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Abstract: Background: The development of new non-invasive markers for prostate cancer (PC)
diagnosis, prognosis, and management is an important issue that needs to be addressed to decrease
PC mortality. Small extracellular vesicles (SEVs) secreted by prostate gland or prostate cancer cells
into the plasma are considered next-generation diagnostic tools because their chemical composition
might reflect the PC development. The population of plasma vesicles is extremely heterogeneous.
The study aimed to explore a new approach for prostate-derived SEV isolation followed by vesicular
miRNA analysis. Methods: We used superparamagnetic particles functionalized by five types of
DNA-aptamers binding the surface markers of prostate cells. Specificity of binding was assayed
by AuNP-aptasensor. Prostate-derived SEVs were isolated from the plasma of 36 PC patients and
18 healthy donors and used for the assessment of twelve PC-associated miRNAs. The amplification
ratio (amp-ratio) value was obtained for all pairs of miRNAs, and the diagnostic significance of these
parameters was evaluated. Results: The multi-ligand binding approach doubled the efficiency of
prostate-derived SEVs’ isolation and made it possible to purify a sufficient amount of vesicular RNA.
The neighbor clusterization, using three pairs of microRNAs (miR-205/miR-375, miR-26b/miR375,
and miR-20a/miR-375), allowed us to distinguish PC patients and donors with sensitivity—94%,
specificity—76%, and accuracy—87%. Moreover, the amp-ratios of other miRNAs pairs reflected such
parameters as plasma PSA level, prostate volume, and Gleason score of PC. Conclusions: Multi-ligand
isolation of prostate-derived vesicles followed by vesicular miRNA analysis is a promising method
for PC diagnosis and monitoring.

Keywords: prostate cancer; small extracellular vesicles (SEV); aptamer; miRNA; diagnosis

1. Introduction

Prostate cancer (PC) is one of the most common malignant diseases and the second
leading cause of cancer death in men. This justifies the ongoing effort of the scientific
and biotechnological community to improve existing approaches to screening, diagnosis,
and management of PC. Screening for PC is still based on evaluation of plasma PSA
levels; however, its rationale is still controversial [1]. The bases for PC diagnosis are PSA
assessment, digital rectal examination (DRE), and biopsy [2]. The management of PC is
based on the stratification of the patient into different risk groups taking into account the
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PSA level, Gleason score, and the spread of the tumor [3,4]. There have been a number of
new serum-, urine-, and tissue-based PC biomarkers developed over the last decade [5,6].
The most advanced results have been obtained by deep sequencing of cell-free DNA
(cfDNA) using custom panels that allow analysis of PC-related genes [7,8]. However,
these findings still have limited clinical applications. Small extracellular vesicles (SEVs) of
endosomal origin, or exosomes, are considered a “next-generation diagnostic tool” in PC [9–12].
A body of experimental evidence indicated that SEVs secreted by the prostate epithelial
cell or PC cells may contain specific molecular markers such as membrane proteins [13,14],
messenger RNA [15], or microRNA [16]. Evaluation of these exosomal components opened
up possibilities to develop new non-invasive techniques for PC diagnosis and management.
The first solution for the analysis of ERG, PCA3, and SPDEF transcripts within urine-
derived SEVs (ExoDx Prostate—IntelliScore) was released in 2016 [17]. Impact of this test
on the management of patients with elevated PCA (2-10 ng/mL) was evaluated in clinical
trials (NCT02702856; NCT03031418).

In contrast to urinary exosome assessment, the analysis of plasma SEVs is rather
challenging because plasma is a protein-enriched liquid containing a huge number of
vesicles derived from various tissues. The important advantage of SEVs is that their
surface may contain tissue-specific markers, and the specific population of vesicles can
be isolated from plasma using ligands to such markers. Proof-of-concept studies were
performed in 2008 when tumor-derived exosomes were enriched by a modified magnetic
activated cell sorting procedure, using anti-epithelial cell adhesion molecule (EpCAM) [17].
In our previous studies, we demonstrated the possibility to isolate TPO(+)SEV using
super-paramagnetic beads (SPMB) functionalized with antibodies against thyroperoxidase
(TPO) [18]. It was shown that TPO(+)SEVs derived from the thyroid gland and miRNA
lt-7 from this population of SEVs are potential markers of follicular thyroid cancer. Next,
we improved the tissue-specific SEV isolation technique using DNA-aptamers instead of
antibodies, and analysis of miRNA in PSMA(+)SEV was evaluated as a new approach for
PC diagnosis [19].

However, considering the size of the prostate, the prostate-derived SEVs can make
up an extremely minor fraction of the total highly heterogeneous mixture of plasma vesicles.
We assume that the efficiency of prostate-derived SEV isolation is the “bottleneck” of the
proposed technology. In the present study, we attempted to address this issue using the com-
position of DNA-aptamers binding with various prostate-specific determinants of the SEVs’
surface. The most effective DNA-aptamers were selected using an AuNP-aptasensor [20],
and aptamers were fixed on the surface of SPMB through the click chemistry; PC-associated
miRNA from the isolated SEVs were analyzed with two-tailed RT-PCR. The developed
analytic approach allowed us to distinguish PC patients and healthy donors. Moreover,
obtained results were associated with plasma PSA level, prostate volume, and Gleason
score that further indicated the clinical relevance of the miRNA pattern of isolated SEVs.

2. Materials and Methods
2.1. Patients

Blood samples were obtained from patients undergoing treatment at the Department
of Oncourology at the Petrov NMRC of Oncology (n.13) and the Clinic of Urology at the
Pavlov First Saint-Petersburg State Medical University (n.36). Control samples of blood
were collected from healthy donors (n.18) of corresponding age at the Blood Transfusion
Department of N.N. Petrov NMRC of Oncology. The study was planned according to the
guidelines of the Declaration of Helsinki and was approved by the Ethics Committee of
the Petrov NMRC of Oncology N◦1 from 04.02.2021. Patients and donors gave informed
consent to participate in the study. Plasma samples from 13 patients with advanced
(metastatic) PC were used to test the technology. These patients were on palliative care
at the N.N. Petrov NMRC of Oncology. The study included also patients with a localized
histologically confirmed PC who met the specified criteria: age 50–74 years (median age
66.5); no chronic or metabolic diseases; PSA level > 4 ng/mL (median PSA 9.75 ng/mL);
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prostate volume 4–80 cm3 (median prostate volume 41.05 cm3); PC stage: T2–T3N0M0; and
Gleason score: 6–9. According to standard criteria, PC patients were distributed into three
risk groups [4]. Plasma samples from these patients were used to estimate the diagnostic
value of the developed method. Detailed information about patients with localized PC are
presented in Supplementary Table S1A. Information regarding the biological material used
in the study is summarized in Supplementary Table S1B.

2.2. Plasma Sampling and SEV Isolation

Venous blood samples (5 mL) were collected into BD Vacutainer EDTA Tubes, and
plasma was immediately isolated using centrifugation for 15 min at 1500× g, then aliquoted,
frozen, and stored at −80 ◦C. Before use, the frozen plasma was slowly thawed at 4 ◦C,
sequentially centrifuged at 300× g for 10 min, 1500× g for 10 min, and 10,000× g for
10 min, and filtered through a 0.2 µm syringe filter to remove cellular debris. Prepared
plasma is hereafter referred to as pellet pure plasma (PPP) and was used for all experiments.
The total SEV population was isolated from PPP using a two-phase polymer system
(TPPS) as previously described [21]. Briefly, a solution of dextran (450–650 kDa, 1.5%) and
polyethylene glycol (35 kDa, 3.5%) (both Sigma-Aldrich, St. Louis, MO, USA) was prepared
in the 2 mL of PPP, and the same amounts of polymers were dissolved in an equal volume
of phosphate-buffered saline (PBS) to prepare a protein-depleting solution (PDS). For phase
separation, the solution was centrifuged for 10 min at 1000× g, after which the upper phase
was replaced with PDS, and the solutions were well mixed and centrifuged again. The
upper phase was removed, and the lower phase containing SEVs was resuspended in
100 µL of PBS.

2.3. Maintaining of PC Cell Cultures and SEV Isolation

For this study, we used DU145 and PC-3 prostate cancer cell lines. Cells were main-
tained in RPMI1640 medium, supplemented with 10% FBS and antibiotics. Cells were
incubated at 37 ◦C in a CO2 incubator at 5% CO2. The total SEV population was isolated
from DU145 and PC-3 cell culture media by double ultracentrifugation at 110,000× g for
8 h and 2 h, respectively, as described [22].

2.4. SEV Labelling with CM-Dil

An amount equal to 2 µL of a 50 µM Vybrant™ DiI Cell-Labeling Solution (Thermo
Fisher Scientific, Waltham, MA, USA) diluted in DMSO (Biolot, Saint-Petersburg, Russia)
was added to 2 mL of the PPP followed by incubation at 37 ◦C for 20 min with moderate
stirring. PURE-EV size exclusion chromatography columns (HansaBioMed, Tallinn, Esto-
nia) were used for SEV purification/isolation according to the producer’s protocol, with
slight modifications [23]. Briefly, 2 mL of the sample was loaded into the SEC column, and
23 fractions of 500 µL were collected. Fractions 9–11 were used for further experiments.

2.5. Nanoparticle Tracking Analysis (NTA)

The size and concentration of the isolated vesicles were measured using a NanoSight
NS300 analyzer (Malvern Panalytical, Malvern, UK) at camera level: 9, shutter slider: 440,
slider gain: 24, and threshold level: 5. Each sample was pumped through the observation
camera to record five measurements for 30 s for 749 frames at different microvolumes of
the same sample. Based on the results of the five measurements, the values of the size and
concentration of the nanoparticles were averaged.

2.6. Low-Voltage Scanning Electron Microscopy (LVSEM)

Visualization was performed using low-voltage scanning electron microscopy (LVSEM)
on a scanning electron microscope with high-resolution Merlin (Carl Zeiss, Jena, Germany)
at the Interdisciplinary Resource Center for Nanotechnology of St. Petersburg State Univer-
sity with the standard technique described previously [24].
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2.7. Bead-Assisted Flow Cytometry of the Total SEV Population

To confirm the exosomal nature of TPPS-isolated SEVs, the membrane tetraspanins
were assayed by flow cytometry using an Exo-FACS kit (HansaBioMed, Tallinn, Estonia)
according to the manufacturer’s protocol. SEVs were absorbed nonspecifically to the
surface of latex microparticles and stained with antibodies conjugated with fluorescent
labels PE (CD9, BioLegends, San Diego, CA, USA), FITC (CD63, Abcam, Cambridge, UK),
and APC (CD81, BioLegends, San Diego, CA, USA). All measurements were performed on
a Cytoflex Platform (Beckman Coulter, Brea, CA, USA).

2.8. Aurum Nanoparticle and AuNP-Aptasensor

The structure and the operation principle of the Aurum Nanoparticle (AuNP)-aptasensor
were described in detail [20]. Nanoparticles were synthesized as previously described [25].
Sequences of used DNA-aptamers with an affinity to prostate cancer cells were evaluated
previously (Supplementary Table S2), whereas the synthesis was performed by Lumiprobe
Ltd. and Syntol Ltd. (both Moscow, RF). To form AuNP-DNA complexes, the AuNP
suspension (10 µL at concentration of 2 × 1015 particles/mL) was mixed with 2.5 µL
of aptamer solution (at concentration 100 pmol/µL) and incubated for 30 min at 4 ◦C.
Next, 1 µL of the total SEV population (concentration 108 /mL) was added to 12.5 µL
AuNP–DNA complexes. The restored peroxidase activity of AuNPs was evaluated after
adding 10 µL of 3,3′,5,5′-tetramethylbenzidine, TMB (Xema Co. Ltd., Moscow, Russia)
to the resulting solution and incubated for 18 min at 37 ◦C in the dark. Finally, the
suspension was centrifuged (6000× g, 3 min), the supernatants were carefully transferred to
the wells of a 384-well plate, and the absorption spectra were measured immediately using
a Varioskan LUX Multimode Microplate Reader (Thermo Fischer Scientific, Waltham, MA,
USA). Distilled water was used as a blank, and the peroxidase activity of unmodified AuNP
was evaluated as positive control (maximum of peroxidase activity), whereas AuNP-DNA
complex (without SEVs) was used to set up a minimum of peroxidase activity of completely
inhibited AuNP. Additionally, two aptamers, binding CD63 and CD30 membrane proteins,
were used as controls. The absorbance spectra were investigated in diapason from 200 to
500 nm.

2.9. Formation of SPMB-Apt Complexes for Prostate-Derived SEV Isolation

The complex was composed of super-paramagnetic beads (SPMBs) with the surface
functionalized by -N3 groups (Click Chemistry Tools, Phoenix, AZ, USA) and DNA-
aptamers (Apt) modified by a dibenzocyclooctyne group (DBCO) at the -5′ end. Complex
SPMB–Apt was formed by the reaction of azide-alkyne cycloaddition as described [19].
First, 1 µL of SPMBs (1 mg/mL) was incubated in a 200 µL I-Block™ Protein-Based
Blocking Reagent (ThermoFisher Scientific, Walthman, MA, USA) at 4 ◦C for 1 h to prevent
nonspecific binding. The SPMBs were then washed and re-suspended in 100 µL of PBS.
Then, 1 µL of Apt solution (100 pM) was added to the suspension of blocked SPMB, mixed,
and incubated for 3 h at RT. The SPMB-Apt complexes were washed twice with 200 µM of
PBS to remove the unbound aptamers.

To achieve binding of specific population of SEVs, 100 µL of the total population of
plasma SEVs (concentration 2 × 1011 particles/mL) were added to the pellet of SPMB-Apt
complexes, mixed, incubated at 4 ◦C overnight under moderate stirring, and washed twice
in 200 µL of unbound SEVs. In order to test the efficacy of specific SEV binding, the total
population of plasma vesicles was labelled in advance with lipophilic dye CM-Dil, purified
by size exclusion chromatography columns (Section 2.4) incubated with SPMB-Apt, then
washed and assayed by flow cytometry. In order to purify vesicular RNA, TPPS-isolated
SEVs were incubated with SPMB-Apt, and the SPMB-Apt-SEVs complexes were washed,
pelleted, and mixed with lysis buffer.
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2.10. RNA Isolation and RT-PCR

RNA from the SPMB-bound SEVs (SPMB-Apt-SEVs) was isolated with an RNAGEM
kit (MicroGem, Dunedin, New Zealand) according to the manufacturer’s protocol. The
isolated RNA was analyzed by two-tailed reverse transcription (RT) followed by real-time
polymerase chain reaction (PCR) using corresponding kits ALMIR series (Algimed Techno,
Minsk, Belarus) according to the manufacturer’s protocol. An amount equal to 2 µL of the
total RNA solution was used for the RT reaction in a volume of 20 µL with 0.05 pM of two-
tailed RT-primer and 100 U of M-MuLV–RH reverse transcriptase and corresponding buffer.
Reaction conditions: 25 ◦C—45 min, 85 ◦C—5 min. Then, 4 µL of RT reaction mix were used
for PCR in 20 µL with 0.06 pM of each PCR primer, 0.04 pM of FAM-labelled probe, and
10 µL of 2xPCR master mix composed of Taq DNA Polymerase, dNTPs, and corresponding
buffer. Reaction conditions: 5′—95 ◦C and 40 cycles of 5′′—95 ◦C/15′′—60 ◦C. All reactions
were conducted in technical triplicates, and results were obtained with CFX Manager
Software 3.1. Instead of the standard approach for PCR data normalization using reference
molecules, amplification ratios of all miRNA pairs were estimated as 2Ct(miR−A) − Ct(miR−B)

and used as diagnostic criteria.
The experimental data were processed using Nanosight NTA 3.4, CytExpert software,

OriginPro 9.1, and Graph Pad Prizm 8. Statistical differences between groups of samples
(healthy donods (n.8) vs. PC patients (n.13)) were evaluated using the nonparametric
Mann–Whitney test. ROC analysis was used to assess the diagnostic significance of the
developed method in the group of healthy donors (n.18) vs. various groups of patients
with different clinical characteristics (the size of the groups varied from n.3 to n.36).

3. Results
3.1. Characteristics of Small Extracellular Vesicles (SEVs) from Plasma

The total SEV population was isolated from all plasma samples with TPPS [20]. The
size of the SEVs measured by the NTA was in a range from 75 to 140 nm with a mean size
of 110 nm. The concentration of isolated SEVs varied from 1.83 to 3.04 × 1011 particles/mL.
A representative example of NTA for one sample is shown in Figure 1A. The morphology
of the isolated SEVs was assayed using LVSEM; Figure 1B demonstrates spherical particles
of various sizes. It was expected that results of NTA and LVSEM varied slightly due to
the difference in sample preparation and measurement principles. Exosomal markers,
tetraspanins CD9, CD63, and CD81, were detected on the surface of isolated vesicles
using on-bead flow cytometry (Figure 1C). We did not observe a difference between SEVs
isolated from the plasma of PC patients and those from healthy donors for any of the
parameters tested.

The obtained results indicated that the population of particles isolated from plasma
with TPPS was composed of small extracellular vesicles (SEVs), and at least some of
these vesicles were positive for exosomal markers. These results corresponded well with
previously published data [21]. We did not attempt to isolate a pure fraction of exosomes,
and our further experiments were performed with the obtained population of SEVs.

SEVs secreted by PC cells (DU145 or PC-3) were isolated from 300 mL conditioned media
and quantified by NTA. The concentration of SEVs was then adjusted to 2 × 1011 particles/mL.
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tive examples of NTA of SEVs isolated from donor’s plasma. (B) SEVs visualized using low-voltage
scanning electron microscopy. (C) Exosomal markers assayed on the SEV surface using on-bead flow
cytometry. SEVs nonspecifically attached to latex beads were stained with fluorescent-labelled antibodies.

3.2. Selection of Most Effective DNA-Aptamers

On the basis of scientific data analysis, we chose eight DNA aptamers to selectively bind
to known or unknown markers associated with prostate or PC cells (Supplementary Table S2).
The affinity of these aptamers for prostate or PC cells was evaluated by AuNP-aptasensor,
as developed previously [20].

First, we thought to estimate the operating range of the AuNP-aptasensor. The
principle of the analytical procedure is schematically presented in Figure 2A: free AuNPs
have peroxidase activity, which can be assessed by the TMB peroxidation color reaction.
Attachment of DNA-aptamers to the surface of AuNPs reversibly inhibited their peroxidase
activity. We measured the activity of free AuNPs (AuNP (MAXIMUM)), and the activity
of AuNPs completely inhibited any of the DNA-aptamers (AuNP-Apt (MINIMUM). The
difference between these parameters provided us with a working diapason of AuNP-
aptasensors that varied slightly between the DNA-aptamers due to difference in their
length and ability to shield the surface of Au nanoparticles.

It is expected that the appearance of SEVs bearing prostate-associated surface markers
in the reaction mixture will lead to the detachment of aptamers from the surface of AuNPs
and the restoration of their peroxidase activity within a working range (Figure 2B). The
intensity of such a restoration depends on the affinity of the interaction between the
SEV surface markers and the DNA-aptamers, which is determined by the sequence and
spatial conformation of aptamers. To evaluate the properties of selected aptamers, we
used AuNP-aptasensors equipped with each of them [20] and SEVs secreted by either
prostate cancer cells (DU145, PC3) or by SEVs isolated from plasma of healthy donors
(n.8). In order to minimize inter-individual variability of plasma SEV characteristics, we
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used samples of SEVs from eight healthy donors randomly selected from our collection,
normalized by concentration and pooled. It was expected that PC cell-derived SEVs will
more actively attract the aptamers and liberate the surface of AuNPs than SEVs isolated
from donor’s plasma.
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action. (B) Readout of system from maximum enzymatic activity (free AuNP) to minimum enzymatic
activity (AuNP inhibited by attached Apt4) after peroxidation of TMB. Presence of SEVs resulted in
replacement of aptamers from the surface of NPs to the surface of vesicles. The partial restoration of
NP enzymatic activity was evaluated after peroxidation of TMB and absorbance measurement.

Representative results of plasma SEVs and SEVs secreted by DU145 cells assayed by
AuNP-aptasensor with Apt4 are shown in Figure 2B. Eight aptamers were used to assay tree
types of SEVs (plasma, DU-145, and RC-3-derived), and the degree of restored peroxidase
activity of AuNP was expressed as a percentage of the operating range (Table 1).

Table 1. Comparative evaluation of DNA-aptamers’ (Apt) affinity to SEVs from either plasma or PC
cell cultures (DU-145, PC3) assayed by AuNP-aptasensor and expressed as a percentage of the total
operating range.

Apt1 Apt2 Apt3 Apt4 Apt5 Apt6 Apt7 Apt8

SEV (plasma) 6.61 19.91 17.53 7.15 6.34 10.69 14.78 8.96

SEV (DU-145) 36.9 77.7 63.87 63.24 81.42 72.63 73.83 63.49

SEV (PC-3) 62.42 60.76 55.37 60.46 64.89 63.7 63.83 67.49

Delta 1 43.05 49.32 42.09 54.7 66.82 57.48 54.05 56.53
1 Delta = SEV (plasma)—averaged (SEV (du-145), SEV (PC-3)).

The DNA-aptamers that reacted less with plasma SEVs (lower % of the restored
peroxidase activity) and more actively reacted with SEVs secreted by cultured PC call
DU-145 (higher % of the restored peroxidase activity) were supposed to be suitable for
further experiments. Five DNA-aptamers (Apt4, Apt5, Apt6, Apt7, and Apt8) revealed
a large difference between the signal obtained with PC cell-derived SEVs and the signal
obtained with plasma SEVs (Delta > 50% of AuNP-sensor working range). These aptamers
were selected for further work.
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3.3. Relative Quantification of PC-Derived SEVs in Plasma of Healthy Donors and PC Patients

Next, we attempted to see whether development of PC is associated with an increase in
the concentration of SEVs derived from prostate and/or PC cells. The total populations of
plasma SEVs were isolated from the plasma of healthy donors and patients with advanced
(metastatic) PC. In order to assay the prostate- or PC-derived plasma SEVs with maximal
efficacy, the AuNP-aptasensor was equipped with five selected DNA-aptamers mixed in
equimolar ratio (AptMIX), while the total amount of DNA was kept as usual (2.5 µL of
solution at concentration 100 pmol/µL). Measurements were carried out the same way as
in previous experiments. Results obtained from the samples of healthy donors’ plasma
(n = 8) and those of PC patients (n = 13) are presented in Figure 3. In parallel, we assayed a
quantity of CD63(+)SEVs and CD30(+)SEVs as control using corresponding DNA aptamers
described previously [20].
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Figure 3. Assessment of prostate-derived SEVs in plasma of patients with advanced PC and healthy
donors using an AuNPaptasensor equipped with a prostate-specific aptamer mixture (AptMIX),
CD63-specific aptamer, and CD30-specific aptamers. The absorbance-reflecting number of prostate-
or PC-derived SEVs was measured at 350 nm. The statistical significance of the difference between
the groups was estimated by Mann-Whitney test: * (p < 0.05), ** (p < 0.005).

A statistically significant difference between the groups of PC patients and healthy
donors was obtained using aptMIX (p < 0.005). An amount of CD63(+)SEVs was also
slightly increased in the plasma of PC patients compared to healthy donors (p < 0.05). Since
exosomal marker CD63 is expressed in various types of solid tumors including PC [26],
this may explain the increase in CD63(+)SEVs in patients with PC. We did not observe
a difference in the concentration of CD30(+)SEVs between analyzed groups. The results
confirmed that the appearance of a specific prostate-derived (Apt4(+) and/or Apt5(+)
and/or Apt6(+) and/or Apt7(+) and/or Apt8(+)) population of SEVs is associated with the
development of PC. Even though we have no data to estimate how large and homogeneous
this population is, we can suppose that the miRNA content of these vesicles may better
reflect PC development than the total population of plasma SEVs. Assuming a prostatic
origin if an isolated SEV population, we further referred to them as pSEV.

3.4. Isolation of pSEVs with Functionalized SPMP

The next experiment was aimed at comparing the efficiency of the isolation of pSEVs
with SPMB functionalized using a single anti-PSMA-aptamer Apt3 [27] used previously [19]
or using a mix of five aptamers—AptMIX. The mechanism of SPMB functionalization via
click chemistry is schematically presented in Figure 4A.
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Figure 4. Efficacy of prostate-specific SEVs’ sorption. (A) The scheme of super-paramagnetic beads’
(SPMB) functionalization with aptamers through click chemistry. To evaluate the efficacy of prostate-
derived SEVs’ binding, vesicles were labelled lipophilic dye CM-Dil, incubated with SPMBs function-
alized with single aptamer Apt4 (B) or with a mix of five different aptamers—AptMIX (C). SPMB
with attached CM-Dil-labelled SEVs were assayed with flow cytometry.

SPMB were prepared with a standard protocol [19]. Plasma SEVs from healthy donors
(n. 8) were labelled with the membrane dye Vibrant Dil (CM-Dil), purified with SEC [23],
pooled, and incubated with SPMB functionalized with either Apt3 or AptMIX. Relative
quantification of isolated pSEVs was performed with flow cytometry; results are presented
in Figure 4B,C. Use of SMPB functionalized using a combination of Apts (AptMIX) almost
doubled the isolation efficiency of SEVs (8.58% vs. 17.15%). These results confirmed the
efficiency of the multi-ligand binding approach for the isolation of pSEVs.

3.5. Evaluation of Diagnostic Value of PC-Associated miRNA in pSEVs

The pSEVs were isolated from the plasma of PC patients (n = 36) and healthy donors
(n = 18) using SPMB-AptMIX complex according to the previously described protocol.
Patients included in this study had histologically confirmed local PC with neither lymph
node nor distant metastases detected (Supplementary Table S1A). The schematic workflow
of the applied pre-analytic procedure is presented in Figure 5.

In order to investigate the association between pSEV miRNA content and the
clinical characteristics of PC, patients with localized PC were grouped according to a
three-tiered sub-classification system [28] (Supplementary Table S1). The microRNA as-
sociated with PC were selected on the basis of our previous studies and PubMed search
(Supplementary Table S3). After total RNA extraction, a semi-quantitative assessment
of the selected miRNAs concentrations was conducted using RT-PCR. A complete list of
averaged Ct is presented in Supplementary Table S4.
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In our study, we assayed 12 PC-associated miRNA molecules in specific pc-SEVs
isolated from 54 blood samples (PC n.36 and healthy donors n.18). It was doubtful to be
able to select the appropriate reference miRNA and to perform data normalization. The
evaluation of the amplification ratio (amp-ratio) of two simultaneously and reciprocally
dysregulated miRNAs is a promising approach for miRNA expression data interpretation
validated in several studies by us [28] and others [29]. Here, the amp-ratio was obtained
using the following formula: Ratio = 2 Ct(miR-A) − Ct(miR-B) for each possible pair of miRNAs
(Supplementary Table S5). The amp-ratios were explored as diagnostic parameters to distin-
guish samples of PC patients and healthy donors, and the efficiency of such diagnosis was
assessed using ROC analysis. Figure 6A shows the ROC curves for the five microRNA pairs
with the highest AUC values; the results of other miRNA pairs evaluation are presented in
Supplementary Table S6.
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Figure 6. Distinguishing of PC patients and healthy donors by the assessment of miRNAs in prostate-
derived SEVs. (A) ROC analysis for five reciprocally dysregulated miRNA pairs with AUC > 0.8.
(B) Dendrogram obtained by furthest neighbor clustering method using values of amplification ratio
for three pairs of microRNAs: miR-205/miR-375, miR-26b/miR375, and miR-20a/miR-375. Two
main clusters are shown by red and black.

The statistically significant difference between PC and control groups and the AUC > 0.8
indicated a high diagnostic value of certain miRNA pairs assayed in the population of pSEVs.
To confirm this, we used cluster analysis. We took the ratio for three pairs of microRNAs
(AUC > 0.85) (miR-205/miR-375, miR-26b/miR375, miR-20a/miR-375) and applied the
furthest neighbor clustering method. The resulting dendrogram is shown in Figure 6B:
samples obtained from PC patients and healthy donors were distinguished with sensitivity—
93.94%, specificity—76.19%, and accuracy—87.04%. Obtained results confirmed the high
diagnostic potency of miRNAs’ analysis in a specific pSEV population.
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3.6. Clinical Significance of PC-Associated miRNA in pSEVs

The personalized management of PC patients should be based on an integral evalu-
ation of different disease markers. For instance, assessment of the plasma PSA level, the
size/spread of the tumor, and the Gleason score range makes it possible to stratify patients
into groups with various risks of disease progression [4,28]. If miRNAs are considered hub-
regulators of altered protein synthesis in PC cells, the analysis of miRNA in pSEVs should
reflect disease status. We attempted to prove this hypothesis by testing the correlation
between the value of reciprocally regulated miRNAs’ amp-ratio and standard clinical pa-
rameters (the plasma PSA level, the volume of prostate, and the Gleason score). To do this,
all possible miRNA pairs’ amp-ratios were explored as the criteria for the differentiation of
healthy donors from groups of patients with different ranges of risk factors. Diagnostic
values were estimated using ROC analysis, and a complete list of the results (AUC values)
is presented in Supplementary Table S7. The most interesting results are demonstrated in
Figure 7.
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Figure 7. Example of the distinguishing of healthy donors from PC patients with different extents of
clinical characteristics using amp-ratio values. The number of patients in each group is indicated.
(A) Healthy donors were distinguished from PC patients with different prostate sizes measured using
MRI (V > 59 cm3, n.22; V < 59 cm3, n.14). Diagnostic criterion: miR-26b/-375 amp-ratio. (B) Healthy
donors were distinguished from PC patients with different Gleason scores of prostate cancer evaluated
histologically (Gleason score 6, n.3; Gleason score 7, n.18; Gleason score 8/9, n.17). Diagnostic
criterion: miR-205/-20a amp-Ratio. (C) Healthy donors were distinguished from PC patients with
different levels of plasma PSA (PSA > 12 ng/mL, n.22; PSA < 12 ng/mL, n.14). Diagnostic criterion:
miR-205/-375 amp-Ratio.

For instance, when the amp-ratio of miR-26b/-375 was used as a criterion to differenti-
ate healthy donors from PC patients (Figure 7A), the efficiency of such differentiation was
higher for the group of patients with a prostate size over 59 cm3 (AUC = 0.936) than for
the group of patients with a prostate size up to 599 cm3 (AUC = 0.891). A similar tendency
was observed for the amp-ratio of miR-205/miR-20a (Figure 7B): the healthy donors were
differentiated from patients with high-grade PC (Gleason score 8/9) with AUC = 0.935,
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from patients with medium-grade PC (Gleason score 7) with AUC = 0.739, whereas the
difference between healthy donors and patients with low-grade PC (Gleason score 6) was
negligible (AUC = 0.625). The amp-ratio of miR-205/miR-375 (Figure 6C) can be used to
differentiate healthy donors from PC patients more precisely when plasma PSA > 12 ng/mL
(AUC = 0.969) and less precisely when plasma PSA < 12 ng/mL (AUC = 0.883). The results
of other miRNA pairs’ evaluation are presented in Supplementary Table S7. Altogether,
obtained results indicate a high predictive value of miRNA isolated from pSEV.

4. Discussion

MiRNAs have been explicitly investigated for their potential to serve as molecular
markers for PC [30]. Several recent studies have demonstrated the great potential of plasma
circulating miRNAs: miR-4289, -326, -152-3p and -98-5p [31], miR-21, -125b, 126, -141, -375,
-let-7b [32], miR-150-5p [32], miR-4732-3p, -98-5p, -let-7a-5p, -26b-5p, -21-5p [33] and others;
however, results rarely overlap. The potential of using circulating miRNA to diagnose
PC has recently been reviewed with cautious optimism [34]: “there are a lot of pitfalls in
our knowledge”. The most important factors hampering development of miRNA-based
liquid biopsy for PC are (1) the complex and poorly characterized composition of plasma
mRNAs; (2) the little effect that prostate-derived miRNAs can have on the plasma miRNA
profile; and (3) the imperfection of miRNA isolation and quantification techniques. The
plasma SEVs are considered natural vehicles of miRNA, which might provide an excellent
option to solving most of the concerns mentioned and developing a miRNA-based PC
diagnostic tool.

However, simple isolation of plasma SEV followed by analysis of vesicular miRNA
is not enough. As it was demonstrated by quantitative and stoichiometric analysis of
the miRNA content of plasma exosomes [35], most of the vesicles derived from standard
preparation do not harbor many copies of miRNA molecules. Muneesh Tewari et al. [35]
quantified SEV and PC-relevant miRNA-126 and -223 in the plasma of healthy donors and
PC patients. Thus, the number of SEV varied in a rather narrow diapason 1–4 × 109/µL,
and the number of miR-126 varied in wide diapason within 104–105/µL, while the number
of miR-223 varied within 105–106/µL. This means that marker miRNAs were found in one
out of 105 or 103 analyzed vesicles only. In this case, the total concentration of circulating
vesicles and the efficiency of their isolation will crucially influence the results of miRNA
quantification. To the best of our knowledge, these results have not been directly confirmed
by anyone, but they explain quite well the poor agreement between exosomal microRNA
studies published so far [31–34].

Considering the variability of the plasma SEV population and extremely rare distri-
bution of the specific miRNAs within SEVs, the isolation of tissue- or cell-specific SEVs
seems to be the obligatory step prior to vesicular miRNA assessment. Foroni et al. explored
this assumption using immunoadsorption of the specific SEV population using patented
antibodies against undisclosed surface marker of cells growing in hypoxic conditions [15].
If the cells of PC suffer from hypoxia, their vesicles can bear this marker and can be en-
riched via immunoadsorption. Usssing the SoRTEV RNA enrichment protocol, the authors
demonstrated an increased sensitivity of detection of the disease-associated splicing variant
of the androgen receptor (AR) associated with the response to antiandrogen therapy. An-
other hypothesis was explored in our study. We supposed that malignant transformation
does not always and straightaway lead to complete dedifferentiation of cancer cells, and
most of the tumors keep tissue-specific surface markers. This has been demonstrated
in colon cancer [36]. Over the last year, we developed and optimized the technology of
tissue-specific SEV isolation based on superparamagnetic beads’ functionalized by ligand
to tissue-specific markers [18,19]. In the present study, we explored a new strategy of
multi-ligand binding of tissue-specific SEVs using DNA-aptamers developed by other
research groups (References in Supplementary Table S2). Results obtained in our study
justified this approach.
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However, it should be taken into account that multi-ligand binding should increase
efficiency but could reduce specificity of tissue-specific SEV isolation. Thus, the develop-
ment of aptamers with an affinity to tissue-specific cell surface markers will be a next step
in our research. Moreover, deep profiling of miRNA in such tissue-specific population
of SEVs needs to be performed for identification of the most relevant diagnostic markers.
Finally, an evaluation of the diagnostic performance of the developed method should
be performed through the analysis of large cohorts of PC patients, patients with benign
prostatic hyperplasia (BPH), and healthy donors.

5. Conclusions

MiRNA in the prostate-specific plasma SEV population (pSEV) has great diagnostic
potential. A pSEV can be effectively isolated using super-paramagnetic beads functional-
ized with multiple DNA-aptamers. The profile of miRNA in pSEVs is of great diagnostic
value and is associated with PSA level, volume of prostate, and Gleason score of PC.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/life13040885/s1. Table S1A: Information about patients. Table S1B
Biological material used for SEV isolation and analysis. Table S2: DNA-aptamers sequences. Table S3:
List of miRNA assayed in pc-SEVs. Table S4: List of averaged Ct. Table S5: The amp-Ratio for
each possible pair of miRNAs. Table S6: AUC values for all miRNA pairs (all patients and donors).
Table S7: Prognostic potency of amp-Ratio values of miRNA pairs.
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