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Abstract: The domestication of animals and the cultivation of crops have been essential to human
development throughout history, with the agricultural sector playing a pivotal role. Insufficient
nutrition often leads to plant diseases, such as those affecting rice crops, resulting in yield losses of
20–40% of total production. These losses carry significant global economic consequences. Timely
disease diagnosis is critical for implementing effective treatments and mitigating financial losses.
However, despite technological advancements, rice disease diagnosis primarily depends on manual
methods. In this study, we present a novel self-attention network (SANET) based on the ResNet50
architecture, incorporating a kernel attention mechanism for accurate AI-assisted rice disease classifi-
cation. We employ attention modules to extract contextual dependencies within images, focusing on
essential features for disease identification. Using a publicly available rice disease dataset comprising
four classes (three disease types and healthy leaves), we conducted cross-validated classification
experiments to evaluate our proposed model. The results reveal that the attention-based mechanism
effectively guides the convolutional neural network (CNN) in learning valuable features, resulting in
accurate image classification and reduced performance variation compared to state-of-the-art meth-
ods. Our SANET model achieved a test set accuracy of 98.71%, surpassing that of current leading
models. These findings highlight the potential for widespread AI adoption in agricultural disease
diagnosis and management, ultimately enhancing efficiency and effectiveness within the sector.

Keywords: rice disease classification; self-attention mechanism; agriculture imaging

1. Introduction

The cultivation of rice, a fundamental food crop, is confronted with a multitude of
obstacles presented by various diseases, which have a considerable impact on its develop-
ment and productivity. According to the Food and Agriculture Organization of the United
Nations (FAO), the annual global crop yield losses resulting from diseases and pests are
estimated to amount to approximately USD 220 billion [1]. The prompt detection and
precise diagnosis of plant diseases are of utmost importance in order to mitigate associated
financial damages. Farmers frequently overlook initial indications of disease or postpone
seeking medical attention owing to misinterpretation, primarily as a result of insufficient
specialized expertise and resources.

Increased accessibility to smartphones and advanced digital cameras has facilitated the
process of capturing visual representations of afflicted agricultural crops. Simultaneously,
progressions in computer vision technologies have facilitated the processing of images and
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the diagnosis of diseases in diverse research endeavors [2–4]. Pesticides are commonly
employed as the principal approach for the prevention and management of diseases in
the field of agriculture. Precise diagnostic results are essential in directing the utiliza-
tion of pesticides, as their overuse is a significant contributor to the deterioration of the
environment [5]. Therefore, it is imperative to accurately and promptly diagnose diseases.

The conventional method of diagnosing rice leaf diseases is known to be arduous and
time-intensive. Consequently, there has been an increasing inclination towards utilizing
computer-assisted diagnostics as a pivotal instrument for the detection and classification of
rice ailments. The exceptional generalization capabilities of convolutional neural networks
(CNNs), which belong to the category of deep neural networks (DNNs), have been demon-
strated in various image-processing studies. For instance, a deep residual network based
on attention mechanisms was proposed to identify viruses in tomato leaves [6]. Several
classifiers based on deep learning have demonstrated their efficacy in identifying images of
rice diseases [7,8]. Attention modules have been found to improve a model’s effectiveness
in capturing relevant dependencies [9–11]. The selection of suitable loss and activation
functions is a critical factor in attaining favorable outcomes with deep networks, as indi-
cated by sources [12,13]. The utilization of deep neural network (DNN) methodologies in
the field of rice disease diagnosis has not been extensively explored, resulting in a dearth of
models that are tailored to the classification of rice diseases, despite the swift advancements
in this area.

The objective of this investigation was to perform a comprehensive examination of
the disease patterns present in rice leaves by utilizing a deep learning algorithm. Our
proposal involves the implementation of a linear-kernel attention-based mechanism that
aims to enhance the capacity of deep neural networks to selectively attend to crucial
features. In contrast to prior research, our model takes into account distant connections
within feature maps, which constitutes a notable progression in the domain. In order
to effectively train deep learning models, a significant quantity of rice leaf images is
typically necessary to extract diagnostically relevant features. The kernel attention method
that we propose aims to improve the performance of the deep neural network model’s
process of learning by directing the model’s attention toward the extraction of features that
contain more relevant information. The kernel attention mechanism is a relatively new
concept that was recently presented in the work that was conducted by Li et al. [14] for
the segmentation of remote-sensing images. Imagery obtained by remote sensing can be
used to keep track of and locate new urban areas as they emerge as a result of ongoing
urbanization. The work presented here applies the same principle of extracting the most
useful feature, utilizing kernel attention for a different application, namely, the classification
of rice diseases rather than their segmentation. Comprehending the learning mechanisms
of neural networks and effectively visualizing this process are of utmost importance. The
utilization of feature visualization aids in illuminating the viewpoint of the model regarding
the visual surroundings. It also provides insights into the manner in which a pre-existing
convolutional network extracts features as well as desirable characteristics, such as feature
composition and class discrimination, which become more pronounced as the network
layers increase. The utilization of visualization techniques has been demonstrated to
facilitate the process of model debugging, ultimately resulting in improved outcomes [15].
The contributions of the present study are as follows:

I. A neural network is developed that utilizes self-attention based on kernel atten-
tion linear complexity (SANET) for the purpose of classifying various types of
rice diseases.

II. The SANET model is designed to hierarchically aggregate contextual data using
multiscale kernel attention, thereby enabling the inference of global contextual
dependencies.

III. A novel self-attention mechanism is proposed that incorporates kernel attention to
reduce high computational demand with linear complexity.
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This paper is organized as follows: Section 2 presents an overview of deep learning
models and their application in rice disease studies. Section 3 provides an in-depth review
of the proposed model and the impact of kernel attention in feature extraction and long-
range dependencies. Section 4 discusses the experimental results and evaluates the deep
learning model’s performance. Finally, Section 5 concludes the research findings and
outlines avenues for future work.

2. Related Work

In recent years, many unique deep-learning algorithms have been introduced and put
into use for the purpose of identifying rice diseases. A new method for detecting diseases
in rice was proposed by Yang Lu et al. [16] using deep CNN techniques. The researchers
used a dataset with 500 images of both healthy and diseased rice leaves and stems. These
images were captured in an experimental rice field that was infected with 10 different types
of rice infection. When put through a 10-fold cross-validation method, the accuracy of the
proposed CNNs-based model was confirmed to be 95.48%.

State-of-the-art architectures, such as Inceptionv3 and VGG16, were adapted by Rah-
man et al. [17] for the classification and detection of rice diseases. The results from their
experiments proved the models’ value when used with real-world data. The proposed
two-stage small CNN architecture was compared to memory-efficient solutions such as
MobileNet [18], NasNet Mobile [19], and SqueezeNet [20]. As large-scale architectures
are incompatible with mobile devices, this change was made. After making significant
reductions in the size of the model, they were still able to achieve the desired level of
accuracy (93.3%).

With the assistance of several experts, Liang et al. [21] have published a dataset for the
classification of rice leaf diseases. In addition to this, they suggested using a CNN as the
basis for an approach to feature extraction and disease classification. The results of their
experiments demonstrated that the high-level features derived from convolutional neural
networks possessed superior discriminative capabilities compared to those derived from
Haar-WT (wavelet transform) and local binary pattern histograms (LBPH). According to
the results of their research, the hybrid CNN and SVM that they proposed, which they
called support vector machines, had greater accuracy and a larger value of the AUC, area
under the curve, than conventional methods such as Haar-WT + SVM and LBP + SVM.

Ramesh and Vydeki made use of several image-processing techniques in order to
reduce the amount of reliance placed on farmers to ensure the safety of agricultural
products [22]. They proposed an algorithm for the classification of paddy leaf diseases
utilizing an improved deep neural network in conjunction with the Jaya algorithm. Their
photographs of rice plant leaves included healthy plants as well as those with bacterial
brown spots, blights, blast diseases, and sheath rot. These images were taken directly from
the agricultural field. During the preprocessing phase, the RGB images were converted to
HSV images to eliminate the background, and then, based on the hue and saturation com-
ponents of the images, binary images were extracted to distinguish sick tissue from healthy
tissue. In order to categorize the infected leaves, they developed a deep neural network
using the Jaya optimization algorithm (DNN-JOA). They were able to classify blast-afflicted
leaves, bacterial blight leaves, sheath rot leaves, brown spot leaves, and healthy leaf images
with accuracies of 98.9%, 95.78%, 92%, 94%, and 90.57%, respectively. RiceTalk [23] is
a project that was developed by Chen et al. that makes use of non-image Internet of Things
sensors to detect rice blasts. RiceTalk was based on an Internet of Things platform for soil
agriculture and was able to achieve an accuracy of 89.4% on rice blast disease.

Until the advent of deep learning, machine vision systems were often implemented us-
ing statistical machine learning techniques, notably, those based on the fields of supervised
and unsupervised learning. Naive Bayes (NB), discriminant analysis (DA), support vector
machines (SVMs), and k-nearest neighbors (kNN) are some of the modern methods studied
by Rehman et al. [24]. The study provided an in-depth examination of how these methods
are currently being used in a range of agricultural domains, drawing the conclusion that
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different methods should be used for different purposes while acknowledging their lim-
itations. On top of that, Duong-Trung et al. [25] used transfer learning to categorize rice
discoloration disease, which was previously thought to be a major threat to rice production.
To improve the efficiency of deep models that are already familiar with low-level character-
istics, transfer learning employs weights that are pre-trained on data from different domains.
The results of this study used an In-ceptionV3 model pre-trained on ImageNet to achieve
an accuracy of 88.18% in classification, similar to how Shrivastava et al. [26] used transfer
learning for a convolutional neural network to categorize rice plant diseases (CNN). Using
a training/testing split of 80/20, the suggested model achieved a classification accuracy
of 91.368%.

Chung et al. [27] developed a non-destructive method using machine vision to dis-
tinguish between infected and healthy seedlings after three weeks of growth. Their work
centered on identifying bakanae disease, a seed-borne threat to rice. Infected plants either
fail to thrive or produce fruitless panicles. In order to quantify the morphological and color
characteristics of the infected and control seedlings, pictures were collected with the aid
of flatbed scanners. Support vector machine (SVM)-based classifiers were utilized. Addi-
tionally, it was suggested that a genetic algorithm may be employed to find the optimal
combination of required and optional model parameters. Their method had an accuracy of
87.89% in distinguishing between healthy and diseased seedlings. To properly evaluate the
efficacy of a deep learning model, a thorough analysis of the features it employs is required.
This was the motivation behind the study’s implementation of a method for visualizing
the feature maps of rice disease images [16]. In a subsequent study [17], Rahman and
colleagues expanded on this method by extracting and retaining information from the deep
learning model’s early and intermediate layers to classify various forms of rice disease.

Tai et al. [28] used two ViT models in tandem to handle images of varying resolutions,
and techniques [29,30] have recently implemented the ViT (ViT-B16 with 16 attention blocks
and ViT-B32 with 32 attention blocks) without altering the images in any way. Some of these
studies examined the specific disease that was affecting a plant [28,30], whereas others
focused on the categorization of plants rather than the diseases that were affecting them.
However, as additional plant species and disease strains emerge, it becomes increasingly
challenging to address the issue. However, using such a deep neural network for the
categorization of plant diseases may be excessive, and simpler models may be able to
perform adequately well in some situations. Despite the benefits of the ViT’s performance,
it is highly impractical to use transformer-based models for leaf classification. Thus, in this
paper, we propose combining the self-attention power of transformers with Resnet50 [31].
We used linearly complex kernel attention to capture long-term dependencies across many
resolutions, which directly reduced the model’s memory footprint.

The study conducted by Wang et al. [32] was another effort that is extremely compa-
rable to ours and also very important to our approach. They devised the attention-based
depth-wise separable neural network with Bayesian optimization, which is abbreviated
as ADSNN-BO, in order to detect rice diseases in a timely and accurate manner. The
foundation of their model is a MobileNet pre-trained CNN that incorporates an attention
mechanism. In addition, the Bayesian optimization method is utilized in order to fine-tune
the hyper-parameters. It has been determined that their model is 94.65% accurate. Addi-
tionally, their technique helps improve interpretability by offering feature analysis through
the utilization of an activation map and filters visualization. In order to highlight the
contrasts between our research and Wang et al.’s model, we would like to emphasize that
although Wang et al. employed a MobileNet pre-trained CNN model in the classification
of input images, we have classified our images using Resnet50 in our system. In addition,
our model is intended to hierarchically aggregate contextual input through the use of
multiscale kernel attention; yet, Wang et al.’s model only added an attention-augmented
layer to the MobileNet pre-trained model. In addition to this, we are including a novel
self-attention mechanism in our model, which also makes use of kernel attention, with the
goal of lowering the high computing demand while maintaining linear complexity.
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3. Proposed Method
3.1. Dot Product Attention

The standard dot product attention architecture is depicted in Figure 1. Given the
features [x1, x2, x3 . . . ., xn] ∈ RN × C, dot-product attention generates three projected
matrices, i.e., query matrix Q, key matrix K, and value matrix V, using Wq ∈ RN × C, where
N indicates the size of the input and C denotes the input channels.

Q = XWq ∈ RN × Dk (1)

K = XWk ∈ RN × Dk (2)

V = XWv ∈ RN × Dk (3)

D(.) Indicates the dimensions of dot product. We represent both Q and K with the same
symbol because they are supposed to have the same shape.

Figure 1. Standard Dot Product Attention Architecture.

In order to calculate the similarity between the ith query feature vector
(
qT

i
)

ε RDk

and the jth key feature vector k j ε RDk , we used the normalization function p
(
qT

i k j
)

ε R1.
Since the query feature and the key feature are frequently generated by distinct layers,
the similarities among p

(
qT

i
)

and (p
(

qT
j

)
) are typically asymmetrical. The dot product

attention module determines the value at the position i by performing a weighted sum
across all positions, where each position’s value feature is assigned a weight based on its
similarity to all other positions.

D(Q, K, V) = p
(

QKT
)

V (4)

p
(

QKT
)
= so f tmax

(
QKT

)
(5)

softmax indicates that the softmax operation is carried out along each column of the matrix
QKT . p(QKT) denotes the similarity between all pairs of locations. The memory complexity
and computational complexity are both O

(
N2) because Q ∈ RDk× N and KT ∈ RDk× N ,

respectively, and because the product Q ∈ RN × N KT ∈ RN × N . Therefore, the dot-high
product’s resource requirement severely restricts its applicability to high-dimension inputs.
Altering the softmax is a strategy, while reframing the attention via the lens of the kernel
is another approach. Figure 1 depicts the design of the dot-product attention mechanism,
which integrates the refined features with the original input through a skip link after
capturing the long-range context information from feature maps produced by CNN.
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3.2. Dot Product Based on Kernel Attention

As demonstrated in Equation (2), the ith row of the result matrix obtained by dot-
product attention may be written as follows:

D(Q, K, V)i =
∑N

j=1 eqiqkj vj

∑N
j=1 eqiqkj

(6)

where i is an iteration identifier and softmax is the softmax normalization function.
From Equation (4), we can deduce that the dot-product attention mechanism works

by averaging the weights assigned to the value matrix V using eqiqkj , using the similarity
measure sim

(
qi, k j

)
= eqiqkj between query matrix Q and key matrix K. Therefore, we can

generalize Equation (4) by substituting a generic form for the softmax function, as follows:

D(Q, K, V)i =
∑N

j=1 sim
(
qi, k j

)
vj

∑N
j=1 sim

(
qi, k j

) , sim
(
qi, k j

)
≥ 0 (7)

Specifically, sim
(
qi, k j

)
is the function that assesses the degree of similarity between

qi and k j. Under the assumption that sim
(
qi, k j

)
= eqiqkj , we have Equation (5), which is

equivalent to Equation (4). Simultaneously, we can write sim
(
qi, k j

)
=ϕ

(
qj
)T ∅

(
k j
)
, where

ϕ(.) and ∅(.) are kernel smoothers [33]. Therefore, the inner product space can be described
as

〈
ϕ
(
qj
)
∅
(
k j
)〉

.
Equation (4) can then be further rewritten as

D(Q, K, V)i =
∑N

j=1 ϕ(qi)
T∅

(
k j
)
vj

∑N
j=1 ϕ(qi)

T∅
(
k j
) (8)

which can be further simplified as

D(Q, K, V)i =
ϕ(qi)

T ∑N
j=1 ∅

(
k j
)
vj

ϕ(qi)
T ∑N

j=1 ∅
(
k j
) (9)

K ∈ RDk × N and VT ∈ RDk × N , which significantly lowers the level of complexity with
the dot-product attention method.

3.3. Kernel Attention Mechanism

We took ϕ
(
qj
)
= ∅

(
k j
)
= swish(.) where

swish(.) = x ∗ sigmoid (x) (10)

The reason we chose Swish(.) over ReLU(.) is because when the input is somewhat
negative, then the nonzero property of Swish can allow the attention mechanism to avoid
zero gradients. The function can be implemented as

sim
(
qi, k j

)
= swish (qi)

T swish
(
k j
)

(11)

Consequently, Equation (5) may be written as

D(Q, K, V)i =
swish (qi)

T ∑N
j=1 swish

(
k j
)
vT

j

swish (qi)
T ∑N

j=1 swish
(
k j
) (12)
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which can be further simplified as

D(Q, K, V) =
swish (Q) swish (KT) V
swish (Q)∑j swishKT

i,j
(13)

Given ∑N
j=1 swish

(
k j
)
vT

j and ∑N
j=1 swish

(
k j
)
, the time and memory complexity of the

proposed kernel attention technique based on (11) is merely O(N), as each query can be
calculated and reused.

3.4. Attention Network

With increasing input size N = H ×W, the computational complexity of the dot-
product attention mechanism increases exponentially. We provided a self-attention module
for the spatial dimension based on kernel attention to address this problem (SAKM). In the
vast majority of instances, the number of input channels C was significantly lower than the
number of pixels N in the feature maps along the channel dimension. Therefore, channel
softmax function complexity was reasonable at O

(
C2) (3). The channel attention mechanism

(CAM) [34] based on the dot-product was thus implemented (as shown in Figure 2).
Comparable residual relationships existed between the SAKM, CAM, and dot-product
attention mechanism, which was the direct sum of output and input features. SAKM
and CAM were applied to produce an attention block that improved the discriminative
capabilities of the generated feature maps for each layer. Both the SAKM and the CAM
utilized the ResBlock’s created characteristics to hone in on the data’s location and channel,
respectively. Figure 2 shows that the output of the attention block was generated by
concatenating the revised feature maps. Figure 2 presents a representation of the proposed
SANET architecture (a). These feature maps were generated using an ImageNet-pre-trained
ResNet-50. The feature maps generated by Resnet50’s convolutional layers were further
augmented using attention blocks. The characteristics from the attention blocks were
combined, and the resulting output was then processed through a classification head to
forecast the class.

Figure 2. The architecture of (a) proposed SANET, (b) SAKM, (c) CAM Block.

4. Dataset and Experimental Settings
4.1. Dataset Description

For this study, we focused on the three most common types of rice disease: brown spot,
rice hispa damage, and rice leaf blast. The foundation of the common manual diagnostic
process is the visual representation of symptoms. Brown spots, also known as age spots,
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are flat, dark brown lesions that are typically spherical or oval in shape and surrounded by
a yellow halo. A lesion’s round shape is maintained regardless of its size, and it always
has a gray, necrotic center and a reddish-brown to dark-brown border. Rice hispa destroys
the epidermis on the upper surface of the leaf blades. The disease eats away at the leaf
tissue. Plants lose health and vitality when subjected to extreme stress. The damage caused
by hispa can be easily determined if the bug is spotted on a rice leaf. Rice leaf blast can
cause lesions ranging from tiny black dots to larger oval patches with a reddish rim and
a gray or white center. Spots grow longer and more diamond or baroque in shape, with
sharply pointed ends and gray, lifeless centers surrounded by thinner rings of reddish
brown. There were some completely healthy instances of rice among the 2370 leaf samples
we analyzed [35]. Table 1 illustrates the number of samples for each disease category. From
each disease category, 100 samples were selected for training and testing. In Figure 3, Some
samples from the rice dataset are shown.

Table 1. Rice disease dataset information by classes.

Category Number of Samples

Rice Hispa Damage 565
Leaf Blast 779

Brown Spot 523
Healthy 501

Total 2368

Figure 3. Some samples from the rice disease dataset. Healthy (a) and diseased leaf samples from the
dataset. Three disease types in this study: (b) brown spot, (c) rice hispa damage, and (d) leaf blast.

4.2. Experimental Setting

As the backbone, we chose ResNet-50, which had already been trained on ImageNet.
The Adam optimizer was configured with a learning rate of 0.0001 with 32 batch sizes. All
experiments were carried out on a single NVIDIA 3090 GPU with 24 gigabytes of VRAM.
For quantitative evaluation, cross-entropy loss combined with backpropagation was used
to measure the gap between predicted classes and labels.

(p, y) = −y log(p)− (1− y) log(1− p) (14)
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p represents the prediction and y indicates the label.

4.3. Evaluation Metrics

The performance of SANET on the rice disease classification dataset was measured
using the classification accuracy (14) and F1 score (15), which were computed on the
cumulative confusion matrix. An F1 score is used to evaluate models in machine learning
by measuring how well they perform. Essentially, it averages a model’s precision and recall.

Classi f ication Accuracy =
∑N

k=1 TP

∑N
k=1 TP + FP + TN + FN

(15)

F1 = 2× precision × recall
precision + recall

(16)

TPk, FPk, TNk, and FNk represent the true positives, false positives, true negatives, and
false negatives, respectively. Classification accuracy was calculated for all classes.

4.4. Experimental Results and Analysis

We conducted experiments using a dataset of 400 images labeled with four disease
categories. The proposed model was compared against a number of other deep learning
models, including VGG16 [36], ResNet50 [31], Dense-Net121 [37], MobileNetV1 [18], In-
ceptionV3 [38], Xception [39], and ViT [33], as shown in Table 2. Each CNN model with
pre-trained weights was tested on ImageNet using five-fold cross-validation and the same
architecture as the original. Based on the performance metrics discussed in the evaluation
criteria, Table 3 displays the assessed results. Each measurement has both its mean and
standard deviation listed in the table. The five-fold cross-validation results underpinned
these values. Characters in bold represent the deep learning models with the highest ratings
from the evaluations (see Table 4 for details).

Table 2. Comparison with other deep learning algorithms.

Model Precision ± SD Recall ± SD F-1 Score ± SD Test Accuracy ± SD

Xception 88.2 ± 9.68 80.4 ± 11.06 84.2 ± 10.76 90.38 ± 2.74
ResNet50 62.8 ± 25.24 76.8 ± 14.04 64.0 ± 12.98 79.32 ± 6.12

MobileNet 85.6 ± 12.95 90.2 ± 9.28 86.8 ± 6.22 91.36 ± 2.82
VGG16 22.3 ± 17.08 62.5 ± 26.30 35.5 ± 2.38 67.12 ± 5.84

Inception V3 70.8 ± 18.58 64.8 ± 18.19 65.2 ± 13.77 83.20 ± 5.08
DenseNet121 84.0 ± 12.67 76.0 ± 16.31 78.2 ± 7.98 88.27 ± 4.77

ViT 97.6 ± 0.007 97.1 ± 0.26 97.6 ± 0.12 97.15 ± 2.07
SANET 99.2 ± 0.006 98.8 ± 0.002 98.9± 0.06 98.7± 0.16

Table 3. Classification performance comparison with deep learning algorithms based on
three categories.

Model Classification Category

Brown Spot Healthy Rice Hispa Damage Leaf Blast
Xception 0.856 ± 0.110 0.954 ± 0.026 0.824 ± 0.110 0.702 ± 0.294
ResNet50 0.764 ± 0.173 0.632 ± 0.314 0.533 ± 0.232 0.359 ± 0.278

MobileNet 0.825 ± 0.197 0.937 ± 0.048 0.931 ± 0.062 0.704 ± 0.243
VGG16 0.712 ± 0.414 0.629 ± 0.488 0.600 ± 0.548 0.563 ± 0.519

InceptionV3 0.647 ± 0.185 0.887 ± 0.097 0.563 ± 0.272 0.540 ± 0.306
DenseNet121 0.684 ±0.282 0.770 ± 0.275 0.743 ± 0.167 0.784 ± 0.190

VIT 0.980 ±0.009 0.977 ± 0.005 0.961 ± 0.017 0.967 ± 0.021
SANET 0.995 ± 0.004 0.981 ± 0.002 0.985 ± 0.0011 0.987 ± 0.007
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Table 4. Comparison of our method with state-of-the-art methods in terms of complexity.

Model Parameters (M) Training Time (min)/Epoch

VGG16 138 6.6
ResNet50 25.6 3.4

DenseNet121 8.062 9.2
MobileNet 13.58 3.5

Inception V3 24.8 5.55
Xception 23.82 7.4

ViT 307 5.7
SANET 28.62 3.8

The proposed SANET model had the lowest variability in its performance while still
achieving the highest test accuracy, recall, precision, and F-1 score. As shown in Table 4,
the SANET improved upon the ViT by 1.6% in precision, 1.2% in F-1 score, and 1.55% in
accuracy while using the same 28.62 million parameters. We also evaluated the relative
merits of the three most accurate models (ViT, MobileNet, and Xception) in comparison to
SANET’s overall performance. Figures 4 and 5 show box plots representing the model’s
accuracy and F-1 score. To classify images consistently with a lower error rate, the SANET
outperformed other state-of-the-art models across the board for each type of rice disease.
According to our analysis of multiple classes of rice diseases, the leaf blast disease is the
most difficult to categorize. The leaf blast disease is the most difficult to classify when
compared to other types of diseases discussed in this study, such as brown spot and rice
hispa damage. This is because the images in each class were organized in a specific way.
Brown spots, as described in Section 4, are flat, dark brown lesions that are often spherical
or oval in shape and encircled by a yellow halo. The occurrence of brown spots is not
constrained to specific regions; they have the propensity to manifest on any part of the
plant’s anatomy. Rice hispa is responsible for the death of the epidermis that is found on the
upper surface of leaf blades. The leaf tissue is consumed by the illness as it spreads. When
under severe stress, plants experience a decline in their overall health and vitality. If a hispa
is found on a rice leaf, the extent of the damage that it has inflicted can be ascertained with
relative ease. Rice leaf blasts, on the other hand, can create lesions that range from very
small black spots to larger oval patches with a ruddy ring and a gray or white center.

Figure 4. Classification Performance Variation.
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Figure 5. (a–d) Classification Performance Variation in Top Deep Learning Models. (e) Accuracy
variation in top performance models for all classes.

Two methods are used to assess the quality of the characteristics extracted by the
proposed model.

(1) Activation maps
(2) Filter visualization.

An activation map is widely regarded as a technique for visualizing data and pro-
ducing a diagram that shows the activation levels. To generate the activation maps, we
needed to load the weights of the best-performing network. The test sample of rice images
was passed as an input to the network. Following the execution of each layer, the output
indicates the kind of input that activates the layer to its fullest extent. A number of carefully
chosen activation maps were constructed, as shown in Figure 6a. The figure illustrates how
the model treated the various diseases that might affect rice. When attempting to diagnose
brown spot disease, for instance, the network was able to successfully capture and extract
the spot pattern. In addition, activation maps for each of the filters that were contained
inside a single layer are shown in Figure 6b. According to the observations, it is evident
that the majority of filters were activated in relation to the pattern of each disease, and it is
also evident that different types of patterns were activated for different disease categories.
If the generated feature maps were blank, this indicated that the network was not able to
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localize the disease in the given test image. These patterns were almost certainly made up
of intricate shapes that were not in the original image.

Figure 6. (a) Filter visualizations. (b) Feature maps activations.

Filter visualization of a deep learning model differs from activation maps in that it may
depict filters, which are the network’s weights obtained from training. Figure 7 illustrates
the filters of SANET’s several convolutional layers that treat rice diseases. As shown in
the figure, the uppermost levels of a model’s neural network often provide evidence of
its ability for learning. Since the bottom half of the model tended to amass unnecessary
visual patterns and information, top-layer filters were frequently intelligible and capable
of evaluating a model’s performance. In addition, one may claim that SANET is sensitive
to the pattern of brown spot spots. The filters were more identifiable as a result of the
attention process. In addition, the attention process enabled SANET to locate the illness in
the provided picture, as illustrated in Figure 7. This localization was entirely unsupervised
and required no annotations.

Figure 7. Class Activation Maps from SANET.

5. Conclusions

An approach to the classification of rice leaf diseases that is simple and straightforward
is proposed in this article. We devised a method of aggregating contextual features at
various levels of the encoder by integrating kernel attention within self-attention modules
that had linear complexity. This allowed us to extract semantic information from several
layers. In a variety of experiments, the performance of our proposed SANET model was
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superior to that of previously developed deep learning models. In addition, a feature
assessment, activation maps, and filter operations were carried out in order to highlight the
performance of the model. On the rice disease dataset, our proposed model outperformed
other state-of-the-art evaluated models by a significant margin, with only a small amount
of variation in classification performance.
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