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Abstract: Maintaining normal cellular behavior is essential for the survival of organisms. One of the
main mechanisms to control cellular behavior is protein phosphorylation. The process of protein
phosphorylation is reversible under the regulation of protein kinases and protein phosphatases.
The importance of kinases in numerous cellular processes has been well recognized. In recent
years, protein phosphatases have also been demonstrated to function actively and specifically in
various cellular processes and thus have gained more and more attention from researchers. In the
animal kingdom, regeneration frequently occurs to replace or repair damaged or missing tissues.
Emerging evidence has revealed that protein phosphatases are crucial for organ regeneration. In
this review, after providing a brief overview of the classification of protein phosphatases and their
functions in several representative developmental processes, we highlight the critical roles that
protein phosphatases play in organ regeneration by summarizing the most recent research on the
function and underlying mechanism of protein phosphatase in the regeneration of the liver, bone,
neuron, and heart in vertebrates.
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1. Introduction

Proteins could gain functional maturity through post-translational modifications
(PTMs), including the covalent addition of an active group, proteolytic processing, and
necessary folding. PTMs include many modifications, such as methylation, acetylation, and
phosphorylation. The study of phosphorylation is extensive and related to many regulating
processes of cellular behavior, including cell growth, differentiation, and apoptosis [1]. The
occurrence of phosphorylation is widespread in organisms, and around 30% of proteins
could be phosphorylated in eukaryotes [2]. The phosphorylation sites are mainly on threo-
nine, serine, and tyrosine, which are all hydroxyl-containing amino acids [3]. Proteomic
analysis of 2244 human proteins in Hela cells has indicated that the proportion of phospho-
rylation on serine, threonine, and tyrosine residues accounts for 86.4%, 11.8%, and 1.8%,
respectively [4]. After a protein is phosphorylated, its conformation may change, and its
affinity to another protein may be affected, resulting in the activation or inactivation of this
protein.

Protein phosphorylation is a dynamic and reversible process regulated by two types of
enzymes, protein kinase and protein phosphatase. Protein kinases transfer the phosphate
groups from ATP to serine, threonine, or tyrosine residues on substrate proteins. The
phosphate group is extracted from the substrate proteins by the protein phosphatase [5].
Protein phosphatases were initially considered to act merely as a passive and unspecific
negative regulator of phosphorylation, so they gained much less attention than protein
kinases for a long time. In recent decades, more and more evidence has shown that protein
phosphatases play active and selective roles in various fields, and therefore there has been
much more focus on them than in the past [5–7].

Life 2023, 13, 1216. https://doi.org/10.3390/life13051216 https://www.mdpi.com/journal/life

https://doi.org/10.3390/life13051216
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/life
https://www.mdpi.com
https://orcid.org/0000-0002-8466-0043
https://doi.org/10.3390/life13051216
https://www.mdpi.com/journal/life
https://www.mdpi.com/article/10.3390/life13051216?type=check_update&version=1


Life 2023, 13, 1216 2 of 14

Recently, the important role of protein phosphatases in the regeneration process has
been gradually realized. Regeneration occurs widely in the animal kingdom and is com-
monly defined as replacing the injured body part with the newly generated tissue with
the same morphology and function. This process involves the formation of a wound
epithelium after injury, the generation of regenerative progenitor cells, and morphogen-
esis [8,9]. The capacity for regeneration differs greatly across organs and organisms [10].
Increasingly studies have demonstrated that the manipulation of the stability or activity of
certain protein phosphatases is able to alter the regenerative ability of tissues/organs. In
this review, we summarize the recent research progress regarding the crucial functions of
protein phosphatases in the regeneration of several critical vertebrate organs.

2. Classification of Protein Phosphatases

Based on the specificity of substrate proteins, protein phosphatases in eukaryotes can
be divided into the protein tyrosine phosphatase family (PTP) and protein serine/threonine
phosphatase family (PSTP) [5,11,12]. The classification of protein phosphatases is listed in
detail in Table 1.

PTPs that dephosphorylate phosphotyrosine (pTyr) have been classified into five
classes (I-V), based on the amino acid sequence within their catalytic domains and the
nucleophilic amino acid used during the catalytic reaction. The PTPs of Classes I, II, and
III are cysteine-based phosphatases, and their catalytic domains have the signature motif
cysteine-X5-arginine (where X can be any amino acid). In contrast, Class IV comprises
aspartate-based PTPs that utilize a different catalytic mechanism and have a key aspartate
in the active site of the enzyme [11,13]. Class V contains histidine-based phosphatases [14].
Among these five classes, Class I is the largest group including classical PTPs (strictly
tyrosine-specific) and dual specificity phosphatases (DUSPs, also known as DSPs). The
classical PTPs are further divided into two groups: the transmembrane, receptor-like PTPs
(RPTPs), and the intracellular, non-receptor-like PTPs (NRPTPs) [13,15,16]. DUSPs have a
much broader range in terms of substrate specificity. Their targets could be pTyr, phospho-
serine (pSer), phosphothreonine (pThr), and phosphoinositide (PIP). PTEN (phosphatase
and tensin homolog deleted on chromosome 10), a member of DUSP, is a well-known lipid
phosphatase dephosphorylating the D3-phosphate of inositol phospholipids [16]. Class II
comprises only one member, low molecular weight phosphatase (LMW-PTP), which acts
on signaling transduction pathways induced by growth factors and cytokines [17]. Class III
PTPs refer to cell division cycle 25 (CDC25) phosphatases, which are involved in cell cycle
regulation. Eya (Eyes absent) multifunctional proteins belong to Class IV [13,16,18–20].
ClassV includes Sts-1 (suppressor of T-cell receptor signaling-1) and Sts-2, which are crucial
regulators of the T cell receptor (TCR) signaling [14,21].

PSTPs dephosphorylate pSer or pThr, and are classified into at least three families,
including serine/threonine-specific phosphoprotein phosphatases (PPPs), metal-dependent
protein phosphatases (PPMs), and aspartate-based protein phosphatases (DxDxTs) [22].
PPPs play significant roles in many important cellular signaling pathways related to cell
division and growth. More than 90% of serine/threonine dephosphorylations depend
on PPPs [23]. Seven different PPPs have been found in the human genome, including
protein phosphatase 1 (PP1), PP2A, PP2B (also known as PP3 or calcineurin), PP4, PP5,
PP6, and PP7. They mostly function as a multimeric holoenzyme, composed of the catalytic
and regulatory subunits, to dephosphorylate different substrates. PP1 and PP2A are
the two most abundant protein phosphatases in cells [22,24]. PPMs are Mn2+/Mg2+-
dependent serine/threonine-specific enzymes, including PP2C and heterodimeric pyruvate
dehydrogenase phosphatases (PDPs) [18,25]. The aspartate-based protein phosphatases rely
on the aspartic acids of the sequence motif DxDxT/V to obtain phosphatase activity [11,18].
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Table 1. Classification of protein phosphatases based on publications.

Superfamily Family Subfamily Reference

PTPs

Class I
RPTPs

[16,17]NRPTPs
DUSPs

Class II LMW-PTP [17]
Class III CDC25 [17,19]
Class IV Eya [17,20]
Class V Sts [14]

PSTPs

PPPs

PP1

[22,24]

PP2A
PP2B
PP4
PP5
PP6
PP7

PPMs
PP2C

[18,22,25]PDP

DxDxTs
FCP/SCP

[18,22]HAD
Abbreviations: RPTP, receptor-like protein tyrosine phosphatase; NRPTP, non-receptor-like protein tyrosine
phosphatase; DUSP, VH1-like dual specificity phosphatase; LMW-PTP, low molecular weight protein tyrosine
phosphatase; CDC25, cell division cycle 25; Eya, Eyes absent; Sts, suppressor of T-cell receptor signaling; PDP,
pyruvate dehydrogenase phosphatase; FCP/SCP, TFIIF (transcription initiation factor IIF)-associating component
of CTD (C-terminal domain) phosphatase/small CTD phosphatase; HAD, haloacid dehalogenase family enzyme.

3. Various Developmental Functions of Protein Phosphatase

Protein phosphatases are related to numerous biological processes and play important
roles in organisms. Several well-studied biological functions of protein phosphatases
during animal development are briefly introduced here (Figure 1).
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Protein phosphatases are essential for gametogenesis. Protein kinase and phosphatase
signaling pathways can regulate both the maternal production of oocytes and the paternal
production of sperms [26]. The type 2A protein phosphatase subfamily, which includes
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PP2A, PP4, and PP6, has been implicated to play critical roles in regulating germ cell
meiosis [27]. In this subfamily, PP2A is well-known and extensively studied. In Xenopus
oocytes, it has been demonstrated that PP2A acts on Arpp19 to initiate meiotic division and
regulate M-phase entry by antagonizing the activities of two kinases, cAMP-dependent
protein kinase A (PKA) and Greatwall (Gwl) [28]. The serine 109 (S109) on Arpp19 can be
phosphorylated by PKA but dephosphorylated by PP2A containing B55δ regulatory subunit
(PP2A-B55δ). The balance between these two opposite events maintains the prophase arrest
of oocytes to allow their growth and nutrient accumulation. Upon hormonal stimulation
by progesterone, PKA activity is downregulated due to a reduced cAMP level. In contrast,
PP2A activity is not altered, resulting in the dephosphorylation of S109 on Arpp19, which
releases oocytes from prophase arrest and initiates meiotic division. Consequently, the
phosphorylation of Arpp19 at serine 67 (S67) by Gwl can inhibit PP2A activity and fully
activate Cdk1, triggering the M-phase entry [28]. The involvement of PP6 in gametogenesis
has also been reported recently. In male mice, PP6 regulates meiotic recombination and
fertility. The loss of PP6 in germ cells causes abnormal MAPK pathway activity, which
affects chromatin relaxation. Ultimately, programmed double-stranded break (DSB) repair
factors are prevented from being recruited to appropriate sites on the chromosome, and the
spermatocytes are arrested at the pachytene stage during the meiotic process [29]. In female
mice, PP6 is dispensable for oocyte meiotic maturation but essential for their meiosis II exit.
The loss of PP6 in oocytes also causes the impaired fertility of mice [30]. In addition to PP2A
and PP6, PP4 is also essential for normal sperm production. The deletion of PP4 catalytic
subunit gene in the mouse germ cells causes sperm tail-bending defects, low sperm count,
and poor sperm motility, resulting in male infertility [31].

The role of protein phosphatase has also been studied in cardiac development. Cal-
cineurin (PP2B), a Ca2+-dependent PSTP, is crucial for cardiomyocytes through dephospho-
rylating the transcription factor nuclear factor of activated T cells (NFAT) in the cytoplasm,
which subsequently undergoes nuclear translocation to regulate gene expression [32–34].
It has been found that PPP2R3A, one of the PP2A regulatory subunits, is required for
normal myocardium formation and efficient cardiac contractile function in zebrafish [35,36].
PPP2R3A has two transcripts, pr72 and pr130. The zebrafish with pr72-deletion or pr130-
knockout exhibits cardiac developmental abnormalities, including reduced cardiomy-
ocytes, abnormal ventricular chambers, cardiac looping defects, and decreased cardiac
function [35,36]. The phosphatase Pez, a member of PTP, is expressed transiently in the
heart of zebrafish embryos. Its knockdown causes a heart looping defect and the lack of
functional atrio-ventricular (A-V) valves [37].

Protein phosphatases are also involved in the growth and integrity of the vascular
system. Vascular endothelial protein tyrosine phosphatase (VE-PTP, or PTPRB), a receptor-
type phosphatase, is predominantly expressed in vascular endothelial cells and is crucial
for angiogenesis during development [38,39]. It regulates vascular integrity by dephos-
phorylating substrates that control endothelial junctions, such as the endothelial adhesion
molecule VE-cadherin, the angiopoietin receptor TIE2, and the vascular endothelial growth
factor receptor VEGFR2 [39,40]. Mouse embryos with disruption of the VE-PTP gene
have severe vascular malformations, including a disorganized brain vascular network and
the loss of intersomitic vessels, causing early lethality [41]. Additionally, PP2A is also a
significant regulator of angiogenesis. PP2A-Bα, a regulatory subunit of PP2A, is required
for vascular lumen integrity in zebrafish by controlling the phosphorylation status and
activity of histone deacetylase 7 (HDAC7), an essential transcriptional regulator of vascular
stability [42]. PP2A also regulates angiogenesis by mediating the activity of the Hippo
signaling pathway effector Yes-associated protein (YAP), which can promote endothelial
cell proliferation, migration, and sprouting in mice [43].

The importance of protein phosphatases also cannot be ignored for neuronal devel-
opment. Neurons are polarized cells composed of a cell body, a single axon, and den-
drites [44,45]. The receptor-type phosphatase family members, such as PTPα, PTPγ, PTPδ,
and PTPσ, have been implicated in playing diverse roles throughout the neural develop-
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ment in vertebrates and invertebrates, regulating neurogenesis, axon growth and guidance,
synapse formation and plasticity [46,47]. The dual specificity phosphatase DUSP26 is
specifically expressed in neuroendocrine tissues and has been reported to phosphorylate
nerve growth factor (NGF) receptor TrkA and fibroblast growth factor receptor 1 (FGFR1)
to maintain proper development of the retina and neuronal system in zebrafish [48].

During bone formation, mesenchymal stem cells (MSCs) differentiate into osteoblasts
and osteocytes. BMP signaling is well recognized as an essential inducer of this process [49].
Various protein phosphatases have been reported to regulate MSC differentiation through
the BMP signaling pathway. BMP signaling is activated by the phosphorylation of Smad
proteins. PPM1A/PP2Cα, one of the serine/threonine phosphatases in the PPM family, has
been shown to suppress BMP signaling by dephosphorylating Smad proteins [50]. Differ-
ently, a novel mechanism has also been reported in which PPM1A regulates the protein
levels of Smads via the proteasome pathway, thus affecting BMP signaling activities [51].
In this study, the knockdown of endogenous PPM1A stimulates the differentiation of os-
teoblasts [51]. Moreover, PP2Acα negatively regulates the phosphorylation of Smad1/5/9,
inhibiting the BMP2-induced osteoblast differentiation [52]. The SCP family of nuclear
phosphatases, as a type of Smad phosphatase in the nucleus, has been proven to control
BMP signaling and regulate MSC differentiation by mediating Smad1/5/8 dephospho-
rylation [53,54]. In addition to PSTPs, DUSPs have been found to activate BMP-Smad1
signaling and promote osteogenic differentiation of MSCs by reducing the SCP-Smad1
interaction [54], and the histidine phosphatase Sts-1 can regulate bone remodeling by
modulating osteoclast function [55].

Overall, emerging evidence has demonstrated that protein phosphatases play impor-
tant and diverse roles in a wide range of biological processes, including but not limited to
the events mentioned above. Next, we will focus on the regeneration process to highlight
the role of protein phosphatases in it.

4. Roles of Protein Phosphatases in Regeneration

Regeneration is commonly defined as the structural and functional recovery of in-
jured organs or lost body parts [10]. The demands for regenerative medicines in clinics
largely foster tissue regeneration studies to explore what factors control proliferation and
patterning during regeneration. Increasing research over the last few decades has shown
that protein phosphatase is a crucial regulator for organ regeneration.

4.1. Liver Regeneration

The liver is an important organ in the body for metabolic regulation. It can regenerate
after resection or injury, in which hepatocytes fully differentiate and re-enter the cell cycle
to divide and proliferate [56]. The classic regeneration process consists of three stages,
initiation, proliferation, and termination [57]. The most commonly used experimental
model for investigating liver regeneration in rodents is the partial hepatectomy (PH) [58].
Protein phosphatases have been involved in the control of hepatocyte proliferation and
body homeostasis after PH.

PTP1B, as a non-receptor PTP, participates in metabolic and liver diseases [59]. Recent
studies have shown that PTP1B plays a fundamental role in liver regeneration after PH in
mice [60,61]. In the initiation stage after liver damage, PTP1B-deficient mice trigger more
rapid mitogenesis by accelerating the phosphorylation of JNK1/2 and STAT3 mediated
by TNF-α and IL-6 [60]. During hepatocyte proliferation, more intrahepatic lipids are
accumulated to provide energy fuel in PTP1B knockout mice through enhanced EGF- and
HGF-mediated AKT and ERK signaling [60,61]. In the termination phase of liver regen-
eration, the growth factor- and cytokine-mediated proliferative signalings are inhibited
to control liver size. PTP1B deficiency delays the termination of liver regeneration by
inhibiting the transforming growth factor β (TGF-β) signaling, the main antiproliferative
factor within the liver [60].
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Along with PTP1B, PP2A also affects the termination of liver regeneration. The
catalytic subunit of PP2A, PP2Acα, has already been shown in numerous studies to be
essential for cell cycle control [62]. The deletion of PP2Acα, specifically in hepatocytes
in mice, can accelerate hepatocyte proliferation by activating AKT, which in turn inhibits
the activity of glycogen synthase kinase 3β (GSK3β) and leads to the accumulation of
cyclin D1 protein in hepatocytes, resulting in delayed termination of liver regeneration [63].
Furthermore, the liver-specific knockout of PP2Acα activates PFKFB2, an isoform of the
key glycolytic enzyme 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFKFB),
increasing the hepatocyte glycolysis and delaying the termination of liver regeneration [64].

Protein phosphatases also act on the Hippo signaling pathway to regulate hepatocyte
proliferation, damage response, and liver size [65]. The mammalian sterile 20-like kinase 1
and 2 (MST1/2) and large tumor suppressor 1 and 2 (LATS1/2) make up the core of the
Hippo signaling cascade, which phosphorylates downstream effectors YAP and transcrip-
tional co-activator TAZ to keep them in the cytoplasm [66]. In the mouse liver, deletion
of Mst1/2 results in the hyperproliferation of hepatocytes [67,68]. By antagonizing the
activities of kinases, several protein phosphatases have been reported to regulate the Hippo-
YAP pathway, including PP1 that selectively dephosphorylates TAZ and LATS1 [69,70],
and PP2A that targets YAP and regulates mammalian epidermal maintenance [71]. The
phosphatase PTPN14 interacts with YAP and promotes its cytoplasmic translocation. How-
ever, this process is independent of PTPN14 phosphatase activity [72,73]. Furthermore,
PPM1A directly eliminates YAP phosphorylation at the critical S127 residue, which drives
YAP/TAZ accumulation in the nucleus to activate target gene expression [74]. In the PPM1A
knockout mice with hepatectomy surgery, the injury-induced compensatory hepatocyte
proliferation is down-regulated and liver regeneration is compromised [74], indicating that
PPM1A is a critical YAP phosphatase to facilitate liver regeneration.

Collectively, multiple protein phosphatases play important roles in regulating liver
regeneration by controlling hepatocyte proliferation and the termination time point of
regeneration (Figure 2).
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Figure 2. The roles of protein phosphatases in liver regeneration. During liver regeneration, PTP1B
inhibits hepatocyte proliferation through the JNK and STAT3 signaling pathways, and is also required
for TGF-β signaling to promote the termination of regeneration. PPM1A stimulates hepatocyte
proliferation through the Hippo-YAP signaling pathway. In the termination stage of liver regeneration,
PP2A enhances hepatocyte proliferation and delays the termination of regeneration through AKT-
Cyclin D1 and PFKFB2-glycolysis pathways.

4.2. Nerve Regeneration

It is well known that the human nervous system includes the central nervous system
(CNS) and the peripheral nervous system (PNS). They are composed of various nerve cells,
including neurons, glial cells, Schwann cells, and astrocytes, which coordinate locomotion,
sensory perception, and homeostasis in animals [75]. However, CNS in higher organisms
has limited regenerative capacity after physical damage or disease such as stroke, which
deeply alters the lives of affected individuals and leads to disability and death [76]. There-
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fore, exploring the endogenous mechanisms to stimulate the regeneration of the CNS will
help develop novel therapeutic measures.

Nerve regeneration refers to generating new neurons or restoring the neuronal struc-
ture. Studies have shown that protein phosphatases play an important role in axon growth
and neuronal regeneration by acting on a variety of key factors and signaling pathways
(Figure 3). The receptor-type phosphatase PTPσ has been reported to mediate neuronal re-
generation and development [77]. PTPσ contains a cell adhesion molecule-like extracellular
region and triggers signals in response to cell-cell or cell–extracellular matrix contacts [78].
PTPσ has been identified as a major receptor for chondroitin sulfate proteoglycans (CSPGs),
which exhibits an inhibitory effect for neuronal repair [77,79]. After brain or spinal cord
injury, CSPGs accumulate in pathological scars, inhibiting axonal growth and neural re-
generation [77]. Modulation of PTPσ by a synthetic intracellular sigma peptide (ISP, as a
PTP inhibitory peptide) could enhance the degradation of CSPGs and thus promote axon
outgrowth [80]. In the stroke mouse model, ISP treatment or PTP deletion improves stroke
recovery, along with neuroprotection, axonal sprouting, and migration of new neurob-
lasts [81]. Another phosphatase in the subfamily that PTPσ belongs to, leukocyte common
antigen-related phosphatase (LAR), was also identified as a functional receptor of CSPGs
to inhibit axon growth [82].
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Figure 3. The roles of protein phosphatases in neural regeneration. PP6 promotes, but PTEN inhibits,
neural regeneration through the mTOR/AKT/CREB signaling pathway. The receptor-type PTPs
(RPTPs) act as the receptor of CSPG that has an inhibitory effect on axon growth and regeneration.
PTPN2, a non-receptor PTP, hinders axon regeneration by suppressing the cGAS-STING pathway.

In addition to the receptor-like PTPs, several other phosphatases were also reported to
regulate axon regeneration. It has been known that the mammalian target of rapamycin
(mTOR) phosphorylates AKT, then AKT phosphorylates the cAMP response element bind-
ing protein (CREB), which is one of the major transcriptional factors positively regulating
neurite outgrowth [83]. The lipid phosphatase PTEN acts as a negative regulator of the
mTOR/AKT/CREB signaling pathway. Deletion of PTEN can promote axon regeneration
after nerve injury [84]. PP6 was discovered to promote neurite growth by dephosphory-
lating SIN1, a component of mTOR complex 2. The dephosphorylated form of SIN1 can
facilitate the mTOR-mediated AKT phosphorylation and downstream CREB signaling [83].
In addition, a recent study showed an mTOR-independent mechanism used by protein
tyrosine phosphatase non-receptor type 2 (PTPN2) to control axonal regeneration. In
PTPN2 knockout mice, the DNA-damage-induced cGAMP synthase (cGAS)-stimulator of
interferon genes (STING) pathway is activated and triggers the expression of interferon-
stimulated genes (ISGs) in neurons, which ultimately promotes axon regeneration in the
central nervous system [85].
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4.3. Heart Regeneration

The irreversible loss of heart muscle cells caused by heart diseases, such as myocardial
infarction (MI or heart attack), leads to heart failure [86]. Stimulating myocardial regenera-
tion would be a promising therapeutic strategy to reduce morbidity and mortality of heart
diseases. The regenerative capacity of the heart varies considerably among species [87].
Adult mammals with a poor rate of cardiomyocyte turnover cannot regain their original
structure and function after an external lesion or disease of the heart, but instead, form
permanent scars of massive fibrous tissue at the wound site [88]. It is interesting to note
that the hearts of neonatal mammals, including mice or pigs, possess a certain capacity to
repair damage during the first week or the first two days of life [89,90]. Surprisingly, adult
zebrafish can fully regenerate their heart after amputating up to ∼20% of the ventricle [91].
The meticulous and profound studies of cardiac regeneration in animal models may lead
to new development in clinical therapies that benefit millions of people annually.

During zebrafish heart regeneration, the continuous increase in reactive oxygen species
(ROS) can promote the regeneration response. ROS exists in multiple forms and is de-
fined as highly reactive ions and free radicals in the form of hydrogen peroxide (H2O2),
superoxide anion (O2−), and hydroxyl radical (OH−) [92]. The recent finding in zebrafish
showed that DUSP6 is a potential downstream target of ROS and can effectively regulate
cardiac regeneration (Figure 4) [92]. DUSP6 is a well-known phosphatase that specifically
dephosphorylates extracellular signal-regulated kinase 1/2 (ERK1/2), therefore acting as
an attenuator of Ras/MAPK signaling. DUSP6 is also sensitive to redox. H2O2 produced
after heart injury can destabilize DUSP6 and increase the phosphorylation of ERK1/2 and
Ras/MAPK signaling activity [93]. Consistently, suppressing DUSP6 function in zebrafish
promotes cardiomyocyte proliferation and coronary angiogenesis, but reduces fibrosis after
the ventricular resection [94]. Furthermore, DUSP6 deficiency in rats and mice improves
cardiac repair and function by balancing p38 and pERK activity and, ultimately, reducing
neutrophil-mediated cell death and tissue damage [95,96]. Another member of DUSPs,
PTEN was also found to regulate cardiac repair after MI [97]. PTEN deficiency in mice
directly promotes cardiomyocyte proliferation via regulating PI3K/AKT signaling to en-
hance myocardial repair in response to MI [98]. All these animal studies provide potent
therapeutic targets for cardiac remodeling after MI and other related diseases.
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Figure 4. The roles of protein phosphatases in heart regeneration. Upon heart injury, ROS at the
wound site inhibits DUSP6 and promotes cardiomyocyte proliferation. In addition, inhibition of
PTP1B with the small molecule MSI-1436 can promote cardiomyocyte proliferation and improve the
recovery of cardiac function.

Moreover, DUSPs have been reported to modulate heart functions in other aspects.
DUSP1 functions as an anti-inflammatory factor in cardiovascular disorders. DUSP1
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overexpression can attenuate inflammation-induced myocardial injury by improving mi-
tophagy and mitochondrial metabolism in the mice model of the septic cardiomyopathy [99].
DUSP26 was found to promote aortic valve calcification. DUSP26 is up-regulated in cal-
cific aortic valve disease (CAVD), and its silencing can reduce aortic valve calcification in
mice model [100]. Although these studies are not directly related to regeneration, these
phosphatases could be of potential significance in cardiac regeneration, as inflammation
response and fine structure reconstruction should be fully considered for complete organ
regeneration.

In addition to DUSPs, inhibition of PTP1B with small molecule MSI-1436 is also able
to promote cardiomyocyte proliferation and improve the recovery of cardiac function [101].
MSI-1436 treatment accelerates heart regeneration in adult zebrafish by promoting car-
diomyocyte proliferation. In addition, MSI-1436 treatment in adult mice with coronary
artery ligation can improve cardiac function, reduce infarct size, and increase cell pro-
liferation in the infarct border zone [101]. Thus, PTP1B could be a new and promising
therapeutic target for treating heart disease and stimulating cardiac regeneration (Figure 4).

4.4. The Regeneration of Other Organs or Cells

In addition to the organs or tissues mentioned above, protein phosphatases are also
involved in zebrafish fin regeneration. Zebrafish fins are well-organized structures that can
entirely regenerate throughout their lives, which is accomplished by forming regenerative
blastema at the wound site [102]. Several factors, including calcineurin, are required for fin
regeneration. Calcineurin is associated with the inhibition of retinoic acid signaling and
modulates the isometric and allometric coordinated growth of developing and regenerating
zebrafish fins to establish an appropriate size [103]. Moreover, the cooperation of calcineurin
activity and retinoic acid signaling activity regulates the blastema cell differentiation toward
joint cells and osteoblasts in regenerating fins [104]. Interestingly, recent studies have shown
that calcineurin controls proximodistal blastema polarity in zebrafish fin regeneration [8].

A recent study indicated that PTPs are important in hematopoietic stem cell (HSC)
regeneration. HSCs regulate their own maintenance, proliferation, and differentiation, by
coordinating several receptor tyrosine kinases (RTKs) and PTPs. Recently, it was discovered
that HSCs express PTPσ, a phosphatase primarily expressed by neurons. Treatment with
PTPσ inhibitors in irradiated mice can promote HSC regeneration, accelerate hematologic
recovery, and improve survival [105].

5. Conclusions and Perspective

Reversible phosphorylation controlled by protein kinases and protein phosphatases
constitutes a major form of signaling in all living organisms. In vivo, a variety of protein
phosphatases play an essential role in many biological processes. In this review, we
primarily discussed a series of important roles that protein phosphatases play in the
regeneration of several organs. Protein phosphatases regulate many important signaling
pathways during regeneration, including the JNK, STAT, TGF-β, and Hippo signaling
pathways. Accumulating evidence supports the idea that regulating the protein level or
activity of protein phosphatase could be an effective way to modulate the ability and rate
of regeneration.

Recently, small molecular medicine targeting protein phosphatases has become an
emerging regenerative tool to promote the repair and regeneration of injured tissues.
Studies have shown that different miRNAs can regulate phosphatases, including miR-222,
which targets PTEN and enhances neuronal regrowth after injury [106], and miR-26a-
5p, which regulates the PTEN/AKT signaling pathway and protects against myocardial
ischemia/reperfusion injury [107]. Additionally, the development and application of the
affinity-directed phosphatase (AdPhosphatase) system enable targeted dephosphorylation
of specific phospho-substrates [108]. This study also indicates that nanotechnology could
be an effective way to deliver phosphatase regulators into damaged sites to promote
regeneration. Nevertheless, the precise targets and mechanisms of protein phosphatases
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during regeneration need to be further explored before the clinical application of this type
of medicine.

In a word, exploring the molecular mechanisms of protein phosphatases in organ
regeneration will improve understanding of the molecular regulatory network of regenera-
tion and provide new insights for clinical strategies to activate the regenerative potential of
mammals, including humans.
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