repair. This study also found that platelet count is positively
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associated with CIMT only in participants with hypertension (Figure 2b,d). Therefore,
platelet count could indicate endothelial repair activity. In hypertensive individuals, platelet
count indicates increasing CIMT, whereas platelet count indicates the ability to produce
CD34-positive cells for non-hypertensive individuals.

The positive correlation between circulating CD34-positive cell count and platelet
count was observed among individuals with insufficient endothelial repair, which is related
to a shortage of circulating CD34-positive cells [31] (Figure 1). This positive correlation was
also observed for non-hypertensive individuals but not for hypertensive individuals [32].
Therefore, the correlation between platelet count and circulating CD34-positive cell count
could be an efficient tool for evaluating endothelial repair activity in a research setting.
Among those with aggressive endothelial repair, no significant correlations between platelet
count and circulating CD34-positive cell count were observed. However, among those with
insufficient or appropriate levels of endothelial repair, a significant positive correlation
between platelet count and circulating CD34-positive cell count could be observed [31,32].

4.5. Platelets and Hypertension by Circulating CD34-Positive Cell Count

In conjunction with platelets, CD34-positive cells [9–11] contribute to endothelial
repair. Aggressive endothelial repair could induce a reduction in circulating CD34-positive
cell counts due to a consumption that is much stronger than the effect on platelet count.

Therefore, among participants with low circulating CD34-positive cell counts, platelet
count could indicate insufficient endothelial repair related to hypertension. In a cross-
sectional study, platelet count was significantly positively associated with hypertension
among those with low (<median) circulating CD34-positive cell counts but not among
those with high circulating CD34-positive cell counts (≥median) [33]. Thus, inappropriate
endothelial repair could be a risk factor for hypertension.

4.6. Human T-Cell Leukemia Virus Type 1 (HTLV-1), Structural Atherosclerosis, and Hypertension

HTLV-1, a human retrovirus, has been shown to induce adult T-cell leukemia/lymphoma [54],
myelopathy/tropical spastic paraparesis, sensorimotor polyneuropathy [55], and optic neuritis.
However, the majority of carriers remain asymptomatic throughout their lives [16,56,57].

HTLV-1 induces inflammation via the p40Tax transactivator [58,59], possibly by acti-
vating the NF-κB pathway [17]. The activation of the NF-κB pathway could promote the
production of platelet activation proteins [18]. Thus, HTLV-1 carriers have significantly
more platelets than non-carriers (Figure 3a).

Since platelet count could indicate endothelial repair activity [32], including the de-
velopment of angiogenesis, which has a beneficial effect on reducing peripheral vascular
resistance, asymptomatic HTLV-1 carrier status could be inversely associated with hy-
pertension only among those with high platelet counts [19] (Figure 3f,g). Furthermore,
angiogenesis is necessary for the development of structural atherosclerosis [4].

Because hypertension could be prevented by activating endothelial repair, among
asymptomatic HTLV-1 carriers without hypertension, platelet count could be positively
associated with structural atherosclerosis but in not those without HTLV-1 infection [19]
(Figure 3b,c). Furthermore, among non-hypertensive individuals, HTLV-1 infection is
significantly positively associated with structural atherosclerosis in those with high platelet
counts but not in those with low platelet counts (Figure 3d,e). These associations indicate
that the progression of structural atherosclerosis could prevent hypertension by activating
endothelial repair.

In addition, in our previous study, genetic characteristics related to lower angiogen-
esis activity were revealed to be associated with a lower chance of establishing HTLV-1
infection [60]. Therefore, individuals with HTLV-1 infection might have higher angiogene-
sis activity than individuals without HTLV-1 infection, which prevents hypertension.
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4.7. Potential Biological Reactions to Hypoxia and Oxidative Stress

Figure 4 shows the potential biological reactions to hypoxia and oxidative stress by
focusing on reticulocytes, which act as an antioxidant. Adjustment for age-related physical
changes account for biological reactions to hypoxia and oxidative stress because both
hypoxia and oxidative stress are increased with the process of aging [45,46,61].

There are mainly two types of biological mechanisms that are responsible for age-
related physical changes: mechanisms intended to compensate for decreased blood flow
(oxygen supply) and mechanisms that increase antioxidant production.

Details about these biological reactions are described elsewhere [12]. Hypertension
and the maintenance of the microcirculation, including angiogenesis, aim to compensate
for decreased blood flow. Hypertension increases the effectiveness of existing blood vessels,
while angiogenesis increases blood flow by building new vessels.

According to the reaction rate, hypertension and antioxidant production can be classi-
fied as rapid reactions, while angiogenesis can be classified as a delayed reaction. Hyper-
tension and antioxidant production can be observed when hypoxia and oxidative stress
levels are increased. In addition, since the progression of structural atherosclerosis might
indicate angiogenesis activity, antioxidants might have the beneficial effect of preventing
the development of structural atherosclerosis. However, both hypertension and the devel-
opment of structural atherosclerosis are common reactions to hypoxia and oxidative stress.
Hypertension could be positively associated with structural atherosclerosis.

Since reticulocyte count could act as a marker of antioxidant production, a cross-
sectional study with data on reticulocyte count was conducted. In this study [34], reticu-
locyte count was revealed to be positively associated with hypertension (Figure 4a) and
inversely associated with structural atherosclerosis (Figure 4c). This study also found
a significant positive association between hypertension and structural atherosclerosis
(Figure 4b). Since reticulocytes are a source of hemoglobin, which contributes to the oxygen
supply directly, a significant positive association between hemoglobin and hypertension
was also observed [35].

4.8. Hemoglobin and Hypertension by Platelet Levels (Figure 5)

Platelet levels indicate the level of endothelial repair activity [32]. Hemoglobin is
positively associated with hypertension, which could indicate a rapid reaction to age-
related physical changes [34,35].

Since efficient endothelial repair helps prevent hypertension [6,12,19], the positive
association between hemoglobin levels and hypertension could be observed in individuals
with low platelet counts and low or insufficient endothelial repair activity. A cross-sectional
study with 222 Japanese men aged 60–69 years showed a positive association between
hemoglobin levels and hypertension only in participants with lower platelet counts [36]
(Figure 5a,c).

In addition, the absence of a rapid reaction to physical changes might indicate the
presence of appropriate endothelial maintenance or repair. Among individuals with appro-
priate endothelial maintenance, the influence of a reduction in circulating CD34-positive
cell count due to consumption should be limited [12,31,32]. Furthermore, since the prolifer-
ation of CD34-positive cells and platelets are activated upon endothelial injury [10,11,41],
participants with rapid reactions (high hemoglobin levels) who cannot increase platelet
levels efficiently (low platelet count) should have a shortage of CD34-positive cells (low
CD34-positive cell count). Among such participants, low platelet counts might indicate
insufficient endothelial repair, resulting in no significant correlations between hemoglobin
levels and circulating CD34-positive cell counts (Figure 5d).

In a cross-sectional study with Japanese men, a significant positive correlation between
hemoglobin levels and circulating CD34-positive cell counts was only observed among men
with higher platelet counts [36] (Figure 5b,d). Therefore, non-hypertensive participants with
high platelet counts might have appropriate endothelial repair that prevents hypertension.
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4.9. BRAP rs3782886 and Platelet Count in Relation to Hypertension

Being an allele G carrier of SNP rs3782886 in BRAP is reported to be associated with
myocardial infarction [62]. BRAP activates an inflammatory cascade through the activation
of the NF-κB pathway and increases the risk of carotid atherosclerosis [63,64]. Platelet
activation proteins could also be promoted via the activation of the NF-κB pathway [18].
Since platelet activation contributes to endothelial repair [32,40,41], the positive association
between high platelet count and allele G of rs3782886 (Figure 6b), which was shown our
study [37], indicates that allele G carriers have activated endothelial repair.

Furthermore, a high platelet count was positively associated with hypertension
(Figure 6a), while there were no significant associations between allele G of rs3782886
and hypertension (Figure 6c) [37]. Therefore, for individuals who are allele G carriers of
rs3782886 who might be at risk for structural atherosclerosis [63,64], activating endothelial
repair might prevent hypertension.

4.10. BRAP rs3782886, ALDH2 rs671, Platelets, and Hypertension

Figure 7 shows the potential mechanism underlying vascular remodeling among
BRAP rs3782886 and ALDH2 rs671. BRAP increases the risk of structural atherosclerosis by
activating inflammation via the activation of the NF-κB pathway [63,64]. Activation of the
NF-κB pathway promotes the production of platelet activation proteins [18]. Platelet count
could act as an indicator of endothelial activity [32]. Therefore, the significant positive
association between the minor allele of BRAP rs3782886 and a high platelet count [37]
indicates that BRAP rs3782886 contributes to the activation of endothelial repair, which
leads to the development of structural atherosclerosis.

ALDH2 is a key enzyme in alcohol metabolism. ALDH2 gene polymorphisms are
rare in Caucasians, Africans, and Southeast Asians but are common in East Asians [22,23].
Strong LD values between BRAP rs3782886 and ALDH2 rs671 have been reported [38]
(Figure 7c). ALHD2 rs671 was reported to influence drinking status [65]. Both ALDH2
rs671 and BRAP rs3782886 were revealed to be associated with never drinker status [23]
(Figure 7h). The number of minor alleles of ALDH2 rs671 and BRAP rs3782886 were
revealed to be significantly positively associated with never drinker status.

Ethanol exposure dramatically inhibits NF-κB [20] and directly attenuates platelet
activation [21]. Hematopoietic activity that declines with age is important to determine the
ability to produce platelets. Reticulocyte count could act as an indicator of hematopoietic
activity. Therefore, among participants without decreased hematopoietic activity, platelet
counts are significantly higher in never drinkers than in non-never drinkers [23] (Figure 7g).

Since BRAP rs3782886 influences endothelial repair activity, which is related to platelet
count [37] and NF-κB pathway activity [63,64], the strong LD between BRAP rs3782886
and ALHD2 rs671 might influence endothelial repair activity.

The minor allele of BRAP rs3782886 and ALHD2 rs671 were revealed to be positively
associated with platelet count only in older individuals with high reticulocyte counts [23]
(Figure 7d). Reticulocyte count could influence the ability to produce platelets. BRAP
rs3782886 and ALHD2 rs671 do not influence hematopoietic activity itself. Thus, no
significant associations between the minor alleles of those SNPs and reticulocyte count
were observed [23] (Figure 7f).

As a rapid reaction to adjust to increased oxidative stress, reticulocyte count increases,
and hypertension occurs, leading to a significant positive association between reticulocyte
count and hypertension [23] (Figure 7a). As a delayed reaction, endothelial repair is
activated via increased platelet count [23] (Figure 7b).

Among individuals with activated endothelial repair, angiogenesis, which reduces
peripheral blood pressure, also develops. Since the positive association between the minor
alleles of those SNPs (rr37828886 and rs671) and platelet count were only observed in
older individuals with high reticulocyte counts [23] (Figure 7d), the beneficial influence
of hypertension prevention was observed in those with high reticulocyte counts [23]
(Figure 7e).
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Therefore, to enhance the beneficial influence of BRAP rs3782886 on hypertension
prevention, the presence of ethanol is a hindrance. The strong LD between BRAP rs3782886
and ALHD2 rs671 could improve the efficiency of hypertension prevention dramatically
when the influence of ethanol is avoided.

4.11. Structural Atherosclerosis, Functional Atherosclerosis, and LDL Cholesterol

Even when levels are within the normal range [66], by activating inflammation [67],
LDLc directly contributes to the development of structural atherosclerosis [68]. Suffi-
cient numbers of CD34-positive cells are mandatory for the development of structural
atherosclerosis [44].

A shortage of CD34-positive cells leads to the development of functional atheroscle-
rosis but not structural atherosclerosis [12,31,49]. LDLc was also reported to increase the
proliferation of CD34-positive cells [69].

Therefore, LDLc could have a beneficial influence on preventing functional atheroscle-
rosis that is related to CD34-positive cell shortages. In our cross-sectional study, LDLc
levels were significantly positively associated with structural atherosclerosis and signifi-
cantly inversely associated with functional atherosclerosis [39]. This study indicated that
the progression of structural atherosclerosis is not always unfavorable to vascular health.
The progression of structural atherosclerosis could have a partly beneficial effect on the
maintenance of endothelial function.

Hypertension is a major risk factor for stroke in the Japanese population [70]. An
autopsy study clarified that Japanese individuals living in Honolulu have significantly
more atherosclerosis in the circle of Willis but less intra-parenchymal artery sclerosis and
fewer cerebral infarctions than those living in Japan [71]. Therefore, in Japanese individuals,
the progression of structural atherosclerosis indicates the development of angiogenesis,
which might have a beneficial influence on hypertension prevention by reducing peripheral
blood pressure.

With the beginning of an agricultural culture, ALDH2 rs671 has spread in East Asia [72].
The switch from a hunting and gathering culture to an agricultural culture changed eating
habits dramatically. This change might have reduced serum LDLc levels. Since low serum
LDLc levels might increase the risk of hypertension by reducing angiogenesis activity, BRAP
rs3782886, which has a strong LD with ALDH2 rs671 [38], might have a beneficial influence
on reducing the risk of hypertension by activating platelets. This may be the reason
why agricultural populations acquired genetic characteristics that make them susceptible
to alcohol.

4.12. Strengths of the Present Study

The present study focusing on circulating CD34-positive cells, platelets, HTLV-1,
and SNPs in VEGF, BRAP, and ALDH2 has shown that active endothelial repair, which
leads to the progression of structural atherosclerosis, partly indicates the prevention
of hypertension.

Therefore, inhibiting the progression of structural atherosclerosis is not always a bene-
ficial strategy for cardiovascular disease prevention. Unlike general epidemiological studies
that have evaluated the harmful or preventive effects of atherosclerosis and hypertension,
our epidemiological studies included a multifaceted analysis that can explain the harmful
and preventive effects of structural atherosclerosis in a single targeted population.

Those multifaceted analyses clarified a potential novel mechanism underlying vascular re-
modeling (endothelial repair), which could explain the beneficial effect of structural atherosclerosis.

5. Perspectives

Oxidative stress, which induces both hypertension [7] and structural atherosclerosis [8],
increases with aging [45,46,61]. Therefore, the need for endothelial repair increases with
aging. Circulating CD34-positive cells, which play a major role in endothelial repair [12],
are necessary for the development of structural atherosclerosis [44]. However, aging is also
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associated with declines in hematopoietic activity that result in a reduced ability to produce
CD34-positive cells [47,48]. Thus, in an aged society, there is likely higher cardiovascular
risk related to a shortage of circulating CD34-positive cells.

Since aggressive endothelial repair is associated with the development of both struc-
tural and functional atherosclerosis while insufficient endothelial repair furthers functional
atherosclerosis but not structural atherosclerosis [12,31,49], functional atherosclerosis with-
out structural atherosclerosis could have a great impact on cardiovascular disease in an
aged society.

Structural atherosclerosis and functional atherosclerosis are generally taken to be essen-
tially the same clinical condition [73]. However, from the view of endothelial repair activity,
there is an important difference. However, this concept has not become widespread yet.
Evaluating vascular health using a combination of structural atherosclerosis and functional
atherosclerosis could be efficient in daily clinical practice [74,75]. Further investigation
based on this concept is necessary.

6. Limitations

Height [49,76] and height loss [77] could be associated with the capacity to produce cir-
culating CD34-positive cells. Height and height loss are associated with hypertension [78].
Height was also found to be inversely associated with structural atherosclerosis for over-
weight but not for non-overweight men [79]. However, our present study did not eval-
uate the influence of height loss on evaluating the activity of hypertension prevention
related endothelial repair. In addition, thyroid cysts are associated with height, structural
atherosclerosis, and hypertension [80–83]. Therefore, thyroid cysts can also have an effect
on hypertension and structural atherosclerosis. The influence of height loss and thyroid
cysts on the beneficial influence of hypertension prevention related to the development of
structural atherosclerosis is unknown.

7. Conclusions

The progression of structural atherosclerosis could partly indicate angiogenesis ac-
tivity. Since angiogenesis reduces peripheral blood pressure, the progression of structural
atherosclerosis contributes to the prevention of hypertension. However, a positive associ-
ation between structural atherosclerosis and hypertension has been observed. Increased
oxidative stress is a common risk factor for the progression of structural atherosclerosis
and hypertension. Thus, there is a novel mechanism underlying vascular remodeling. This
novel mechanism could be clarified by focusing on endothelial repair activity. Further
investigation focusing on endothelial repair activity is necessary.
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