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Abstract: Machine learning approaches are alternative modelling techniques to traditional modelling
equations used in predictive food microbiology and utilise algorithms to analyse large datasets that
contain information about microbial growth or survival in various food matrices. These approaches
leverage the power of algorithms to extract insights from the data and make predictions regarding the
behaviour of microorganisms in different food environments. The objective of this study was to apply
various machine learning-based regression methods, including support vector regression (SVR),
Gaussian process regression (GPR), decision tree regression (DTR), and random forest regression
(RFR), to estimate bacterial populations. In order to achieve this, a total of 5618 data points for
Pseudomonas spp. present in food products (beef, pork, and poultry) and culture media were gathered
from the ComBase database. The machine learning algorithms were applied to predict the growth or
survival behaviour of Pseudomonas spp. in food products and culture media by considering predictor
variables such as temperature, salt concentration, water activity, and acidity. The suitability of the
algorithms was assessed using statistical measures such as coefficient of determination (R2), root
mean square error (RMSE), bias factor (Bf), and accuracy (Af). Each of the regression algorithms
showed appropriate estimation capabilities with R2 ranging from 0.886 to 0.913, RMSE from 0.724 to
0.899, Bf from 1.012 to 1.020, and Af from 1.086 to 1.101 for each food product and culture medium.
Since the predictive capability of RFR was the best among the algorithms, externally collected data
from the literature were used for RFR. The external validation process showed statistical indices of Bf

ranging from 0.951 to 1.040 and Af ranging from 1.091 to 1.130, indicating that RFR can be used for
predicting the survival and growth of microorganisms in food products. Therefore, machine learning
approaches can be considered as an alternative to conventional modelling methods in predictive
microbiology. However, it is important to highlight that the prediction power of the machine learning
regression method directly depends on the dataset size, and it requires a large dataset to be employed
for modelling. Therefore, the modelling work of this study can only be used for the prediction of
Pseudomonas spp. in specific food products (beef, pork, and poultry) and culture medium with certain
conditions where a large dataset is available.

Keywords: predictive microbiology; machine learning approach; Pseudomonas spp.

1. Introduction

Predictive food microbiology integrates traditional knowledge of food microbiology
with mathematics and statistics to develop statistical models that predict microbial be-
haviour in the food environment [1]. Although predictive models have been used for over
a century, their development has greatly accelerated in the 21st century with the aid of com-
puter technology [2]. These models are used to determine the conditions that can reduce or
delay the harmful effects of microbial contamination of food. Traditional predictive food
microbiology relies on primary and secondary models to simulate how microorganisms
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behave over time and in different environmental conditions [3]. Primary models, such as
the modified Gompertz, logistic, Baranyi, and Huang models, are commonly utilised to
describe microorganism behaviour under consistent environmental conditions. Secondary
models, on the other hand, take into account the impact of environmental factors and food
characteristics on the parameters of the primary model [4].

The prevalent and traditional modelling technique in predictive microbiology is the
two-step modelling approach, which involves fitting the primary and secondary models
sequentially. Initially, the primary model is fitted to growth data points, and then the
resulting growth kinetic parameters are integrated into the secondary model, considering
environmental factors such as temperature [5]. Nevertheless, the two-step modelling
approach has its limitations. One significant drawback is the potential accumulation
and propagation of errors resulting from the repeated sequential nonlinear regression
process [4]. This leads to a notable level of uncertainty in the parameters of the secondary
model, particularly when there is a scarcity of microbial data or significant biological
variability. Additionally, accurately determining the duration of the lag phase becomes
challenging in cases where there are inadequate growth data points or microorganisms
exhibit short lag times. Consequently, these challenges can result in imprecise estimations.
Moreover, the current approach overlooks poor estimations from the primary model during
secondary modelling. The lack of consideration for the fit of individual growth curves
means that all parameters estimated from observed values are treated equally in the second
step, potentially leading to inaccuracies in the final estimates [6,7].

Machine learning is a subfield of artificial intelligence (AI) that focuses on the devel-
opment of algorithms and models that enable computers to learn and make predictions or
decisions without being explicitly programmed. It involves the use of statistical techniques
and computational algorithms to analyse and interpret patterns in large datasets. Machine
learning algorithms are designed to learn from data, identify patterns, and make accurate
predictions or decisions based on the patterns they discover. These algorithms are typically
trained using labelled data, where the input data is paired with corresponding desired
output or target values [8]. During the training process, the algorithm adjusts its internal
parameters to minimise the difference between its predicted outputs and the true target
values [9,10].

The use of machine learning algorithms in food safety and modelling has gained
popularity due to the collective possibilities of rapidly capturing large amounts of digital
data, an increase in affordable computing power and data storage, and a global system of
interconnected computer networks. Several published works have used machine learning
applications in food safety and modelling. Golden et al. [9] employed various machine
learning algorithms, including support vector regression, extremely randomised trees re-
gression, and Gaussian process regression, to estimate the population growth of Escherichia
coli O157. In a study conducted by Hiura et al. [10], the authors utilised the eXtreme gradi-
ent boosting tree, a machine learning algorithm, to make predictions about the bacterial
population behaviour of Listeria monocytogenes in five different food categories, namely
beef, culture medium, pork, seafood, and vegetables. In a different study by Tarlak and
Yücel [11], a prediction tool was developed to characterise the behaviour of Listeria monocy-
togenes in milk. The authors employed both traditional models, such as the re-parametrised
Gompertz, Baranyi, and Huang models, as well as a machine learning-based regression
model. Yücel and Tarlak [12] developed a prediction tool to describe the behaviours of Lis-
teria monocytogenes, Escherichia coli, and Pseudomonas spp., specifically in beef. Collectively,
all these studies highlighted the potential of machine learning models in predicting the
behaviour of bacterial populations.

This study employed a data mining approach to estimate the behaviour of bacte-
rial populations in different food products and culture media by gathering previously
published data. The study focused on Pseudomonas spp., one of the most common microor-
ganisms that directly cause food spoilage [13], and used machine learning-based regression
methods, such as support vector regression, Gaussian process regression, decision tree
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regression, and random forest regression, to model the change in the Pseudomonas spp.
population over time. The best-performing regression method was externally validated
using the bias factor and accuracy factor for predicting bacterial Pseudomonas spp. counts
and an interface was developed to be used for the estimation of bacterial counts of Pseu-
domonas spp. This work introduces several novel aspects, including (i) a comprehensive
comparison of machine learning regression methods for predicting the survival and growth
manner of the Pseudomonas spp. population over time, (ii) the development of a user-
friendly interface that enables the prediction of bacterial count for Pseudomonas spp. based
on various parameters, including time, temperature, NaCl concentration, water activity,
CO2 concentration, vacuum conditions, and food category. This interface facilitates the
understanding of microorganism survival and growth patterns, offering a practical tool for
describing Pseudomonas spp. behaviour.

2. Materials and Methods

The work was conducted in three separate main steps: (i) the bacterial data points of
Pseudomonas spp. in various food products (beef, pork, and poultry) and culture media
were gathered from the ComBase database (www.combase.cc, accessed on 1 June 2021),
(ii) data processing (data ingestion, standardisation, and featurisation) was performed in
Matlab 8.3.0.532 (R2014a) software (MathWorks Inc., Natick, MA, USA), and (iii) various
machine learning-based regression methods including support vector regression, Gaussian
process regression, random forest regression, and decision tree regression were employed
for estimation of the Pseudomonas spp. population using Matlab 8.3.0.532 (R2014a) software.
The evaluation of machine learning-based regression methods involved assessing their
estimation power using several metrics, including the coefficient of determination, root
mean square error, bias factor, and accuracy factor. Figure 1 presents a flow chart illustrating
the main steps followed in the current study. The subsequent subsections provide detailed
descriptions of each stage in this work.

Life 2023, 13, 1430 3 of 13 
 

 

regression methods, such as support vector regression, Gaussian process regression, de-
cision tree regression, and random forest regression, to model the change in the Pseudo-
monas spp. population over time. The best-performing regression method was externally 
validated using the bias factor and accuracy factor for predicting bacterial Pseudomonas 
spp. counts and an interface was developed to be used for the estimation of bacterial 
counts of Pseudomonas spp. This work introduces several novel aspects, including (i) a 
comprehensive comparison of machine learning regression methods for predicting the 
survival and growth manner of the Pseudomonas spp. population over time, (ii) the devel-
opment of a user-friendly interface that enables the prediction of bacterial count for Pseu-
domonas spp. based on various parameters, including time, temperature, NaCl concentra-
tion, water activity, CO2 concentration, vacuum conditions, and food category. This inter-
face facilitates the understanding of microorganism survival and growth patterns, offer-
ing a practical tool for describing Pseudomonas spp. behaviour. 

2. Materials and Methods 
The work was conducted in three separate main steps: (i) the bacterial data points of 

Pseudomonas spp. in various food products (beef, pork, and poultry) and culture media 
were gathered from the ComBase database (www.combase.cc), (ii) data processing (data 
ingestion, standardisation, and featurisation) was performed in Matlab 8.3.0.532 (R2014a) 
software (MathWorks Inc., Natick, MA, USA), and iii) various machine learning-based 
regression methods including support vector regression, Gaussian process regression, 
random forest regression, and decision tree regression were employed for estimation of 
the Pseudomonas spp. population using Matlab 8.3.0.532 (R2014a) software. The evaluation 
of machine learning-based regression methods involved assessing their estimation power 
using several metrics, including the coefficient of determination, root mean square error, 
bias factor, and accuracy factor. Figure 1 presents a flow chart illustrating the main steps 
followed in the current study. The subsequent subsections provide detailed descriptions 
of each stage in this work. 

 
Figure 1. The flow chart outlining the main steps followed in the present study. 

2.1. Data Collection 
The ComBase database (www.combase.cc, accessed on 1 June 2021) provides almost 

60,000 systematically formatted and quantified microbial records gathered from numer-
ous research institutions and papers. In this database, microbial responses are available 
with their information, including “record ID”, “organism”, “food category”, “food name”, 
“temperature”, “pH”, “water activity”, “conditions”, “time”, and “viable cell counts”, 
which enables us to separately categorise and sort out experimental sets of microorgan-
isms. So that the growth or survival manner of Pseudomonas spp. could be modelled using 
machine learning-based regression methods, all data points of Pseudomonas spp. available 
in the ComBase database were collected and employed in this work. Three kinds of food 
products, including beef, pork, and poultry, and culture media were considered because 

Figure 1. The flow chart outlining the main steps followed in the present study.

2.1. Data Collection

The ComBase database (www.combase.cc, accessed on 1 June 2021) provides almost
60,000 systematically formatted and quantified microbial records gathered from numerous
research institutions and papers. In this database, microbial responses are available with
their information, including “record ID”, “organism”, “food category”, “food name”,
“temperature”, “pH”, “water activity”, “conditions”, “time”, and “viable cell counts”,
which enables us to separately categorise and sort out experimental sets of microorganisms.
So that the growth or survival manner of Pseudomonas spp. could be modelled using
machine learning-based regression methods, all data points of Pseudomonas spp. available
in the ComBase database were collected and employed in this work. Three kinds of food
products, including beef, pork, and poultry, and culture media were considered because
they have an adequate number of data points for Pseudomonas spp. For modelling based

www.combase.cc
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on the machine learning approach, all data points were stored with their information of
record ID, temperature, NaCl concentration, water activity, pH, CO2 concentration, vacuum
condition, time, microbial population, food category, and food name. All available data
points in the Combase database for beef, pork, poultry, and culture media were collected,
but the information regarding temperature, pH, and water activity was not available for
some datasets. The datasets lacking at least one value regarding temperature, pH, and
water activity were not considered in developing the model. A total of 282 data points for
beef, 595 data points for pork, 426 data points for poultry, and 4315 data points for culture
media collected from the ComBase database were employed for model development and
assessment. Timeline and reference information regarding all used bacterial data points of
Pseudomonas spp. can be found in the ComBase database in detail, and their corresponding
record ID codes are given in Supplementary Data S1.

2.2. Data Pre-Processing

The bacterial count of Pseudomonas spp. in the unit of log CFU was defined as the main
objective function considering the entire dataset categorised into numerical and categorical
values for each record ID. The parameters “time”, “temperature”, “NaCl concentration”,
“water activity”, and “CO2 concentration” are numerical data. The microbial counts (log
CFU/g) at 0 h were determined as the initial count of Pseudomonas spp. for each record ID.
To separate initial counts from others, data belonging to a time of 0 (h) were coded as 0, and
other data were coded as 1. Through this process, the information on the initial count of
Pseudomonas spp. was also converted to numerical data. The parameters, vacuum condition
(yes/no), food category (beef, pork, poultry, and culture medium), and food name (minced
beef, pork, raw meat lombo, turkey, brain heart infusion broth “BHIB”, and several kinds of
tryptic soy broth “TSB”), are categorical data and were kept as is. These variables were not
transformed into numerical values, and they were directly used for predictions to avoid the
possibility that the machine learning algorithms can create bias in the encoded variables
by assuming that higher numbers are more important. The pre-processing steps were
performed using Matlab 8.3.0.532 (R2014a) software (MathWorks Inc., Natick, MA, USA).

2.3. Modelling

The predictive capability of machine learning models varies depending on the data
bias and variance. Support vector machine (SVM) is a popular non-parametric technique
for classification and regression that transforms data into hyperspace to find linear or
nonlinear relationships between predictors and responses. SVM relies on kernel functions
to define the feature space where data are regressed. The radial basis function kernel is
commonly used for support vector regression. However, its effectiveness decreases with
noise in the dataset [12,14].

Gaussian process regression (GPR) is a flexible, fully probabilistic, and non-parametric
Bayesian approach. It is based on the concept of an infinite-dimensional generation of
normal distributions with multivariate Gaussian distribution. GPR constructs objective
functions based on the distance measure between the estimated output probability density
function (PDF) for a given dataset. GPR maintains high certainty in unsampled locations
far from the training data. However, it takes into account the entire training data each time
it makes a prediction, resulting in an expensive computational effort [11,15].

Decision tree regression (DTR) is a non-parametric and interpretable algorithm fre-
quently used for regression or classification problems [16]. It gives not only predictions but
also inferences about the data. Data pre-processing is simplified when using DTR, as it elim-
inates the need for data scaling. Additionally, DTR can handle categorical features without
requiring numerical encoding. To mitigate bias and variance issues, ensemble methods are
frequently employed. These methods involve combining multiple decision trees to achieve
enhanced predictive performance. However, DTR is inadequate for regression and is better
suited for classification [17,18].
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Random forest regression (RFR) fits a large number of classification trees to a dataset
and combines their predictions to produce a final predictive model [12,19]. RFR is effective
in finding nonlinear relationships in the training data and generalises well to new data. It
is not sensitive to outliers, and the use of the entire forest rather than an individual tree
helps avoid overfitting the model to the training dataset while discovering the relationships
between the predictors and response. Boosting algorithms are commonly employed for
RFR [20,21].

2.4. Assessment of the Quality of Fit

To compare the performance of the models, several metrics were utilised, including the
coefficient of determination (R2), root mean square error (RMSE), bias factor (Bf), and accu-
racy factor (Af). These metrics were calculated using the Equations (1)–(4), respectively [4]:

R2 = 1−
[

∑n
i=1
(
yobs − ypre

)2

∑n
i=1(yobs − yobs)

2

]
(1)

RMSE =

√
∑n

i=1
(
yobs − ypre

)2

n
(2)

Bf = 10
∑n

i=1 log(ypre/yobs)
n (3)

Af = 10
∑n

i=1 |log(ypre/yobs)|
n (4)

where yobs is the experimental bacterial population, ypre is the predicted value, yobs is the
average of the population count, and n is the observation number.

The two most commonly used validation methods in machine learning are hold-out
and k-fold [22]. Hold-out validation involves dividing the dataset into two sets: training
and test. The model is then trained on the training set and evaluated on the test set to assess
its performance. In k-fold cross-validation, the dataset is divided into k-equal partitions. In
each iteration, one partition is used for testing, and the remaining partitions are used for
training. The results from all iterations are combined to provide predictions for the entire
dataset. Cross-validation provides an unbiased evaluation, whereas hold-out validation
can introduce bias because the splitting process is random. The validation methods are
illustrated in Figure 2. A 10-fold cross-validation method was employed in this study.
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3. Results and Discussion

The growth and survival data points of Pseudomonas spp. in various food products
(beef, pork, and poultry) and culture media collected from the ComBase database were
stored with the following information: record ID, temperature (◦C), NaCl concentration (%),
water activity, pH, CO2 concentration (%), vacuum condition (yes/no), initial microbial
population (yes/no), time (h), and food category. The data frequency of the collected data
categorised into each feature is shown in Figure 3. A total of 282, 4315, 595, and 426 growth
and survival data points were employed for beef, culture medium, pork, and poultry,
respectively. Furthermore, Table 1 presents the minimum and maximum ranges of each
main predictor variable which directly influences the behaviour of Pseudomonas spp. The
corresponding standard deviations (σ) are also provided.
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Life 2023, 13, 1430 7 of 12

Table 1. Comprehensive details regarding the experimental conditions.

Food Products

Temperature
(◦C)

NaCl Concentration
(%) Water Activity pH

Min. Max. σ Min. Max. σ Min. Max. σ Min. Max. σ

Beef 2.00 11.00 3.32 - - - 0.99 0.99 0.00 5.82 5.90 0.04
Culture medium 0.00 25.00 7.07 0.00 5.00 1.93 0.95 1.00 0.01 4.01 7.40 0.70

Pork 0.10 10.40 3.16 - - - 0.98 0.99 0.00 5.30 6.00 0.22
Poultry 1.00 7.00 2.95 - - - 0.99 0.99 0.00 6.00 6.20 0.10

The maximum specific growth rate (µmax), which is one of the most important growth
kinetic parameters, can be modelled with respect to environmental factors such as tempera-
ture, NaCl concentration, water activity, and pH. Among these factors, temperature plays a
key role in affecting microbial growth behaviour in food [5]. Temperature variables ranged
from 2 to 11 ◦C for beef, 0 to 25 ◦C for culture medium, 0.1 to 10.4 ◦C for pork, and 1 to 7 ◦C
for poultry, which means 5618 collected growth data points were in the range of 0 to 25 ◦C
which are real temperatures to which food products are subject to in storage, delivery, and
retail marketing processes. NaCl concentration (%) ranged from 0 to 5% for the culture
medium, while there was no NaCl for beef, pork, and poultry; 3624 NaCl concentration
data were collected for the culture medium. This information was used for the prediction
of Pseudomonas spp. in culture medium and pork, which means 64% of collected datasets
of Pseudomonas spp. growth data contributed as a predictor variable in total. The water
activity of a food product is the ratio between the vapour pressure of the food itself when in
a completely undisturbed balance with the surrounding air media and the vapour pressure
of distilled water under identical conditions [23]. Most foods have a water activity above
0.95, which provides sufficient moisture to support the growth of microorganisms. In this
work, water activity was in the range of 0.95 to 1 for each of the food products. Another
important factor that directly affects the growth behaviour of microorganisms is pH. In this
study, pH ranged from 5.82 to 5.9 for beef, 4.01 to 7.40 for culture medium, 5.30 to 6.00 for
pork, and 6.00 to 6.20 for poultry.

The predictive performance of different machine learning-based regression methods
(support vector regression, Gaussian process regression, decision tree regression, and
random forest regression) in estimating Pseudomonas spp. behaviour was assessed by
evaluating their statistical indices (R2, RMSE, Bf, and Af). The correlations between the
observed and predicted values are illustrated in Figure 4, showcasing the results for
support vector machine regression, Gaussian process regression, decision tree regression,
and random forest regression, respectively.

The range of R2 values obtained from the machine learning-based regression meth-
ods for all food products (beef, pork, and poultry) and culture media was 0.866 to 0.913,
while the corresponding RMSE values ranged from 0.724 to 0.899 (Table 2). In a study by
Hiura et al. [10], a machine learning algorithm was employed to predict the behaviour of
Listeria monocytogenes in various food products such as beef, culture medium, and pork.
The reported R2 and RMSE values were up to 0.80 and at least 0.96, respectively. Compara-
tively, the machine learning-based regression methods utilised in our study (support vector
regression, Gaussian process regression, decision tree regression, and random forest regres-
sion) demonstrated notably superior prediction capabilities than the method employed by
Hiura et al. [10] for predicting Listeria monocytogenes behaviour. Moreover, despite skipping
the traditional secondary modelling step for determining the effects of environmental
factors and/or food matrices on model parameters, the support vector regression, Gaussian
process regression, decision tree regression, and random forest regression used in this study
displayed excellent prediction capability, with 1.012 < Bf < 1.017 and 1.086 < Af < 1.101.
Among these methods, the decision tree regression had Bf and Af values of 1.012 and 1.086,
respectively (Table 2), where a Bf of 1 indicates no structural deviation of the model. The
Bf value of 1.012 indicated that the model overestimated by 1.2%, while the Af factor of
1.086 showed that, on average, the predicted value differed from the observed value by
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8.6% (either smaller or larger). These values were slightly better than those obtained for
support vector regression, Gaussian process regression, and decision tree regression. As a
result, the random forest regression was selected as the optimal regression procedure and
further analysed for its prediction capability for each food product.
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Table 2. The fitting capabilities of various machine learning regression methods.

Regression Methods R2 RMSE Bf Af

Support vector regression 0.866 0.899 1.017 1.101
Gaussian process regression 0.910 0.738 1.020 1.095

Decision tree regression 0.910 0.737 1.012 1.096
Random forest regression 0.913 0.724 1.012 1.086

The prediction capability of random forest regression was also evaluated separately
by food category. Figure 5 shows that the random forest regression yielded good pre-
diction performance for each of the food categories (beef, pork, and poultry) and cul-
ture media. However, the prediction power of decision tree regression was the best for
modelling Pseudomonas spp. in beef, followed by culture medium, pork, and poultry.
Furthermore, Table 3 provides a summary comparing the prediction capability of the de-
cision tree regression used in this study with the machine learning algorithm employed
by Hiura et al. [10] for predicting the population of Listeria monocytogenes. Random for-
est regression used in this study provides considerably better goodness-of-fit indices of
0.861 < R2 < 0.973, 0.326 < RMSE < 0.968, 1.006 < Bf < 1.052, and 1.086 < Af < 1.408 for beef,
culture medium, and pork than Hiura et al. [10].
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Table 3. Performance evaluation of random forest regression for various food products.

Hiura et al. [10] This Study

Beef Culture
Medium Pork Beef Culture

Medium Pork

data points 2887 77 1497 282 4315 595

R2 0.75 0.74 0.80 0.973 0.938 0.861

RMSE 1.02 1.15 0.96 0.326 0.600 0.968

Bf 0.98 0.99 0.91 1.006 1.019 1.052

Af 1.47 1.37 1.46 1.086 1.185 1.408

In general, it is always better to use the k-fold technique instead of hold-out. K-fold
gives more stable and trustworthy prediction results since training and testing processes
are performed on several different parts of the dataset. On the other hand, the hold-out
method involves splitting a dataset into 20–30% test data with the rest as training data.
These numbers can vary—a larger percentage of test data will make the model more
prone to errors as it has less training experience, while a smaller percentage of test data
may give the model an unwanted bias towards the training data. This lack of training
or bias can lead to underfitting/overfitting of the model [24]. In this study, the k-fold
cross-validation method was used, and k was chosen as 10 to estimate the error in an
unbiased way. Hiura et al. [10] used the hold-out method; therefore, the evaluation of
the performance of the employed machine learning algorithm can vary with the splitting
process. This shows that the prediction results and prediction capability evaluations in the
current work are more reliable than Hiura et al. [10] reported. However, Hiura et al. [10]
presented a new pioneering perspective to estimate microorganism behaviour using a
machine learning approach.

For reliable utilisation of the developed models, it is crucial to perform external valida-
tion through independent experiments. Therefore, the data obtained from the independent
experiments on beef [25,26], chicken [27,28], pork [25,27,29,30], and culture medium [31]
were compared with the predicted number of Pseudomonas spp. with the random forest
regression used by considering the Bf and Af values (Figure 6). The Bf and Af values were
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found to be 1.028 and 1.236, respectively. A Bf factor of 1 indicates no structural deviation of
the model. The Bf factor of 1.028 indicated that the model overestimates by 2.8%, whereas
the Af factor of 1.236 showed that, on average, the predicted value was 23.6% different
(either smaller or larger) from the observed value. These results revealed that the random
forest regression could be safely used because the error rates are relatively small.

Life 2023, 13, 1430 10 of 13 
 

 

structural deviation of the model. The Bf factor of 1.028 indicated that the model overesti-
mates by 2.8%, whereas the Af factor of 1.236 showed that, on average, the predicted value 
was 23.6% different (either smaller or larger) from the observed value. These results re-
vealed that the random forest regression could be safely used because the error rates are 
relatively small.  

 
Figure 6. The observed and predicted Pseudomonas spp. using random forest regression for external 
validation. 

Maximum specific growth rate (μmax) and lag phase duration (λ) are the most critical 
parameters to describe the growth behaviour of microorganisms in food [32]. Both these 
parameters could not be directly determined, although total Pseudomonas spp. can be pre-
dicted using the developed model based on machine learning regression. Therefore, this 
may be considered the first limitation of this methodology when compared with tradi-
tional modelling methods in the predictive microbiology area. Despite the limitations of 
machine learning regression models in directly predicting the λ and μmax of microorgan-
isms on the food products, these parameters can still be calculated using the graphical 
approach. By plotting the population size against time and visually examining the curve’s 
shape and slope, λ can be estimated by identifying the point where the growth curve de-
viates from the baseline and starts to increase exponentially. To calculate μmax, the growth 
rates from the steepest part of the growth curve can be averaged or the median taken, 
representing the maximum rate of growth under the specific experimental conditions. The 
graphical approach provides a valuable method for estimating these critical parameters 
in the study of microbial growth behaviour [28].  

As a second limitation, the prediction power of the machine learning regression 
method directly depends on dataset size. If there are not enough data, the machine learn-
ing method may not be used for the prediction of microorganism behaviour, meaning it 
requires a large dataset to be employed for modelling. When modelling microbial growth, 
utilising a larger dataset yields improved estimations and reduces uncertainty in model 
parameters. However, incorporating substantial amounts of microbial data into tradi-
tional primary and secondary models poses challenges, resulting in high uncertainty in 
model parameters and estimations due to limited degrees of freedom caused by a scarcity 
of microbial data or the significant biological variation observed in certain cases. On the 
other hand, employing a machine learning approach is well-suited for handling large da-
tasets. Initially perceived as a limitation, this aspect can actually be considered an ad-
vantage when striving for accurate predictions.  

Additionally, this modelling work can only be used for the prediction of Pseudomonas 
spp. in specific food products (beef, pork, and poultry) and culture medium with certain 
conditions. However, this situation is also valid for all the modelling works carried out 
with traditional modelling methods in the predictive microbiology area. On the other 

Figure 6. The observed and predicted Pseudomonas spp. using random forest regression for
external validation.

Maximum specific growth rate (µmax) and lag phase duration (λ) are the most critical
parameters to describe the growth behaviour of microorganisms in food [32]. Both these
parameters could not be directly determined, although total Pseudomonas spp. can be
predicted using the developed model based on machine learning regression. Therefore, this
may be considered the first limitation of this methodology when compared with traditional
modelling methods in the predictive microbiology area. Despite the limitations of machine
learning regression models in directly predicting the λ and µmax of microorganisms on the
food products, these parameters can still be calculated using the graphical approach. By
plotting the population size against time and visually examining the curve’s shape and
slope, λ can be estimated by identifying the point where the growth curve deviates from
the baseline and starts to increase exponentially. To calculate µmax, the growth rates from
the steepest part of the growth curve can be averaged or the median taken, representing
the maximum rate of growth under the specific experimental conditions. The graphical
approach provides a valuable method for estimating these critical parameters in the study
of microbial growth behaviour [28].

As a second limitation, the prediction power of the machine learning regression
method directly depends on dataset size. If there are not enough data, the machine learning
method may not be used for the prediction of microorganism behaviour, meaning it requires
a large dataset to be employed for modelling. When modelling microbial growth, utilising
a larger dataset yields improved estimations and reduces uncertainty in model parameters.
However, incorporating substantial amounts of microbial data into traditional primary and
secondary models poses challenges, resulting in high uncertainty in model parameters and
estimations due to limited degrees of freedom caused by a scarcity of microbial data or the
significant biological variation observed in certain cases. On the other hand, employing a
machine learning approach is well-suited for handling large datasets. Initially perceived
as a limitation, this aspect can actually be considered an advantage when striving for
accurate predictions.

Additionally, this modelling work can only be used for the prediction of Pseudomonas
spp. in specific food products (beef, pork, and poultry) and culture medium with certain
conditions. However, this situation is also valid for all the modelling works carried out
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with traditional modelling methods in the predictive microbiology area. On the other
hand, the machine learning approach enables simultaneous modelling of microbial survival
and growth behaviour, which can be considered the most important advantage, as it is
impossible to perform using traditional modelling approaches (primary, secondary, and
tertiary models) in the predictive microbiology area.

4. Conclusions

In this study, different machine learning-based regression methods (support vector
regression, Gaussian process regression, decision tree regression, and random forest regres-
sion) were used to estimate the count of Pseudomonas spp. in various food products (beef,
pork, and poultry) and culture media. The performance of all regression algorithms was
satisfactory, but the random forest regression showed the best estimation power. To further
test its prediction capability, the algorithm was validated using external data from the litera-
ture. The statistical indices obtained for all food products combined were 0.951 < Bf < 1.040
and 1.091 < Af < 1.130. Despite the random forest regression displaying favourable pre-
diction capabilities for each food product individually, the most accurate estimations were
observed specifically for the beef category. The results suggest that random forest re-
gression can be a reliable alternative for describing the survival and growth manner of
microorganisms in food products and has the potential to be used as a simulation method
by skipping the secondary model step in the conventional two-step modelling method
used in predictive microbiology.
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