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Abstract: Patients with Coronavirus disease 2019 (COVID-19) often have elevations in markers of
liver injury, particularly serum aspartate transaminase (AST) and alanine transaminase (ALT). Such
alterations may affect the AST/ALT ratio (De Ritis ratio) and, potentially, clinical outcomes. We
conducted an updated systematic review and meta-analysis of the association between the De Ritis
ratio and COVID-19 severity and mortality in hospitalized patients. PubMed, Web of Science, and
Scopus were searched between 1 December 2019 and 15 February 2023. The Joanna Briggs Institute
Critical Appraisal Checklist and the Grading of Recommendations, Assessment, Development,
and Evaluation were used to assess the risk of bias and the certainty of the evidence, respectively.
Twenty-four studies were identified. The De Ritis ratio on admission was significantly higher in
patients with severe disease and non-survivors vs. patients with non-severe disease and survivors
(15 studies, weighted mean difference = 0.36, 95% CI 0.24 to 0.49, p < 0.001). The De Ritis ratio was
also associated with severe disease and/or mortality using odds ratios (1.83, 95% CI 1.40 to 2.39,
p < 0.001; nine studies). Similar results were observed using hazard ratios (2.36, 95% CI 1.17 to 4.79,
p = 0.017; five studies). In six studies, the pooled area under the receiver operating characteristic
curve was 0.677 (95% CI 0.612 to 0.743). In our systematic review and meta-analysis, higher De
Ritis ratios were significantly associated with severe disease and mortality in COVID-19 patients.
Therefore, the De Ritis ratio can be useful for early risk stratification and management in this patient
group (PROSPERO registration number: CRD42023406916).

Keywords: De Ritis ratio; aspartate transaminase; alanine transaminase; COVID-19; disease severity;
mortality; biomarkers

1. Introduction

Coronavirus disease 2019 (COVID-19), an infection caused by the severe acute respira-
tory syndrome coronavirus 2 (SARS-CoV-2), has been declared a global health emergency
by the World Health Organization since 2020 [1]. According to recent estimates, at least
15 million people have died as a result of COVID-19 [2]. However, the long-term clinical
and psychological impact of the disease on survivors remain to be fully established [3,4].
Despite significant advances in the prevention and management of COVID-19, particularly
with the introduction of vaccination programs at the population level and several effective
antiviral and anti-inflammatory treatments, a significant number of patients are still at
risk of severe disease and adverse outcomes, including death [5]. One important factor
responsible for the ongoing public health burden of COVID-19 is the systemic, multi-organ
involvement during the acute phase following infection [6,7]. The onset and the progres-
sion of multi-organ dysfunction, particularly in severe cases, is primarily driven by the
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excessive systemic activation of pro-inflammatory pathways that is accompanied by the
release of several cytokines with toxic effects on cellular, tissue, and organ homeostatic
mechanisms [8,9]. A critical organ affected by this systemic pro-inflammatory state is the
liver. Manifestations of liver injury range from transient elevations of liver enzymes and
alterations in specific markers of inflammation and coagulation to severe liver injury and
acute liver failure [10–14]. Studies have suggested that the pathogenesis of liver injury
involves several mechanisms, including the direct cytotoxic effects of SARS-CoV-2 on
hepatocytes and the onset of immune-mediated hepatitis, hypoxic injury, and liver toxicity
induced by specific drugs used to treat COVID-19 [15–18].

Elevations of circulating markers of liver injury in the context of COVID-19, particu-
larly serum aspartate transaminase (AST) and alanine transaminase (ALT), are associated
with severe disease and adverse outcomes, including death [19–27]. A derived parame-
ter, the AST/ALT ratio (De Ritis ratio), has also been associated with COVID-19 severity
and mortality [28,29]. Notably, the capacity of the De Ritis ratio to discriminate between
non-severe vs. severe disease and survivor vs. non-survivor status has been shown to be
superior to that of AST or ALT alone, further supporting the potential utility of the De Ritis
ratio to stratify risk in patients with COVID-19 [30–34].

A systematic review and meta-analysis of eight studies published in 2021 reported
that relatively higher De Ritis ratios were significantly associated with poor prognosis in
COVID-19 patients, defined as a composite of death, clinical severity, admission to the
intensive care unit (ICU), and intubation [35]. Given the rapidly evolving field and clinical
scenario with the occurrence of new variants of SARS-CoV-2, several studies investigating
the De Ritis ratio in COVID-19 patients have been published since this meta-analysis.
Therefore, we conducted an updated systematic review and meta-analysis of the association
between this biomarker and COVID-19, investigating a wide range of effect measures as
well as prognostic capacity.

2. Methods
2.1. Systematic Literature Search

A systematic search was conducted in the electronic databases Scopus, Web of Science,
and PubMed, between 1 December 2019 and 15 February 2023, using the following terms:
“De Ritis ratio” or “AST ALT ratio” or “glutamic oxaloacetic transaminase (GOT) glutamic
pyruvic transaminase (GPT) ratio” or “alanine aminotransferase aspartate aminotransferase
ratio” and “COVID-19” or “2019-nCoV” or “SARS-CoV-2” or “coronavirus disease 2019”.
The reference lists of each article were also searched to identify other studies.

We included studies that: (a) investigated COVID-19 patients with different disease
severity or survival status; (b) reported De Ritis ratios as continuous data, odds ratios
(ORs), or hazard ratios (HRs) with 95% confidence intervals (CIs) for clinical outcomes
using multivariate analysis; (c) reported prognostic accuracy using the area under the
receiver operating characteristic curve (AUROC) with 95% CIs; (d) were available in
full-text; and (e) used the English language. Two investigators independently reviewed
abstracts and articles, with a third involved if there was any disagreement.

The extracted data from each study included study country, year of study publica-
tion, study design, age, the proportion of males, sample size, measures of disease severity
and survival status, white blood cell count (WBC), C-reactive protein (CRP), D-dimer,
history of diabetes, hypertension, cardiovascular disease, mean De Ritis ratio, and OR,
HR, and AUROC with 95% CIs, cut-off values, sensitivity, and specificity. We assessed
the risk of bias using the Joanna Briggs Institute Critical Appraisal Checklist for case-
control studies. Studies addressing ≥75% of items were classified as low risk [36]. We
assessed the certainty of evidence using the Grading of Recommendations, Assessment,
Development, and Evaluation (GRADE) [37]. The study complied with the Preferred
Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 2020 statement
(Supplementary Tables S1 and S2) [38]. The study protocol was registered in the Interna-
tional Prospective Register of Systematic Reviews (PROSPERO, CRD42023406916).
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2.2. Statistical Analysis

We generated forest plots from weighted mean differences (WMDs) to assess the
De Ritis ratio in patients with non-severe disease or survivor status and patients with
severe disease or non-survivor status (p < 0.05 for statistical significance). Adjusted ORs or
HRs were transformed into log ORs and log HRs, and the standard error was calculated
based on the corresponding 95% CI. Heterogeneity was assessed using the Q statistic
(p < 0.10 for statistical significance). We used a random-effect model in case of moderate–
substantial heterogeneity (I2 values ≥ 30%) [39]. We assessed the influence of individual
studies through sensitivity analysis [40]. Publication bias was assessed with the Begg’s and
Egger’s tests (p < 0.05 for statistical significance) and the Duval and Tweedie “trim-and-fill”
procedure [41–43]. In univariate meta-regression analysis, we investigated associations
between the WMD/OR/HR and participant age, sex, study sample size, year of study
publication, study design, markers of inflammation (WBC, CRP), markers of coagulation
(D-dimer), and a history of diabetes, hypertension, and cardiovascular disease. In subgroup
analyses, we investigated possible differences in effect size according to the clinical outcome
studied (disease severity vs. mortality) and study continent. The prognostic performance
of the De Ritis ratio was assessed by calculating the weighted summary AUROC using the
fixed and/or random effects model [44]. Stata 14 software was used for statistical analysis
(StataCorp LLC, College Station, TX, USA).

3. Results
3.1. Selection of Studies

A total of 4784 articles were initially identified. Of them, 4757 were either duplicates
or irrelevant and, therefore, excluded. After a full review of the remaining 27 articles,
three were excluded because they did not meet the inclusion criteria, leaving 24 articles for
analysis (Figure 1) [30–34,45–63].
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Two studies had a prospective study design [45,53], whilst the remaining 22 were
retrospective [30–34,46–52,54–63]. The clinical endpoints assessed included mortality
(15 studies) [30–34,46–48,50–52,54–56,62] and the following measures of severe disease:
clinical severity based on existing guidelines (8 studies) [33,45,49,53,56–59], transfer to the
ICU (two studies) [56,62], persistent viral positivity (one study) [61], prolonged hospital
stay (one study) [62], intubation (one study) [63], and a composite endpoint of mortality or
ICU transfer (one study) [60]. The De Ritis ratio was assessed within the first 24–48 h from
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hospital admission in all studies. The observational design in all studies was the primary
reason for initially grading the initial level of certainty as low (rating 2).

3.2. Pooled Mean Differences
3.2.1. Characteristics of Studies

Fifteen studies reported De Ritis ratios in 5923 COVID-19 patients (mean age 69 years,
59% males) with non-severe disease or survivor status and 1898 patients (mean age 56 years,
55% males) with severe disease or non-survivor status [30,31,34,45–50,52,53,57–60]. Four
studies were conducted in China [45,49,53,59], two in Italy [31,34], one in Spain [48], one
in Nepal [57], one in India [58], one in Mexico [60], one in Austria [46], one in Korea [47],
one in Romania [50], and one in Hungary [52]. Clinical endpoints included mortality (eight
studies) [30,31,34,46–48,50,52] and measures of disease severity in the remaining seven
(Supplementary Table S3) [45,49,53,57–60].

3.2.2. Risk of Bias

All studies addressed ≥75% of checklist items and, therefore, had a low risk of bias
(Supplementary Table S4) [30,31,34,45–50,52,53,57–60].

3.2.3. Results of Individual Studies and Syntheses

The forest plot of De Ritis ratios in patients with non-severe vs. severe disease or
survivor vs. non-survivor status is shown in Figure 2. Random-effects models were used
given the moderate–substantial heterogeneity observed (I2 = 94.9%, p < 0.001). Pooled
results showed that the De Ritis ratios were significantly higher in patients with severe
disease or non-survivor status (WMD = 0.36, 95% CI 0.24 to 0.49, p < 0.001). The sequential
removal of individual studies did not substantially alter the corresponding pooled WMD
values (range 0.34–0.40).
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Figure 2. Forest plot of studies investigating differences in De Ritis ratio between patients with
non-severe disease or survivor status and patients with severe disease or non-survivor status.

3.2.4. Publication Bias

There was no publication bias according to the Begg’s (p = 1.00) or the Egger’s
(p = 0.25) test. Accordingly, no missing study to be added to the funnel plot was identified
using the “trim-and-fill” method (Supplementary Figure S1).

3.2.5. Subgroup and Meta-Regression Analysis

In meta-regression, the WMD was not significantly associated with age (t = −0.26,
p = 0.808), the proportion of males (t = −0.90, p = 0.39), publication year (t = 1.01, p = 0.33),
study design (t = 1.38, p = 0.19), sample size (t = −0.40, p = 0.69), WBC (t = 0.79, p = 0.45), CRP
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(t = −1.62, p = 0.14), D-dimer (t = 0.71, p = 0.50), or history of diabetes (t = −0.84, p = 0.43),
hypertension (t = −0.39, p = 0.71), and cardiovascular disease (t = −0.11, p = 0.92). In subgroup
analysis, the pooled WMD in studies investigating disease severity (WMD = 0.09, 95 % CI
−0.04 to 0.23, p = 0.17; I2 = 72.3%, p = 0.003) was significantly lower (p = 0.001) than that in
studies assessing mortality (WMD = 0.54, 95% CI 0.44 to 0.64, p < 0.001; I2 = 71.7%, p = 0.001;
Supplementary Figure S2). Furthermore, the pooled WMD in European studies (WMD = 0.52,
95% CI 0.42 to 0.62, p < 0.001; I2 = 77.1%, p < 0.001) was significantly higher (p = 0.043) than
that in Asian studies (WMD = 0.20, 95% CI 0.04 to 0.37, p = 0.014; I2 = 82.8%, p = 0.001;
Supplementary Figure S3).

3.2.6. Certainty of Evidence

The certainty of evidence was downgraded to very low (rating 1) as a consequence of
the presence of substantial and unexplained heterogeneity.

3.3. Pooled Odds Ratios
3.3.1. Characteristics of Studies

Nine studies in a total of 14,313 COVID-19 patients (49% males, mean age 53 years) re-
ported associations between the De Ritis ratio and disease severity and mortality expressed
as ORs in multivariate logistic regression analysis [32,33,46,50,52,55,61–63]. Adverse out-
comes included mortality (six studies) [32,46,50,52,55,62] and the following measures of
severe disease: transfer to ICU (one study) [62], prolonged hospital stay (one study) [62],
intubation (one study) [63], persistent viral positivity (one study) [61], and clinical severity
according to existing clinical guidelines (one study) [33]. Three studies were conducted in
China [32,33,61], three in the USA [55,62,63], one in Austria [46], one in Romania [50], and
one in Hungary (Supplementary Table S5) [52].

3.3.2. Risk of Bias

All studies addressed ≥75% of checklist items and consequently were considered as
having a low risk of bias (Supplementary Table S4) [32,33,46,50,52,55,61–63].

3.3.3. Results of Individual Studies and Syntheses

Pooled results showed that the De Ritis ratio was significantly associated with the
risk of severe disease or death (OR = 1.83, 95% CI 1.40 to 2.39, p < 0.001; Figure 3). The
substantial between-study heterogeneity observed (I2 = 65.2%, p = 0.001) warranted random-
effects models. The removal of individual studies did not markedly affect the pooled ORs,
suggesting the stability of the results (range 1.68–1.96).
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3.3.4. Publication Bias

Both the Begg’s (p = 0.013) and the Egger’s (p = 0.011) tests identified the presence
of publication bias. The “trim-and-fill” approach led to the identification of three missing
studies that were required as additions to the left side of the funnel plot in order to ensure
symmetry (Supplementary Figure S4). The resulting effect size, albeit attenuated, was
similar to the primary analysis (OR = 1.60, 95% CI 1.16 to 2.19, p = 0.004).

3.3.5. Subgroup and Meta-Regression Analysis

In meta-regression, no significant associations were observed between the OR and age
(t = 1.64, p = 0.14), the proportion of males (t = 0.42, p = 0.68), publication year (t = −0.45,
p = 0.66), or sample size (t = −1.92, p = 0.09). In subgroup analysis, the pooled OR in studies
reporting mortality (OR = 2.58, 95% CI 1.42 to 4.68, p < 0.001; I2 = 73.7%, p = 0.002) was
non-significantly different (p = 0.40) than that in studies reporting severity (OR = 1.56, 95%
CI 1.23 to 1.97, p < 0.001; I2 = 43.4%, p = 0.132; Supplementary Figure S5). However, a lower
between-study variance was observed in the latter. Similarly, non-significant differences
(p = 0.59) were observed in pooled ORs between European (OR = 2.84, 95% CI 1.08 to 7.47,
p = 0.034; I2 = 80.9%, p = 0.005), Asian (OR = 2.36, 95% CI 0.81 to 6.84, p = 0.11; I2 = 85.8%,
p = 0.001), and American studies (OR = 1.63, 95% CI 1.39 to 1.93, p < 0.001; I2 = 0.0%,
p = 0.596; Supplementary Figure S6), with a virtual absence of between-study variance in
the latter group.

3.3.6. Certainty of Evidence

The certainty of evidence remained low (rating 2) after considering all relevant criteria.

3.4. Pooled Hazard Ratios
3.4.1. Study Characteristics

Five studies in a total of 6653 COVID-19 patients (54% males, mean age 62 years) reported
associations between the De Ritis ratio and mortality expressed as HRs in multivariate logistic
regression analysis [30,33,34,51,54]. Two studies were conducted in China [33,54], one in
Israel [30], one in Italy [34], and one in Croatia (Supplementary Table S6) [51].

3.4.2. Risk of Bias

All studies addressed ≥75% of checklist items and hence had a low risk of bias
(Supplementary Table S4) [30,33,34,51,54].

3.4.3. Results of Individual Studies and Syntheses

The substantial between-study heterogeneity observed (I2 = 86.1%, p = 0.001) war-
ranted random-effects models. The De Ritis ratio was significantly higher in non-survivors
than survivors (HR = 2.36, 95% CI 1.17 to 4.79, p = 0.017; Figure 4). The removal of individ-
ual studies did not substantially alter the corresponding pooled HRs, suggesting that the
results were stable (range 2.24–3.04).

3.4.4. Publication Bias, Subgroup, and Meta-Regression Analysis

The limited number of studies precluded the assessment of publication bias and
subgroup and meta-regression analyses.

3.4.5. Certainty of Evidence

The certainty of evidence was downgraded to extremely low (rating 0) as a conse-
quence of the substantial and unexplained heterogeneity and the lack of assessment of
publication bias.
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Figure 4. Forest plot of studies examining the association between the De Ritis ratio and measures of
disease severity or mortality expressed as HR.

3.5. Prognostic Accuracy of the De Ritis Ratio
3.5.1. Characteristics of Studies

Six studies (eight patient groups) in a total of 2069 COVID-19 patients (63% males,
mean age 77 years) reported AUROC and cut-off values for the De Ritis ratio in relation to
disease severity or mortality [32,34,51,52,56,58]. Endpoints included mortality (five stud-
ies) [32,34,51,52,56] and the following measures of severe disease: clinical severity based on
existing clinical guidelines (two studies) [56,58] and ICU admission (one study) [56]. One
study was conducted in Turkey [56], one in China [32], one in India [58], one in Italy [34],
one in Croatia [51], and one in Hungary (Supplementary Table S7) [52].

3.5.2. Risk of Bias

All studies addressed ≥75% of checklist items (Supplementary Table S4) [32,34,51,52,56,58].

3.5.3. Results of Individual Studies and Syntheses

The pooled AUROC for the De Ritis ratio was 0.677 (95% CI 0.612 to 0.743, Figure 5).
The elevated between-study heterogeneity observed (I2 = 85.8%, p = 0.001) warranted
random-effects models. In sensitivity analysis, the sequential removal of individual studies
did not substantially alter the corresponding pooled AUROCs, suggesting that the results
were stable (range 0.65–0.70). The cut-off value, sensitivity, and specificity ranges were
1.22–1.65, 0.58–0.74, and 0.56–0.82, respectively (Supplementary Table S7).

3.5.4. Publication Bias

Assessment of publication bias was not possible because of the relatively small number
of studies.

3.5.5. Subgroup and Meta-Regression Analysis

In subgroup analysis, the pooled AUROC in studies reporting mortality (AUROC = 0.74,
95% CI 0.68 to 0.81; I2 = 71.0%, p = 0.008) was significantly higher (p = 0.017) than in studies
assessing severity (AUROC = 0.59, 95% CI 0.64 to 0.75; I2 = 38.5%, p = 0.197) (Supplementary
Figure S7). Meta-regression analysis could not be performed because of the relatively small
number of studies.
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4. Discussion

In our updated systematic review and meta-analysis, the De Ritis ratio on admission
was significantly higher in hospitalized COVID-19 patients with severe disease mani-
festation or non-survivor status when compared to patients with non-severe disease or
survivor status. Such between-group differences were statistically significant regardless
of whether they were expressed as WMD, OR, or HR. The capacity of the De Ritis ratio
to discriminate between COVID-19 patients with different disease severity and survival
status was considered satisfactory, according to a pooled AUROC of 0.677. However, the
pooled AUROC was higher (0.74) when considering only studies investigating mortality.
Although a moderate–substantial between-study heterogeneity was generally observed, the
sequential omission of individual studies did not substantially affect the overall WMD, OR,
or HR, suggesting stability of the results. The absence of significant associations between
the effect size and a range of clinical characteristics suggests that the De Ritis ratio may offer
clinical information that complements, rather than duplicates, the information provided
by routine clinical and biochemical parameters in COVID-19. Furthermore, the lack of
significant associations between the effect size and the year of study publication indicates
that the capacity of the De Ritis ratio to discriminate between patients with different disease
severity and survival outcomes is not influenced by temporal changes in the characteristics
of the study populations, e.g., different SARS-CoV-2 variants, vaccination type and uptake,
and immunomodulatory treatments.

The potential clinical utility of the De Ritis ratio AST/ALT ratio as a biomarker was
initially described in 1957 [28]. Whilst the physiological circulating concentrations of ALT
and AST represent the equilibrium between hepatocyte turnover and enzyme clearance
from serum, their elevations generally indicate the presence of significant hepatocellular
damage or death. An increase in serum concentrations of ALT, primarily located in the
cytosol of hepatocytes, generally reflects alterations in the cell membrane. By contrast, AST
is present not only in the cytoplasm and the mitochondria of hepatocytes but also in the
skeletal muscle, heart muscle, brain, kidneys, lungs, pancreas, erythrocytes, and leucocytes,
which limits its specificity for liver damage compared to ALT [64–66]. The De Ritis ratio
has been increasingly studied as a diagnostic and prognostic marker, particularly in acute
and chronic viral hepatitis, alcoholic hepatitis, fatty liver, non-alcoholic fatty liver disease,
and cirrhosis [29,67,68]. The median and interquartile physiological ranges of the De Ritis
ratio have been reported to be 0.90 (0.75–1.10) in healthy females and 0.81 (0.66–1.01) in
healthy males [69].

Several mechanisms may account for the onset and progression of liver damage in
COVID-19 [16,70–72]. For example, SARS-CoV-2 RNA and viral particles have been de-
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tected in the liver parenchyma of patients with COVID-19 [73–75]. Angiotensin-converting
enzyme 2, transmembrane serine protease 2, and paired basic amino acid-cleaving en-
zyme, critical components for the entry and invasion of host cells by SARS-CoV-2, are
expressed in liver cells [76–79]. Intercellular adhesion molecule-3-grabbing integrin, a
liver-specific receptor, CD147, highly expressed in inflammation and infection sites, and
antibody-dependent enhancement have also been proposed to facilitate the entry of SARS-
CoV-2 in liver cells [80–83]. Additional potential mechanisms responsible for liver injury in
COVID-19 patients include the exposure of the liver parenchyma to high concentrations of
circulating pro-inflammatory cytokines [84], the occurrence of hypoxia-reperfusion tissue
injury, particularly in the presence of microvascular dysfunction and thrombosis [85], and
the occurrence of drug-induced liver injury caused by potentially hepatotoxic medications
such as the antiviral remdesivir and the immunomodulating agent tocilizumab [86].

Our meta-analysis provides robust evidence that relatively greater elevations in the
De Ritis ratio reflect the presence of more significant structural and functional liver abnor-
malities, which, in turn, are associated with severe disease and mortality in patients with
COVID-19. Therefore, this simply derived biochemical parameter may be particularly use-
ful for early risk stratification and appropriate management in this group. In a systematic
review and meta-analysis of eight studies in a total of 4606 patients published in 2021, the
De Ritis ratio was significantly higher in COVID-19 patients with poor prognosis, defined
as a composite of death, clinical severity, admission to the ICU, and intubation (mean
difference = 0.41, 95% CI 0.31 to 0.50, p < 0.001). Furthermore, an elevated De Ritis ratio
was significantly associated with poor prognosis (OR 3.28, 95% CI 2.39 to 4.52, p < 0.001),
while the AUC was 0.67 (95% CI 0.63–0.71) [35]. Our updated systematic review and meta-
analysis captured a significantly higher number of studies (n = 24), which also allowed
the conduct of separate sensitivity analyses. Furthermore, we performed subgroup and
meta-regression analyses to investigate potential sources of heterogeneity and associations
with other variables, including the type of endpoint assessed and the geographical location.

The general moderate–substantial between-study heterogeneity represents a signif-
icant limitation of our study, although subgroup analysis identified potential sources of
heterogeneity when the effect size was expressed as OR (geographical location and type
of endpoint). There was also a significant publication bias in studies reporting the OR,
and no assessment could be performed for studies reporting the HR and the AUROC.
Furthermore, no study reported long-term, e.g., post-discharge outcomes in COVID-19
patients. By contrast, a significant strength is represented by the wide number of the study
geographical locations, which supports the generalizability of our results.

5. Conclusions

In our updated systematic review and meta-analysis, higher De Ritis ratios on admis-
sion, indicating significant liver injury in the context of excessive systemic inflammation,
have been shown to be significantly associated with severe disease and mortality in hos-
pitalized COVID-19 patients. Prospective studies are warranted to determine whether
this easily derived parameter of liver function, singly or in combination with other clini-
cal, demographic, or biochemical parameters, can further enhance early risk stratification
for short- and long-term outcomes and facilitate treatment strategies to improve clinical
outcomes in this group.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/life13061324/s1, Table S1: PRISMA 2020 for abstracts
checklist; Table S2: PRISMA 2020 checklist; Table S3: Studies reporting the De Ritis ratio in COVID-19
patients with different disease severity and survival status; Table S4: The Joanna Briggs Institute
critical appraisal checklist; Table S5: Studies reporting the association between the De Ritis ratio
and disease severity and survival status in COVID-19 patients using odds ratios; Table S6: Studies
reporting the association between the De Ritis ratio and disease severity and survival status in
COVID-19 patients using hazard ratios; Table S7: Studies investigating the accuracy of the De Ritis
ratio for disease severity or survival status in COVID-19 patients; Figure S1: Funnel plot of studies
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investigating disease severity and survival status after “trimming-and-filling”. Dummy studies and
genuine studies are represented by enclosed circles and free circles, respectively; Figure S2: Forest
plot of studies examining the De Ritis ratio in patients with COVID-19 according to disease severity
or survival status; Figure S3: Forest plot of studies examining the De Ritis ratio in patients with
COVID-19 according to geographical area; Figure S4: Funnel plot of studies investigating the associa-
tion between the De Ritis ratio and clinical outcomes by means of OR, after “trimming-and-filling”;
Figure S5: Forest plot of studies examining the relationship between the De Ritis ratio and clinical
outcomes by means of OR, according to measures of disease severity or mortality; Figure S6: Forest
plot of studies examining the association between the De Ritis ratio and clinical outcomes by means
of OR, according to geographical area; Figure S7: Forest plot of studies investigating the prognostic
accuracy of the De Ritis ratio according to measures of disease severity or survival status.
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