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Abstract: Big-medical-data classification and image detection are crucial tasks in the field of health-
care, as they can assist with diagnosis, treatment planning, and disease monitoring. Logistic regression
and YOLOv4 are popular algorithms that can be used for these tasks. However, these techniques have
limitations and performance issue with big medical data. In this study, we presented a robust ap-
proach for big-medical-data classification and image detection using logistic regression and YOLOv4,
respectively. To improve the performance of these algorithms, we proposed the use of advanced
parallel k-means pre-processing, a clustering technique that identified patterns and structures in
the data. Additionally, we leveraged the acceleration capabilities of a neural engine processor to
further enhance the speed and efficiency of our approach. We evaluated our approach on several
large medical datasets and showed that it could accurately classify large amounts of medical data
and detect medical images. Our results demonstrated that the combination of advanced parallel
k-means pre-processing, and the neural engine processor resulted in a significant improvement in
the performance of logistic regression and YOLOv4, making them more reliable for use in medical
applications. This new approach offers a promising solution for medical data classification and image
detection and may have significant implications for the field of healthcare.

Keywords: medical data; medical imaging; data classification; image detection; YOLOv4; logistic
regression; machine learning; AI; deep learning

1. Introduction

The advancement of digital medical technology, coupled with the exponential growth
of medical data, has led to biomedical research becoming a data-intensive science, resulting
in the emergence of the “big-data” phenomenon, as reported in the literature, such as in [1].
Data have become a strategic resource and a key driver of innovation in the era of big
data, transforming not only the way biomedical research has been conducted, but also the
ways in which people live and think, which has been highlighted in studies such as [2].
To capitalize on this, the relevant departments in the medical industry should focus on
collecting and managing medical health data and use this information as a foundation
for later developments through the integration, analysis, and application requirements
required to employ big data in the medical field [3].

Big medical data and image detection is an essential element of healthcare that plays
a critical role in the storage, organization, and analysis of medical information [4]. the
effective classification of medical data enables the efficient retrieval and examination of
patient records, which can aid in the diagnosis and treatment of illnesses. It can also assist in
identifying trends and patterns in patient health data, enabling healthcare professionals to
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recognize potential risk factors and take preventative measures. Furthermore, medical data
classification has facilitated the advancement of new treatments and therapies by allowing
researchers to analyze large datasets and uncover potential correlations and trends [5].

COVID-19 data classification has involved organizing and labeling data related to the
coronavirus pandemic, such as information about confirmed cases, deaths, and vaccination
rates. These types of data have often been used to track the spread of the virus and inform
public health decisions. Image detection techniques have been used to identify COVID-19-
related images, such as X-ray scans showing lung abnormalities associated with the virus.
These techniques have assisted healthcare professionals and researchers better understand
and track the spread of the virus.

However, there have been several challenges and problems associated with COVID-
19 data classification and image detection. One major challenge has been ensuring the
accuracy and reliability of the data being used. There have been errors and biases in the
data that affected the results. Additionally, there have been privacy concerns related to
collecting and using personal health data. There have also been technical challenges in
developing and implementing image detection algorithms, such as difficulties in obtaining
a sufficiently large dataset for training. Overall, addressing these challenges is crucial in
order to effectively use data and image detection techniques to understand and combat the
COVID-19 pandemic.

In this study, an efficient and high-performance solution to enhance the accuracy
of medical data classification and image detection was proposed. Advanced k-means
clustering was merged with both classification and detection techniques to elevate the
performance and accuracy of these techniques [6]. To evaluate the performance of medical
data classification, a large medical dataset was used. Furthermore, to evaluate the effec-
tiveness of the detection technique, a dataset comprising X-ray COVID-19 and CT images
was utilized. The results indicated that the proposed models significantly improved the
performances of classification and detection. The proposed model’s contributions were
the following:

1. The successful application of advanced parallel k-means clustering as a pre-processing
step for both the images and the data to improve the accuracy of image feature
extraction and detection, as well as the accuracy of data classification.

2. Both hardware and software improvements were employed to significantly accelerate
the classification and detection processes. Hardware acceleration was achieved by
utilizing the latest neural engine processor while the software optimization involved
using parallel-processing mechanisms.

This paper is divided into seven sections. The introduction addresses the significance
of medical data classification and medical image detection. Section 2 discusses various data
classification and image detection algorithms, including their advantages and limitations.
Section 3 addresses the current challenges and features of solutions for processing large
amounts of medical data and images. Section 4 presents the proposed solution. Section 5
outlines the methodology and performance metrics used to evaluate the proposed solu-
tion. The implementation and results of the proposed solution are presented in Section 6.
Section 7 concludes the paper.

2. Data Classification

Data classification is the process of organizing and categorizing data based on prede-
termined criteria [7]. It is a crucial aspect of many applications, including data management,
data analysis, and information retrieval.

Logistic Regression Algorithm

Logistic regression is a type of binary classification algorithm that is used to predict
the probability of an event occurring [8]. It has been commonly used in machine learning
for applications such as spam detection, medical diagnosis, and sentiment analysis [9].
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The logistic-regression model maps the input features x1, x2, ..., xn to a predicted
output variable y that has a value between 0 and 1, representing the probability of the event
occurring [10].

The logistic function, also known as the sigmoid function, is used to model the
relationship between the input features and the predicted output variable. The sigmoid
function is defined as [10]:

f (z) =
1

1 + e−z

where z = w0 + w1x1 + w2x2 + ... + wnxn is the linear combination of the input features
and their corresponding weights, with w0 as the bias term.

The logistic regression algorithm aims to find the optimal values for the weights
w0, w1, w2, ..., wn that minimize the error between the predicted output variable and the
true output variable [11]. This is achieved by maximizing the likelihood function, which is
the probability of the observed data according to the model parameters [12]. The likelihood
function for logistic regression is:

L(w) =
m

∏
i=1

f (zi)
yi (1− f (zi))

1−yi

where m is the number of training examples, yi is the true output variable for the ith example,
and zi is the linear combination of the input features and weights for the ith example [13].

The optimal values for the weights can be found using gradient descent, which
involves iteratively updating the weights in the direction of the negative gradient of the
likelihood function [14]. The updated rule for the weights is:

wj := wj − α
∂L(w)

∂wj

where α is the learning rate, and ∂L(w)
∂wj

is the partial derivative of the likelihood function
with respect to the jth weight.

The logistic regression algorithm can be summarized in the following steps:

1. Initialize the weights w0, w1, w2, ..., wn to random values.
2. Calculate the linear combination zi for each training example using the current weights.
3. Calculate the predicted output variable yi for each training example using the logistic function.
4. Calculate the error between the predicted output variable and the true output variable

for each training example.
5. Calculate the gradient of the likelihood function with respect to each weight.
6. Update the weights using the gradient descent update rule.
7. Repeat steps 2–6 until the error converges or a maximum number of iterations is reached.

One of the main advantages of logistic regression is its simplicity and ease of imple-
mentation. It is a straightforward algorithm that can be easily implemented using standard
statistical software [15]. Additionally, logistic regression is highly interpretable, allowing
users to understand the contributions of each independent variable to the predicted proba-
bility. It is also robust regarding multicollinearity, meaning that it can handle correlated
independent variables without producing biased estimates.

However, logistic regression is not without its challenges. One of the main limitations
is that it is only suitable for binary classification problems, meaning that it can only predict
the likelihood of an event occurring or not occurring [16].

3. Image Detection Technique

Image detection is a technique used to identify and locate specific objects, features,
or patterns within an image. It is a crucial aspect of many applications, including object
recognition, facial recognition, and scene comprehension [17]. In the field of healthcare,
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image detection is used to analyze and interpret medical images, such as X-rays, CT scans,
and MRIs. These images provide important diagnostic information that can be used to
identify and treat diseases.

YOLOv4 Algorithm

The You Only Look Once version 4 (YOLOv4) algorithm is a state-of-the-art object
detection algorithm that processes an entire image and directly predicts the bounding
boxes and class probabilities for all objects in the image. It uses a convolutional neural
network (CNN) to extract features from the input image and then apply them a series of
convolutional and fully connected layers in order to predict the class probabilities and
bounding box coordinates for each object [18].

The YOLOv4 algorithm predicts object classes and bounding box coordinates by
dividing the input image into a grid of cells and predicting the class probabilities and
bounding box offsets for each cell [19]. Specifically, for each cell in the grid, the algorithm
predicts:

• The probability of an object being present in that cell (denoted pobj).
• The x and y coordinates of the center of the bounding box, relative to the coordinates

of the cell (denoted by bx and by, respectively).
• The width and height of the bounding box relative to the size of the cell (denoted by

bw and bh, respectively).
• The class probabilities for each object class (denoted by pc1, pc2, ..., pcn, where n is the

number of classes).

These predictions are made using a series of convolutional and fully connected layers
in the YOLOv4 network. The network architecture is based on a variant of the DarkNet
architecture, which consists of multiple convolutional layers and followed by max-pooling
layers, and ends with multiple fully connected layers [20]. The final layer of the network
outputs a tensor that is the shape of (grid size) × (grid size) × (number of anchor boxes) ×
(5 + number of classes), where the 5 refers to the objectness score, bx, by, bw, and bh [21].

The YOLOv4 algorithm then uses non-maximum suppression to remove redundant
bounding boxes for the same object [22]. Specifically, for each class, it applies non-maximum
suppression to the set of predicted bounding boxes with objectness scores above a certain
threshold. This threshold is usually set to a value between 0.5 and 0.7, depending on the
desired balance between precision and recall [23].

The YOLOv4 algorithm can be trained using a loss function that measures the errors
between the predicted and ground-truth bounding boxes and class probabilities [24]. The
loss function consists of two components: a localization loss that penalizes errors in the
predicted bounding box coordinates, and a classification loss that penalizes errors in the
predicted class probabilities. The localization loss is typically computed using the mean
squared error (MSE) between the predicted and ground-truth bounding box coordinates,
while the classification loss is typically computed using the cross-entropy loss between the
predicted and ground-truth class probabilities [25].

Algorithm 1 shows the main steps of the YOLOv4 algorithm.

Algorithm 1 YOLOv4 object detection algorithm

Require: Input image I
Ensure: Bounding boxes B and class probabilities C

1: Pre-process I to obtain an input tensor X
2: Apply the backbone network to obtain feature maps F1, F2, ..., Fn
3: Apply the neck network to combine the feature maps and obtain a single feature map F
4: Apply the detection head to F to obtain a set of candidate boxes Bc and class probabilities Cc
5: Apply non-maximum suppression (NMS) to Bc and Cc to obtain the final set of bound-

ing boxes B and class probabilities C, respectively
6: return B and C
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Note that this algorithm assumes that the YOLOv4 architecture has already been
trained on a large dataset of images with labeled objects and that the resulting model has
been saved and can be loaded for inferences on new images. The backbone network, neck
network, and detection head are all components of the YOLOv4 architecture, and their
specific details are beyond the scope of this pseudo-coded algorithm [26].

One way that YOLOv4 has been used in medical image analysis has been in the
detection of abnormalities and lesions in images [27]. For example, it was used to identify
abnormalities in CT scans of the brain, which could then be used to diagnose and treat
brain tumors. By analyzing CT scans with YOLOv4, healthcare professionals could more
accurately identify abnormalities and determine the appropriate course of treatment.

During the COVID-19 pandemic, YOLOv4 has also been used to analyze chest X-rays,
which have often been used to diagnose the virus [28]. By detecting characteristic patterns
associated with COVID-19, such as lung abnormalities, YOLOv4 assisted healthcare profes-
sionals in making accurate diagnoses and providing timely treatments for patients [29]. In
addition to its use in detecting abnormalities within images, YOLOv4 has also been used to
detect objects in images, such as medical instruments and organs. This was particularly use-
ful for identifying and tracking objects during surgical procedures, such as in the detection
of brain tumors [30].

4. Medical Data Classification and Detection

Medical data classification and image detection are two critical areas in healthcare
that could benefit from the latest advancements in machine-learning and computer-vision
technologies. In recent years, there has been a significant increase in the amount of medical
data generated due to the availability of electronic health records and medical imaging
technologies. This growth in medical data has provided new opportunities for developing
more accurate and efficient methods for classification and image detection, which could
lead to improved diagnoses, treatments, and patient outcomes.

4.1. Medical Data and Image Classification

The classification of medical data refers to the process of assigning a label or category
to a particular medical dataset. The classification of medical data could be used for various
applications, such as disease diagnosis, drug discovery, and prognosis. The following are
the state-of-the-art techniques used in medical data classification.

• Deep Learning: Deep learning has revolutionized the field of medical data classifica-
tion and image detection, due to its ability to handle large and complex datasets with
improved accuracy and efficiency [31]. Convolutional neural networks (CNNs) and
recurrent neural networks (RNNs) are two widely used deep-learning techniques that
have demonstrated exceptional performance in the medical field [32]. CNNs have
been specifically designed to analyze visual imagery, making them a popular choice
for medical image analysis. They consist of multiple layers that learn different features
of an image, such as edges and textures, and then use these features to classify the
image. The ability of CNNs to automatically extract relevant features from medical im-
ages has led to their use in a wide range of applications, such as mammogram analysis
for breast cancer detection and brain tumor segmentation. Furthermore, RNNs have
been designed to process sequential data and have been extensively used in various
medical applications, such as medical signal processing, clinical event prediction,
and ECG signal analysis [33]. They are able to analyze the temporal dependencies
in sequential data by using a memory component that allows them to remember
past inputs and use them to influence future predictions. RNNs have also been used
in combination with CNNs to analyze both image and sequential data, such as in
the case of electroencephalogram (EEG) signal analysis [34]. In addition to CNNs
and RNNs, other deep-learning techniques, such as generative adversarial networks
(GANs) and auto-encoders have also been explored in medical data classification and
image detection [35]. GANs have been used to generate synthetic medical images,
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which were then used to augment existing datasets and improve the performance of
image classifiers. Auto-encoders, in contrast, have been used for feature extraction and
dimensionality reduction, which improved the efficiency of classification algorithms.

• Support Vector Machines (SVMs): SVMs are a type of supervised learning algorithm
that has been widely used for classification tasks in many areas, including in medical
data classification. SVMs have been particularly useful for classification tasks in which
the number of features was much greater than the number of samples [36]. SVMs find
the optimal hyperplane that separates the different classes in a dataset. For medical
data classification, SVMs have been used for tasks such as disease diagnosis, the
classification of different types of cancer, and the identification of abnormal medical
images [37]. SVMs have shown high accuracy and robustness in these tasks due to
their ability to handle non-linear data and their resistance to over-fitting.
One example of SVMs being used in medical data classification was for the iden-
tification of breast cancer using mammograms [38]. SVMs had a high accuracy in
distinguishing between benign and malignant tumors, which is critical for the early de-
tection and treatment of breast cancer. SVMs have also been used for the classification
of brain tumors and the identification of Alzheimer’s disease in medical imaging data.

• Random Forest: Random forest is a type of ensemble learning algorithm that combines
multiple decision trees to improve its classification accuracy. The method is considered
a supervised learning technique that operates by constructing several decision trees
during training and then predicts the class label of an input data point by aggregating
the predictions of all the decision trees [39]. Random forest has been effective in
medical data classification due to its ability to handle high-dimensional data and its
resistance to over-fitting. In medical applications, random forest has been used for
various classification tasks, such as disease diagnosis, the prediction of treatment
responses, and mortality risk assessments [40]. One advantage of random forest is
its ability to handle missing data and noisy features. This is achieved by randomly
selecting a subset of features at each node in the decision tree, which reduces the risk
of over-fitting and improves the model’s generalization performance. Additionally,
the method allows for the calculation of feature importance, which can help identify
the most important variables that contribute to the classification task.

However, the classification of medical data has not been without challenges. One of
the main challenges has been the large volume of data that must be classified [41]. Medical
data are typically generated at a rapid rate and can be difficult to manage due to size and
complexity. Additionally, medical data classification often involves working with sensitive
and personal information, which requires strict adherence to the privacy and security
measures in place. Another challenge has been the lack of standardization in medical data
classification, which has led to confusion and difficulties in data retrieval and analysis [42].
Finally, the constantly evolving nature of the healthcare field means that medical data
classification systems must be regularly updated and adapted to meet changing needs.

4.2. Medical Image Detection

Image detection in healthcare refers to the process of detecting and identifying med-
ical conditions or abnormalities in medical images such as X-rays, CT scans, and MRI
scans. Image detection plays a vital role in the diagnosis and treatment of various medical
conditions [43]. The following are the state-of-the-art techniques used in image detection
in healthcare.

• Convolutional Neural Networks (CNNs): In medical imaging, CNNs have been used
for a variety of applications, such as the detection of breast cancer, lung cancer, and
brain tumors [44]. For example, in breast cancer detection, CNNs have been used
to analyze mammograms and detect subtle changes that could indicate the presence
of cancer. In lung cancer detection, CNNs have been used to analyze CT scans
and identify nodules that could be indicative of cancer. In brain tumor detection,
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CNNs have been used to analyze MRI scans and identify regions of abnormal tissue
growth [45].
One of the advantages of using CNNs for medical image detection is their ability
to learn and extract features automatically, without the need for manual feature
extraction [46]. This makes them particularly useful for analyzing large and complex
medical images, where manual feature extraction can be time-consuming and prone to
error. Another advantage of CNNs is their ability to learn from large amounts of data.
With the increasing availability of medical imaging data, CNNs can be trained on large
datasets to improve their accuracy and generalization performance [47]. Additionally,
CNNs can be fine-tuned and adapted for specific medical image detection tasks, which
can further improve their performance.

• Transfer Learning: In the context of medical image detection, transfer learning was
an effective method for improving the accuracy and efficiency of image classification
tasks [48]. Pre-trained models, such as those based on CNNs, can learn generic image
features that can be transferred to new medical imaging datasets, even when the size
of the new dataset is relatively small [49]. This can be particularly useful in healthcare,
where obtaining large labeled datasets can be challenging and time-consuming. By
using transfer learning, researchers and clinicians leveraged the knowledge and
expertise gained from pre-trained models to improve the accuracy and efficiency of
image detection in healthcare [50]. For example, a pre-trained model that was trained
on a large dataset of chest X-rays was then fine-tuned for a smaller dataset of lung
cancer images, resulting in improved accuracy and faster training times.

5. Related Works

A literature review was conducted to examine the most recent approaches and tech-
niques for medical data classification in this field.

The related works presented here were selected based on their technological similarity
to the proposed solution and their focus on medical data. Furthermore, all papers were
chosen based on their publication in high-quality journals. Furthermore, as COVID-19 has
attracted the attention of researchers in the healthcare field, most of the papers selected in
this review were related to the global COVID-19 pandemic.

In [51], the aim was to evaluate the performance of parallel computing and advanced
k-means clustering as a pre-processing step for data classification and image detection in
medical applications. To achieve this, the researchers utilized a parallel logistic regression
algorithm and a mobile neural engine processor. The k-means clustering technique was
used to pre-process both images and data, resulting in improvements in feature extraction,
the removal of noise and outlier pixels, and classification accuracy. The results of this study
showed that their proposed approach outperformed traditional methods both in terms of
both accuracy and efficiency, making it a promising approach for medical data analysis and
processing.

In 2021, the researchers in [52] proposed a new method for optimizing the perfor-
mance of the k-means clustering algorithm on parallel and distributed computing systems.
The study employed a hybrid approach that combined the traditional Lloyd’s algorithm
with a new partitioning technique. The proposed approach was evaluated using various
datasets, and the results showed that the hybrid approach outperformed both the tradi-
tional Lloyd’s algorithm and other state-of-the-art parallel k-means algorithms, in terms
of both accuracy and efficiency. The study concluded that the proposed approach was a
promising solution for large-scale clustering tasks on parallel and distributed computing
systems. In [53], the authors proposed a new framework for automating the diagnosis of
Alzheimer’s disease (AD) using a machine-learning approach. The proposed framework
utilized a combination of several machine-learning algorithms, including principal com-
ponent analysis (PCA), support vector machine (SVM), and k-nearest neighbors (KNN)
to classify brain images as normal or AD. The study used two different datasets, and the
results showed that the proposed framework achieved high accuracy and specificity when
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classifying brain images as AD. The study concluded that the proposed framework could
be a valuable tool for the early diagnosis and monitoring of AD.

In 2022, [54] investigated the potential use of deep learning algorithms for the detection
of COVID-19 in chest X-ray images. The study proposed a deep-learning model based on
convolutional neural networks (CNNs) that had been trained on a large dataset of chest
X-ray images. The model was tested on a separate dataset of chest X-ray images, and the
results showed that the proposed model achieved high accuracy, sensitivity, and specificity,
in detecting COVID-19. The study concluded that the proposed deep-learning model could
be a valuable tool for the rapid and accurate detection of COVID-19 in chest X-ray images,
especially in regions with limited access to COVID-19 testing facilities.

A literature review was conducted in order to review the most recent approaches and
techniques for medical image detection.

The authors of [55] developed a machine-learning algorithm that could accurately clas-
sify patients with severe COVID-19 and predict their risk of in-hospital mortality. The study
collected data from electronic health records of patients with severe COVID-19, including
demographics, vital signs, laboratory values, and comorbidities. A machine-learning al-
gorithm based on a gradient-boosting machine (GBM) was developed and trained on the
collected data. The results showed that the proposed GBM model achieved high accuracy in
classifying patients with severe COVID-19 and predicting their risk of in-hospital mortality.
The study concluded that the proposed machine-learning algorithm could be a valuable
tool for clinicians to make more informed decisions about the management of patients with
severe COVID-19.

In 2021, the authors of [56] proposed a classification solution using transfer learning to
assess the suitability of 3 pre-trained CNN models (EfficientNetB0, VGG16, and InceptionV3)
for mobile applications. These models were selected for their accuracy and efficiency with
a relatively small number of parameters. The study used a dataset compiled from vari-
ous publicly available sources and evaluated the models using performance measurements
and deep-learning approaches, such as accuracy, recall, specificity, precision, and F1-scores.
The results demonstrated that the proposed method produced a high-quality model with
a COVID-19 sensitivity of 94.79% and an overall accuracy of 92.93%. The study suggested
that computer-vision techniques could be utilized to improve the efficiency of detection and
screening processes.

In 2021, the authors of [57] employed convolutional neural networks (ConvNets) to
accurately identify COVID-19 in computed tomography (CT) images, enabling the early
classification of chest CT images of COVID-19 by hospital staff. ConvNets automatically
learned and extracted features from medical image datasets, including the COVID-CT
dataset used in this study. The objective was to train the GoogleNet ConvNet architecture
using 425 CT-coronavirus images from the COVID-CT dataset. The experimental results
indicated that GoogleNet achieved a validation accuracy of 82.14% on the dataset in 74 min
and 37 s. This study demonstrated the potential of ConvNets in improving the accuracy
and efficiency of COVID-19 detection in medical imaging.

In 2022, the authors of [58] proposed a new method for improving the quality of
CT scans using contrast limited histogram equalization (CLAHE) and developed a con-
volutional neural network (CNN) model to extract important features from a dataset of
2482 CT-scan images. These features were then used as input for machine-learning methods
such as support vector machine (SVM), Gaussian naive Bayes (GNB), logistic regression
(LR), random forest (RF), and decision tree (DT). The researchers recommended an ensem-
ble method for classifying COVID-19 CT images and compared the performance of their
model with other state-of-the-art methods. The proposed model outperformed existing
models with an accuracy of 99.73%, a precision of 99.46%, and a recall of 100%.

In 2022, the authors of [59] described an approach that used a generative adversarial
network (GAN) to improve the accuracy of a deep-learning model for classifying COVID-
19 infections in chest X-ray images. To generate additional training data, the COVID-19
positive chest X-ray images were fed into a styleGAN2 model, which produced new images
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for training the deep-learning model. The resulting dataset was used to train a CNN binary
classifier model that achieved a classification accuracy of 99.78%. This method could aid in
the rapid and accurate diagnosis of COVID-19 infections from chest X-ray images.

6. Proposed Solution

The proposed solution was designed with two main objectives: medical data classifi-
cation and medical image detection. Each model is described in detail in this section.

6.1. Advanced Parallel K-Means Clustering

In order to implement the modified parallel k-means clustering on the mobile execution
unit and the SoC, the algorithm had to be modified to take advantage of a multi-core general-
purpose processor and a multi-core neural engine. Each operating system offered a unique
set of utilities for parallel operation.The iOS environment, due to its use of Objective-
C programming, has an additional tool called dispatch queues, in addition to standard
tools, such as processes and threads. Although iOS is a multi-tasking operating system,
it did not allow multiple processes for a single program, resulting in only one procedure
being available.

However, the Android OS had a limitation in its Java and Kotlin programming lan-
guages, which was the hardware-limited access and lack of pointer support, making it
difficult to fully utilize the system hardware. A lightweight process is a thread of any
type. Threads share memory with their parent process while processes themselves do not.
This led to issues when two threads simultaneously modified the same resource, such as
a variable, resulting in illogical outcomes. In the iOS environment, threads were a finite
resource on any POSIX-compliant system. Only 64 threads could be active at once for a
single process. While this is a large number, there were logical reasons to exceed this limit.

The overall processing, as shown in Figure 1, of the on-device parallel clustering
consisted of two jobs: managing the dataset and clustering execution, and performing the
parallel k-means clustering itself. The general-purpose processor cores were responsible for
managing the clustering in the neural engine cores. After executing the k-means clustering
on a sub-block of the data, each core sent the centroid point-value to the general-purpose
cores. The general-purpose cores then evaluated whether the centroid value was less than
the centroid threshold. If it was less, a signal was sent to the execution mechanism to
process the clustering again.

Figure 2 shows a flowchart of advanced parallel k-means clustering on the neural
engine and general-purpose cores.

6.2. Advanced Classification Solution

Pre-processing medical data with advanced parallel k-means clustering was a use-
ful technique to improve the classification performance of logistic regression algorithms.
K-means clustering is a machine-learning algorithm that is used to partition a dataset into
a specified number of clusters. By using advanced parallel techniques, it is possible to
process data more efficiently and quickly.

Pre-processing the medical data with k-means clustering improved the accuracy and
precision of the logistic regression algorithms by ensuring the data were simpler to classify.
The k-means algorithm divided the data into clusters based on similar characteristics, such
as age or sex. This assisted in reducing the noise and the complexity of the data, making it
simpler for the logistic regression algorithm to accurately classify the data.

In addition to improving the accuracy and precision of the classification process,
pre-processing the medical data with k-means clustering also reduced the computational
resources required to operate the logistic regression algorithm. By reducing the size and
complexity of the dataset, it was possible to operate the logistic regression algorithm more
efficiently and quickly.
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Figure 1. On-device parallel clustering processing.

After clustering the data using k-means clustering, the next step in the process was
to perform the logistic-regression classification. The steps for performing parallel logistic-
regression classification were the following:

• Pre-processing: As with non-parallel logistic regression, it was important to pre-
process the data before applying the model. This included tasks such as missing-value
imputation, scaling, and feature selection.

• Splitting the data: The data had to be split into training and testing sets in order to
evaluate the model’s performance on unfamiliar data.

• Choosing a parallelization method: We had to decide whether to use data parallelism,
model parallelism, or a hybrid parallelism.

• Partitioning the data: Depending on the chosen parallelization method, the data had
to be partitioned into smaller chunks and distributed across multiple processors or
devices.

• Training the model: Each processor or device was responsible for training a separate
logistic-regression model on its chunk of the data. The models were then combined to
form the final model.

• Evaluating the model: The trained model was then evaluated on the testing data. This
involved calculating evaluation metrics, such as accuracy, precision, and recall.

• Assessing the model’s predictions: Once the model had been trained and evaluated,
it was used to make predictions according to new data. To achieve this, the model’s
parameters were used to calculate the probability of an instance belonging to each
class. The class with the highest probability was then predicted as the output.
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Figure 2. On-device parallel clustering flowchart.
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In Algorithm 2, the input is the data D and the number of processors or devices
n to be used for parallelization. The output is the trained logistic-regression model M.
The data were pre-processed and split into training and testing sets. The parallelization
method was chosen, and the training data were then partitioned into smaller chunks. A
separate logistic-regression model was trained on each chunk of data, and the models were
combined to form the final model. The model was then evaluated on the testing data and
the returned results.

Algorithm 2 Parallel Logistic-Regression Classification

1: procedure PARALLELLOGISTICREGRESSIONCLASSIFICATION(D, n)
2: Pre-process data D
3: Split data into training and testing sets Dtrain and Dtest
4: Partition data Dtrain into n smaller chunks Dtrain,1, Dtrain,2, . . . , Dtrain,n
5: for i← 1 to n do
6: Train logistic-regression model Mi on chunk Dtrain,i
7: end for
8: Combine models M1, M2, . . . , Mn to form final model M
9: Evaluate model M on testing data Dtest

10: return Model M
11: end procedure

The algorithm had two input parameters. The first was the clustered dataset, which
included a new feature extracted by the clustering process. The second input was the
number of chunks into which the dataset would be partitioned. The number of partitions
depended on the number of neural engine cores available, with each chunk trained on
a single core. The standard CPU cores handled general tasks, such as data partitioning;
reading and writing data for the neural engine cores; combining models (M1, M2, ..., Mn);
and evaluating models.

Classification Pre-Processing

Using k-means clustering as a pre-processing step could potentially improve the
performance of the logistic-regression classification in several ways:

• Dimensionality reduction: K-means clustering was used to group similar data points
together into clusters, which reduced the number of features in the dataset. By
selecting the centroids of the clusters as the new features, we reduced the dimen-
sionality of the data and removed the noise, which improved the performance of
the logistic regression.

• Feature engineering: K-means clustering was used to create new features that captured
the structure of the data. We added a new binary feature that indicated whether a data
point belonged to a particular cluster or not. These new features enabled the logistic
regression to capture complex relationships in the data that had not been apparent
previously.

• Outlier detection: K-means clustering improved the identification and removal of
outliers in the dataset. Outliers had a significant impact on the performance of the
logistic regression, and removing them improved the accuracy of the model.

• Data normalization: K-means clustering was used to normalize the data by scaling it
to a range from 0 to 1. Normalizing the data improved the performance of the logistic
regression by reducing the impact of outliers and ensuring that all features were on a
similar scale.

In the proposed parallel logistic regression, the weighted-combination method assisted
in forming the final logistic-regression model from individual models that had been trained
by each processor or device. An overview of the process is provided:
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• Train individual models: The dataset was divided into subsets, and each subset was
used to train a logistic-regression model on a separate processor or device.

• Obtain model weights: Once the individual models had been trained, each model was
assigned a weight based on its performance on a validation set. The weights were
determined using a variety of methods, such as the accuracy or the area under the
receiver-operating characteristic curve (AUC-ROC).

• Combine the models: The predicted probabilities or coefficients from each individual
model were multiplied by their corresponding weights, and the weighted sum was
used as the final output. For example, if there were three individual models with
weights of 0.3, 0.5, and 0.2, the predicted probabilities of each model were multiplied
by 0.3, 0.5, and 0.2, respectively, and then summed to obtain their final predicted
probabilities.

• Model selection: The performance of the final model was evaluated on a validation
set, and the weights assigned to the individual models were adjusted to improve the
performance of the final model. This process was repeated until the desired level of
performance was achieved.

• Apply the final model: Once the final model was selected, it was implemented to
make predictions on new data.

The weighted-combination method can be an effective way to leverage the power of
multiple processors or devices to train logistic-regression models in parallel. By assigning
weights to each individual model, the final model can benefit from the strengths of each
model while mitigating their weaknesses.

6.3. Advanced Image Detection

In this study, we proposed a novel approach for pre-processing images using ad-
vanced parallel k-means clustering and then applying image detection using YOLOv4. The
k-means clustering algorithm was used to divide the images into segments, which were
then processed in parallel by multiple processors. The parallel-processing of the image
segments resulted in a significant reduction in the overall processing time. The k-means
algorithm is a popular method for clustering data based on similarity. It groups similar data
points together and forms clusters. In the proposed approach, k-means was used to divide
the images into segments, where each segment represented a cluster of similar pixels. The
parallel-processing of these segments was achieved by distributing the segments across
multiple processors. This allowed for a more efficient use of resources and resulted in a
significant reduction in the overall processing time.

After the image had been segmented, the image detection algorithm YOLOv4 was
applied to each segment. YOLOv4 is a state-of-the-art object detection algorithm that has
been widely used for image-processing tasks. It can accurately detect and classify objects in
an image, making it an ideal choice for this application. The proposed approach provided
several advantages over traditional image-processing methods. The use of advanced
parallel k-means clustering allowed for a more efficient use of resources, resulting in faster
processing times. Additionally, the application of YOLOv4 to the image segments improved
the accuracy of object detection. Overall, the proposed approach was a powerful tool for
image processing on mobile devices.

Stage 1: Image Clustering and Pre-Processing

The intricate structure of the information in images makes the clustering of X-ray
(radiographs) and CT-scan images challenging. A considerable visual resemblance exists
between X-ray and CT images of the same class. Furthermore, because of the varied X-ray
image types, orientation changes, alignments, and diseases, there was a significant variance
within a class. The quality of the X-ray images also varied significantly, in addition to the
contents. As illustrated in the accompanying diagram, the image clustering framework in
this study was divided into two phases: image feature extraction and image clustering.
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Then, the clustering process was carried out using the machine-learning engine-
specific processors in contemporary mobile devices. Maintaining dataset characteristics
while improving clustering efficiency was recommended [6].

Algorithm 3 outlined the primary steps for clustering the pixels in the input image,
using the modified k-means clustering algorithm, as described earlier in this section.

Algorithm 3 K-Means Image Clustering

Require: Image Dataset
Input: Random Centroid Points
Start: Clustering Pixels
while pixels 6= end do

Select: Neural Engine Core
Assign: Processing to Core
Calculate: Mean Value
Set: Pixel-to-Cluster

end while
Output: Clustered Pixels

Initially, patient X-ray and CT-scan images of COVID-19 disease were segmented
using the k-means clustering algorithm, which then split the image into a set of regions
that could be processed and analyzed. Due to the high performance achieved through the
modification of the aforementioned algorithm, this step resulted in a thorough scan of the
images and the segmentation of their content at a high speed, in preparation for the next
stage, which was the application of the YOLOv4 algorithm.

Second, incoming images were resized to 640 by 640 px and normalized using a
normalize procedure. The improved K-means clustering algorithm, based on mobile neural
engine processors [6], was then used to further match the training data with the k-mean
YOLOv4 model. A suitable anchor size setting facilitated model convergence and provided
useful prior information, and this sped up the model training process and resulted in more
accurate values. The full implementation flowchart of anchor sizes is provided.

Figure 3 summarizes the main steps of the first stage of image clustering.

Figure 3. Stage 1 image clustering architecture.
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By clustering pixels in an image, we simplified the image by reducing the number of
colors and tones. This assisted in removing noise and unwanted details from the image,
making it easier to extract relevant features.

Once the pixels were clustered, a new image was created where each pixel was
assigned to its corresponding cluster, based on the map image. This new image was called
a clustered image. The clustered image contained fewer colors and tones than the original
image and could be used to extract features that were more representative of the image
content.

For example, in the medical image analysis, k-means clustering was used to segment
an X-ray or CT-scan image into regions based on the density of the tissue. By clustering the
pixels in the image, we identified regions that corresponded to bones, organs, and other
tissues, which were then evaluated for feature extraction. These features included the size,
shape, and texture of the tissue, which was then used to detect abnormalities and other
features that could be indicative of a disease or condition.

6.4. Stage 2: YOLOv4 Image Detection

After processing the images, the second stage of scanning the images commenced
using the YOLOv4 algorithm, which could handle and detect objects in images at high
speeds. Objects were easier to identify and detect in the pre-processed images due to the
image content being segmented into consistent data aggregates.As shown in Figure 4, every
object detector began by compressing and processing the images using a convolutional
neural network backbone, which could then be used to make predictions at the endpoint of
the image classification. To detect objects, several bounding boxes had to be constructed
around images, requiring the concatenation of the convolutional feature layers of the
backbone and the convergence of all the layers of features in the backbone at the neck.

Figure 4. YOLOv4 image detection architecture.
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The YOLOv4 system utilized image-resizing, non-maximal suppression, and a single
convolutional neural network to identify objects. It generated multiple bounding boxes
and class probabilities simultaneously. Although the system was efficient for detecting
objects, it could have difficulty identifying the locations of smaller objects precisely.

The input images were divided into an S × S grid, with each grid cell responsible for
identifying an object if the centroid of the object was within that grid cell. Using information
from the entire image, each grid cell predicted the bounding boxes (B) and the confidence
ratings for those boxes. These confidence scores represented the likelihood that an object
was present in the box, as well as the accuracy of the object class prediction. The confidence
score was defined as:

con f = Pr(classi|obj)× Pr(obj)× IoUtruth
pred (1)

where
Pre(obj) ∈ [0, 1] (2)

here, Pr(object) denotes the likelihood that there will be an object in the grid cell, and
Pr(classic|obj) denotes the likelihood that a particular object will appear based on the
presence of an item in the cell.

6.5. Stage 3: K-Means–YOLOv4 Clustering

YOLOv4 used Bag of Specials, which is a technique that adds minimal delays to
inference times while significantly enhancing performance. The algorithm evaluated
various activation functions. As features flowed through the network, the activation
functions were altered, as depicted in Figure 5. Using conventional activation functions,
such as ReLU, had not always been sufficient to push feature creation to its optimal limit,
which has led to the development of novel techniques in the literature to slightly improve
this method.

Figure 5. Proposed solution architecture.

To summarize Stage 3 as an algorithm, Algorithm 4 was written. As shown in the al-
gorithm, the YOLOv4 detector received the clustered image before initializing the YOLOv4
layers on it. The clustered images had clustered pixels, which improved the performance
of the layers in recognizing the objects, contents, and features of the images.
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Algorithm 4 K-Means–YOLOv4 Classifier

Require: Image Dataset
Input: Random Centroid Points
Start: Clustering Pixels
while pixels 6= end do

Select: Neural Engine Core
Assign: Processing to Core
Calculate: Mean Value
Set: Pixel to Cluster

end while
Run: YOLO’s Backbone on Clustered Image
if Image Contains (COVID) then

Flag: Image as Affected
else

Flag: Image as non-Affected
end if
Output: Classified Image

7. Performance Evaluation and Datasets

Performance metrics were crucial for evaluating both classification and detection
techniques. In addition, the experiment environment, datasets, and data preparation used
to assess these metrics were equally important. Therefore, this section provides a detailed
explanation of the performance metrics, datasets, and environment, as they related to the
obtained results and the implementation of the proposed solution.The dataset consisted
of a diverse set of information, which was classified into four distinct categories. The
dataset was split into a training set (70%) and a testing set (30%), with the training set being
used to train the machine-learning algorithms and the testing set being used to evaluate
their performance. The machine-learning algorithms were applied for classification, using
features extracted through the feature-engineering process. The proposed algorithm was
compared to various categorization approaches and was found to be highly effective
on X-ray images in the experiments. The proposed solution was implemented using
the Dart ARM-based programming language, which is suitable for resource-constrained
mobile devices, along with specialized deep-learning code for machine-learning engines
on mobile devices. For iOS devices, the Swift programming language was utilized, which
is known for its ease-of-use and safety features, while Kotlin (the native Android language)
was employed for Android devices. This approach allowed for the solution to be easily
implemented on different mobile devices and platforms, providing a more versatile and
widely accessible solution.

The k-means-YOLOv4 approach was evaluated on mobile devices equipped with
machine-learning engines, including an iPhone 11 Pro Max with a dedicated 16-core
machine-learning processor and the Samsung S22 with a system-on-a-chip, featuring a
16-bit floating-point neural processing unit (NPU). The testing dataset was divided into
two categories: X-ray images and CT-scan images.

7.1. Performance Metrics

Recall (R), Precision (P), F1-score (F1), specificity (S), and accuracy were used as the
performance criteria to examine deep-learning performance.

• Precision: This metric represented the fraction of genuine positives among the ex-
pected positives. As a result, true-positive (TP) and false-positive (FP) values were
important.

P = TP/(TP + FP) (3)
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• Recall: The ratio of true positives accurately categorized by the model was the recall.
The recall was calculated using TP and FN values.

R = TP/(TP + FN) (4)

• Specificity: This was defined as the proportion of true negatives (those not caused by
illness) correctly classified by the model. The TN and FP values were used to calculate
specificity.

S = TN/(TN + FP) (5)

• F1-Score: The F1-score measured the model’s accuracy by combining precision and recall.
Doubling the ratio of the total accuracy and recall values defined the F1-scores.

F1 = 2× (P× R)/(P + R) (6)

• Performance (Speed): This was an important performance metric in image detection
and data classification and clustering, particularly when dealing with large datasets
and real-time applications. It measured the time required to process and analyze
the data and produce the desired output. In image detection, speed is important for
applications such as autonomous vehicles, surveillance systems, and medical imaging,
where the detection and analysis of images must be performed in real-time. The
speed metric is usually measured in frames-per-second (FPS), which represents the
number of images that can be processed in one second. In data classification and
clustering, speed is important for applications such as recommendation systems, fraud
detection, and customer segmentation, where large amounts of data must be analyzed
and classified in a timely manner. The speed metric is usually measured in terms of
processing time or throughput, which represents the number of data points that can
be processed per unit of time.

7.2. Dataset

To validate the proposed solution in various scenarios and on varied dataset properties,
experiments were conducted using a number of different datasets. The characteristics of all
the datasets are summarized in Table 1. All datasets were downloaded from the Kaggle
website.

A range of dataset sizes was used in this paper to evaluate the performance of the
proposed solution with different dataset sizes ranging from a few thousand rows to millions
of rows. Therefore, a dataset with 54 MB was used.

Table 1. Clustering datasets.

Dataset Dataset Size

COVID-19 Dataset 54 MB
COVID-19 362 MB
COVID-19 Open Research Dataset Challenge 20 GB

For image detection and to confirm the model’s robustness, two independent datasets were
collected and tested. The dataset used in this paper was created using the analysis conducted
by [60] and can be downloaded at https://github.com/muhammedtalo/COVID-19 (accessed
on 20 February 2023). The dataset consisted of 500 pneumonia, 125 COVID-19, and 500 no-
findings X-ray images. It was created using two separate resources: X-ray images obtained
from multiple open-access sources of COVID-19 patients in the Cohen [61] database, and the
chest X-ray database for normal and pneumonia X-ray images, provided by Wang et al. [62].
The COVID-19 dataset included 43 female patients and 82 male patients. Metadata were
not available for all patients in this dataset. Positive COVID-19 patients were, on average,
around 55 years old. This was a versatile dataset that could be used for multi-class and binary
classification tasks.

https://github.com/muhammedtalo/COVID-19
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The dataset from Harvard Lab [55] was also used in this study. The dataset consisted
of non-enhanced chest CT scans of more than 1000 individuals diagnosed with COVID-
19. The average age of the CT-scan patients was 47.18 years, with a standard deviation
of 16.32 years and a range from 6 to 89 years. The population was composed of 60.9%
males and 39.1% females. The most common self-reported co-morbidities among patients
were coronary artery or hypertension disease, interstitial pneumonia or emphysema, and
diabetes. The positive PTPCR patient images were obtained from in-patient treatment sites
for COVID-19 and accompanying clinical symptoms, between March 2020 and January
2021. The scans were taken during end-inspiration with the subjects in a supine position.

The CT scans were conducted using a 16-slice helical mode on NeuViz equipment,
without the use of intravenous contrast. The images were captured in DICOM format
and were 16-bit gray-scale with 512 × 512 px. The slice thickness was determined by the
operator and ranged from 1.5 to 3 mm, based on the clinical examination requirements.
The CT scans were reviewed for the presence of COVID-19 infection by two board-certified
radiologists. In cases where the first two radiologists were unable to reach a consensus, a
third more-experienced radiologist provided the final judgment. The CT images showed a
variety of patterns indicative of COVID-19-specific lung infections.

In the third phase of our comparison, two datasets were used. The specifics of the two
major subsections of the sourced image graphs were as follows.

1. Radiography database for COVID-19 in [63]. The authors gathered chest X-ray images
of COVID-19-positive individuals, along with healthy people and those with viral
pneumonia, and made them accessible to the public on https://www.kaggle.com/
(accessed on 20 February 2023).

2. Actualmed, Pau Agust Ballester, and Jose Antonio Heredia from Universitat Jaume I
(UJI) created the Actualmed COVID-19 Chest X-ray Dataset for study (https://github.
com/agchung/Figure1-COVID-chestxray-dataset/tree/master/image (accessed on 20
February 2023)).

A total of 3106 images were utilized for model training, 16% of which were used for
model validation. A total of 806 non-augmented images from various categories were used
to test the proposed solution and assess the performance.

Furthermore, the large image datasets in Table 2 were used for the big-data evaluation.
All the datasets were downloaded from the Kaggle website.

Table 2. Clustering datasets.

Dataset Dataset Size No. of Images/Slices No. of Classes

Large COVID-19
CT-scan-slice dataset 2 GB 7593 9

COVIDx CT 65 GB 194,922 10
CT Low-Dose
Reconstruction 20 GB 16,926 6

Data Preparation

The data clustering had to be prepared, and the primary parameters had to be selected
before clustering, as follows:

• Noise Removal: The advanced parallel k-means clustering algorithm utilized the
mean imputation as the method for handling missing data. In this approach, missing
values were replaced with the mean value of the corresponding feature across all
samples. This method is simple and computationally efficient, and it has been shown
to be effective in practice. However, the mean imputation may introduce bias in the
clustering results if the missing data were not missing completely-at-random (MCAR).
If the missing data were missing-at-random (MAR) or missing not-at-random (MNAR),

https://www.kaggle.com/
https://github.com/agchung/ Figure 1-COVID-chestxray-dataset/tree/master/image
https://github.com/agchung/ Figure 1-COVID-chestxray-dataset/tree/master/image
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more sophisticated methods such as regression imputation and multiple imputation
could be required to avoid bias.

• Number of Clusters: Selecting the optimal number of clusters in the advanced par-
allel k-means clustering was crucial for achieving effective cluster analysis. This is
particularly true in the medical field, where the identification of meaningful clusters
can lead to more accurate diagnoses and treatments. However, the traditional methods
of finding k-value, such as the Elbow method or the Silhouette method, are not always
sufficient in the medical field, where the data are often complex and high-dimensional.
In such cases, expert knowledge could be required to identify clinically relevant sub-
groups, which could then be used to determine the optimal number of clusters. In
this paper, the k-value set to 2 in the clustering of numeric and text data and set to 5
for image clustering, as there were 5 main gray-scale stages of colors in the X-ray and
MRI images.

7.3. Operating System Implementation

Dispatch queues are a feature of the Grand Central Dispatch (GCD) system, which is a
part of the iOS and macOS operating systems. GCD provides a high-level, asynchronous
programming interface for managing concurrent tasks. Dispatch queues are lightweight
and provide a simple interface for executing tasks concurrently without consuming an
excessive amount of system resources. Dispatch queues are managed by the operating
system and can be used to process tasks on a first-in, first-out (FIFO) basis. This makes it
easy to manage task dependencies and avoid competitive conditions, and tasks submitted
to a dispatch queue can be executed in parallel with other tasks in the queue. Dispatch
queues can be created with different priorities to manage the order of execution of tasks
and ensure that high-priority tasks are executed first.

Threads, in contrast, are a lower-level mechanism for achieving concurrency in a
program. Threads achieve true parallelism, as multiple threads can execute simultaneously
on different processor cores. Each thread has its own stack and program counter, and
threads can share memory with other threads in the same process. Threads are managed
by the operating system and can be used to process tasks concurrently in a more fine-
grained way than dispatch queues. As compared to dispatch queues, threads have a higher
overhead and require more system resources, making them less suitable for lightweight
tasks. Threads can be used to implement more complex concurrency patterns, such as
locking, synchronization, and message-passing.

The proposed solution for implementing the modified parallel k-means clustering
algorithm on iOS leveraged the advantages of dispatch queues to achieve concurrency.
The GCD framework provided several types of queues, including serial and concurrent
dispatch queues. A serial dispatch queue executed tasks one at a time, while a concurrent
dispatch queue executed tasks concurrently.

In the proposed solution, a concurrent dispatch queue was used to execute the k-means
clustering algorithm on multiple cores simultaneously. Each task was scheduled on the
dispatch queue, and the queue handled the scheduling of tasks across multiple cores. This
allowed the algorithm to take advantage of the multi-core neural engine processor and
general-purpose processor, leading to improved performance.

Furthermore, GCD provided mechanisms to ensure thread safety and avoid competi-
tive conditions through the use of synchronization techniques, such as semaphores and
barriers. By utilizing these features, the implementation of the parallel k-means clustering
algorithm on dispatch queues was more efficient and reliable.

8. Results and Discussion

The proposed work was subjected to thorough testing and evaluation in multiple
stages to ensure its effectiveness at various levels and within different contexts. The primary
focus was on enhancing performance and leveraging the high speeds offered by the two
integrated algorithms.
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8.1. Operating System Performance

The proposed solution was designed to be operating system independent and hard-
ware accelerated. This meant that the advanced parallel k-means clustering could be
executed on any operating system that had two processors: a neural engine processor and
a general-purpose processor. However, both iOS and Android operating systems were
designed to manage and take advantage of hardware allocation and management that in-
cluded their neural engine processor. These dedicated operating systems were able to send
specific tasks to a particular processor core, enabling the implementation and execution of
the advanced parallel k-means clustering.

Overall, this type hardware acceleration provides opportunities for future advance-
ments of the operating systems, which is expected since the new M-family MacOS already
supports dedicated neural-engine-core assignments.

In order to evaluate the performance of the advanced k-means clustering across
different operating systems, Table 3 presents two large datasets, each with over 9 million
records. These were clustered using the advanced parallel k-means clustering algorithm on
Windows OS, Android, and iOS systems.

Table 3. Clustering datasets.

Dataset Number of Records

Google Play Store 11,000,000
KDD99 [64] 9,000,000

The performance results, as presented in Table 4, showed that the processing of
11 million records from the Google Play Store dataset doubled in speed with a dedicated
ML processor. The next experiment was conducted using the education-sector dataset,
and the mobile processor exhibited a performance up to 10-times faster than the desktop
OS (Windows 11). Additionally, the performance of iOS was twice as fast as that of the
Android OS.

Table 4. Clustering performance of big-data sets in minutes.

Dataset Windows OS iOS Android OS

Google Play Store 90 min 46.1 56.4
Education Sector 24.3 ms 2.4 6.3

The performance differences observed between the iOS and Android operating sys-
tems, within the context of advanced parallel k-means clustering, could be due to several
factors. It could be related to the differences in the underlying architectures of the two
operating systems. Specifically, iOS was designed to take full advantage of its hardware
resources, including the dedicated neural engine cores, which could explain the observed
faster performance, as compared to Android.

Additionally, the iOS architecture was based on the use of Objective-C and dispatch
queues, which were designed to facilitate concurrent processing and task scheduling. These
features provide a more efficient way to execute the parallel k-means clustering algorithm,
potentially resulting in the observed faster performance.

However, the performance differences observed could have also been influenced by
other factors, such as the differences in the hardware configurations of the devices used to
test the algorithms, as well as the specific implementation of the parallel k-means clustering
algorithm on the different operating systems.

8.2. Data Classification Model

The performance of logistic regression and naive Bayes algorithms could have been
influenced by various factors, such as the size and complexity of the data, the hardware
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and software utilized, and the specific implementation of the algorithms. Typically, logistic
regression has been faster than naive Bayes when working with large datasets, as the
naive Bayes algorithm can become computationally demanding as the number of features
increases. However, naive Bayes can be faster when working with smaller datasets or
when the number of features is relatively limited. Table 5 illustrates the performance of
both algorithms after classifying 10 million records of medical data. The table shows the
speed and accuracy of both algorithms, which aided in determining which algorithm was
more suitable for a specific application. While the speed of an algorithm was an important
consideration, accuracy was also taken into account when a compromise between speed
and accuracy may be necessary.

Table 5. Data classification performance.

Algorithm Performance (m.)

Logistic Regression 23.1
Naive Bayes 31.4

Based on the datasets described in Section 7.2, the proposed solution was analyzed to
evaluate its classification performance and accuracy.

The results presented in Tables 6 and 7 demonstrated the superior performance of the
proposed solution, as compared to the logistic-regression and naive Bayes algorithms. The
naive Bayes algorithm is known to be efficient for small datasets, but the proposed solution
outperformed both algorithms, even when the dataset size increased. This highlighted the
effectiveness of the proposed solution in handling larger datasets, which pose a significant
challenge for traditional classification methods. Additionally, the strong performance
of the proposed solution, as compared to the standard classification algorithms, such as
logistic regression and naive Bayes, further emphasized its potential for practical applica-
tions. Overall, the results demonstrated the exceptional performance and potential of the
proposed solution.

Table 6. Data classification performance (Dataset 1).

Dataset Algorithm Speed (m.)

1 Logistic Regression 12.2
Naive Bayes 8.5

K-Means–Logistic Regression 9.7

2 Logistic Regression 63.2
Naive Bayes 83.1

K-Means–Logistic Regression 45.1

3 Logistic Regression 2754
Naive Bayes 3571

K-Means–Logistic Regression 1693

Table 7. Data classification accuracy of Dataset 1.

Dataset Algorithm Accuracy (%)

1 Logistic Regression 93.4
Naive Bayes 92.1

K-Means–Logistic Regression 95.3

2 Logistic Regression 94.2
Naive Bayes 93.5

K-Means–Logistic Regression 97.2

3 Logistic Regression 93.1
Naive Bayes 91.3

K-Means–Logistic Regression 97.6
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One possible reason for the higher accuracy of the proposed solution was that it
had been specifically designed to handle larger datasets, which may have been more
challenging for traditional classification algorithms. For example, logistic regression and
naive Bayes algorithms could have struggled to effectively classify data when the number
of features increased significantly, as they can become computationally demanding as the
number of features increases. In contrast, the proposed solution used more advanced
techniques, including the advanced parallel k-means, parallel logistic regression, and
the neural engine processor, to effectively classify the large datasets. Additionally, the
proposed solution incorporated additional factors and features that were relevant to the
classification task, which further improved its accuracy. Overall, the results demonstrated
the effectiveness of the proposed solution in handling large datasets and achieving high
accuracy in classification tasks.

In order to examine the performance of the proposed solution with the recent advance-
ments in medical data classification, the proposed solution was compared with the three
most recent medical-data-classification approaches, which were: [65–67]. All solutions
were compared with the proposed solution in terms of classification performance and
classification accuracy, as shown in tables below.

As shown in Table 8, the proposed solution significantly outperformed the three
compared solutions, while the naive Bayes-based algorithm tended to be slower, the
proposed solution was more effective than both the binary logistic regression and the
logistic regression. This suggested that the proposed solution was particularly well suited
for handling larger datasets, which could be more challenging for traditional classification
algorithms. The results demonstrated the strong performance of the proposed solution, as
compared to the conventional classification algorithms, indicating that it was an effective
and reliable method for classification tasks.

Table 8. Data classification speed (min.) when compared with recent approaches.

Algorithm Performance (m.)

Logistic Regression [66] 34.1
Novel Binary Logistic Regression [65] 28.3

Correlated Naive Bayes [67] 37.4
K-Means–Logistic Regression 21.1

The accuracy of the proposed solution was compared with previous solutions, and
the results, as shown in Table 9, demonstrated its high accuracy. Specifically, the proposed
solution outperformed the comparable solutions, achieving an accuracy rate of 99.8%
while a novel binary-logistic-regression solution only achieved 98% accuracy. The worst
performance in terms of accuracy was observed in the logistic-regression solution designed
for the prediction of myocardial infarction disease in [66]. These results suggested that the
proposed solution was particularly effective at achieving high accuracy in classification
tasks, and that it outperformed other approaches.

Table 9. Data classification accuracy when compared with recent approaches.

Algorithm Accuracy (%)

Logistic Regression [66] 88
Novel Binary Logistic Regression [65] 98

Correlated Naive Bayes [67] 97
Shared Bayesian Variable Shrinkage [68] 93
Classification of Breast Cancer Metastasis
Using Machine-Learning Algorithms [69] 92

K-Means–Logistic Regression 99.8
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8.3. Training Proposed Model

Feature extraction and classification are the two crucial components of the proposed
image detection system. The quality of the extracted features was critical to the success of
the classification process. Therefore, the extracted features were used to train the model
in order to demonstrate its effectiveness in feature extraction. Figure 6 shows an image
after applying the k-means clustering technique with feature selection. The resulting image
was divided into two main clusters, black and white, in the first stage of learning. This
clustered image was then used as a map for pixel-based feature extraction, where each
pixel was assigned to its corresponding cluster based on the mapped image.

In the next step, the pixel values were processed with their original values for the
image detection process. This approach provided two benefits. Firstly, any outlier pixels
due to the X-ray device or CT-scan process were removed. Secondly, a new feature was
added to the image pixels, which was the pixel group. The cluster value associated
with each pixel provided valuable information for image feature extraction and detection.
By considering the cluster value, we could efficiently extract the relevant features from
the image and ignore the noise and other irrelevant pixels. This approach significantly
improved the accuracy of image detection and reduced false positives. When processing
an X-ray image, the proposed solution began by extracting the lung features of the patient
and then determined whether the lungs were normal or abnormal by classifying them as
positive or negative, accordingly.

8.4. Object Detection Speed

During the initial phase, the proposed work was compared with a range of standard
algorithms frequently used for image classification. The proposed solution demonstrated
exceptional performance, outperforming the other algorithms by up to 15-fold. It also
outperformed the YOLOv4 algorithm by approximately 60%, as shown in the comparison
presented in Table 10.

Table 10. Detection speeds of object algorithms.

Algorithm Speed (ms.)

SPP-net 1500
R-CNN 900

Fast R-CNN 750
Faster R-CNN 600

R-FCN 550
Mask R-CNN 400

YOLOv3 250
YOLOv4 150

Advanced Parallel K-means–YOLOv4 (APK-YOLO) 90

To assess the performance of the proposed solution under various scenarios and with
varied device specifications, it was tested using both a standard computer CPU (Intel
Core i5-3.5 GHz) and GPU (AMD Radeon R9 M290X 2 GB). The results of the experiments
showed that the proposed detection solution maintained its high performance, as compared
to the YOLOv4 algorithm, as demonstrated in Table 11.
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Figure 6. Learned features from the first layer.

Table 11. Classification performance on neural engine, CPU, and GPU.

Algorithm CPU (ms.) GPU (ms.) Neural Engine (ms.)

YOLOv4 350 280 150
APK-YOLOv4 220 120 90

The results showed that the proposed solution exhibited a high performance, which
was up to 2.3 times faster on the GPU and up to 1.5 times faster on the CPU, as compared
to the standard YOLOv4. Additionally, the proposed algorithm demonstrated a significant
speed advantage, achieving speeds that were up to 7 times faster due to the high speed
of the proposed algorithm and the efficient use of the artificial intelligence processors in
modern mobile devices, as compared to recent solutions, such as (VGGCOV19-NET [70]
and CAD-based YOLOv4 [71]).

8.5. Object Detection Performance

In the second phase of the performance comparison, as shown in Table 12, the proposed
solution was compared with two recent approaches that made adjustments to classification
algorithms to handle X-ray images of COVID-19 patients.
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Table 12. Image classification performance comparison.

Algorithm Speed (ms.)

VGGCOV19-NET [70] 620
CAD-based YOLOv4 [71] 530

APK-YOLOv4 90

Due to the importance of the TN, TP, FN, and FP values [72], their values had been
calculated first, as shown in Figure 7.

Figure 7. TN, TP, FN, and FP values of X-ray dataset.

In the last part of the comparison, the proposed work was compared to the benchmark
examples, based on four performance measures, including recall, precision, F1-score, and
accuracy. These represented the best testing factors for evaluating the performance of
the classification algorithms and to ensure that the improvements achieved [73] by the
proposed algorithm were accurate across all levels, which, in turn, would indicate its
potential application in the medical field. The results, as shown in Table 13, illustrated the
excellent performance of the proposed algorithm in the classification task of images when
applied to the Fold 1–5 levels.

Table 13. Recall, precision, F1-score, and accuracy performance of Folds 1–5 of the chest X-ray images.

Fold Algorithm Recall Precision F1 Accuracy

1 VGGCOV 19-NET [70] 78.20 78.80 78.30 78.22
CAD-based YOLOv4 [71] 75.90 75.6 75.8 75.4

APK-YOLOv4 82.2 82.6 82.7 82.7

2 VGGCOV 19-NET [70] 91.10 91.10 91.10 91.11
CAD-based YOLOv4 [71] 89.5 89.4 89.5 89.5

APK-YOLOv4 93.4 93.4 93.3 93.4

3 VGGCOV 19-NET [70] 84.40 84.80 84.50 84.44
CAD-based YOLOv4 [71] 90.2 90.1 90.2 90.1

APK-YOLOv4 94.2 94.23 94.2 94.3

4 VGGCOV 19-NET [70] 95.10 95.20 95.10 95.11
CAD-based YOLOv4 [71] 94.5 94.2 94.4 94.4

APK-YOLOv4 96.7 96.4 96.5 96.5

5 VGGCOV 19-NET [70] 95.60 95.70 95.60 95.56
CAD-based YOLOv4 [71] 94.2 94.1 94.2 94.2

APK-YOLOv4 97.2 97.6 97.4 97.5
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When the algorithm treated images classified as infected images, it also showed superior
accuracy, and the performance measures of the rest of the results are shown in Tables 14 and 15.

Table 14. Recall, precision, F1-score, and accuracy performance on COVID-19 images.

Algorithm Recall Precision F1 Accuracy

VGGCOV 19-NET
[70] 92.80 99.15 95.87 87.89

CAD-based
YOLOv4 [71] 91.5 95.7 85.7 90.67

APK-YOLOv4 93.8 99.7 97.44 96.21

An advanced K-means clustering [6] combined with YOLOv4 solution enabled the
rapid and accurate detection of COVID-19 within milliseconds, making it a useful tool
in regions with a shortage of experienced doctors and radiologists. Additionally, the
model could be utilized to identify patients in settings with limited healthcare facilities,
even when only X-ray technology is available, and it could ensure more timely treatments
for positive COVID-19 patients. One practical benefit of the concept was that it allowed
for the identification of patients who did not require PCR testing, thereby reducing the
overcrowding in medical facilities.

Table 15. Recall, precision, F1-score, and accuracy performance on no-findings images.

Algorithm Recall Precision F1 Accuracy

VGGCOV 19-NET
[70] 90.20 86.40 88.26 85.80

CAD-based
YOLOv4 [71] 89.1 82.3 80.4 89.7

APK-YOLOv4 92.9 95.4 92.6 91.82

In the second part of the performance comparison, as shown in Table 16, the proposed
solution was compared with recent studies in which classification algorithms were modified
to handle CT-scan images of COVID-19 patients. Due to the high speed of the suggested
method and the extensive use of artificial intelligence processors prevalent in recent mobile
devices, the proposed algorithm demonstrated superiority in its accuracy, recall, and other
performance metrics.

Table 16. Recall, precision, F1-score, and accuracy performance of Folds (1–5) with CT-scan images.

Fold Algorithm Recall Precision F1 Accuracy

1 Compressed Chest CT Image through
Deep Learning [74] 79.10 79.30 79.10 79.87

APK-YOLOv4 83.5 83.4 83.4 83.3

2 Compressed Chest CT Image through
Deep Learning [74] 93.10 92.80 92.60 92.8

APK-YOLOv4 94.1 94.3 94.7 94.6

3 Compressed Chest CT Image through
Deep Learning [74] 89.10 89.70 89.60 89.8

APK-YOLOv4 93.8 94.1 93.9 93.8

4 Compressed Chest CT Image through
Deep Learning [74] 96.20 96.30 96.18 96.20

APK-YOLOv4 97.1 97.5 97.4 97.2

5 Compressed Chest CT Image through
Deep Learning [74] 98.78 98.75 98.80 98.7

APK-YOLOv4 99.4 99.7 99.3 99.2
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Figure 8 shows the learning curve accuracy of the proposed solution in both the
training and testing stages. The accuracy of the proposed solution had consistent improve-
ment. Furthermore, the learning curve began with an accuracy near 32% and continued to
improve, up to 99%.

Figure 8. Accuracy learning curve.

In the third part of the performance comparison, as shown in Table 17, the proposed
solution was compared with recent studies that used a classification technique on brain
MRI images to maximize the generalizability of the proposed solution. This comparison
was conducted to show that the proposed solution could be adapted for various datasets
and image types, as well as to classify other diseases, such as brain tumors. The results
showed that the proposed solution had excellent performance across all four comparison
parameters (recall, precision, F1-score, and accuracy). The dataset used in [75], which
consisted of 280 samples of MRI images, was also used in this test. The dataset contained
100 images with normal tumors and 180 with abnormal tumors.

Table 17. Recall, precision, F1-score, and accuracy performance of Folds (1–5) on MRI images.

Fold Algorithm Recall Precision F1 Accuracy

1 hybrid deep
CNN-Cov-19-Res-Net [75] 78.50 78.70 78.40 78.12

APK-YOLOv4 82.4 82.3 82.4 82.3

2 hybrid deep
CNN-Cov-19-Res-Net [75] 91.30 91.20 91.60 91.3

APK-YOLOv4 93.5 93.4 93.2 93.3

3 hybrid deep
CNN-Cov-19-Res-Net [75] 90.10 90.2 90.3 90.1

APK-YOLOv4 94.5 94.5 94.3 94.3

4 hybrid deep
CNN-Cov-19-Res-Net [75] 95.30 95.20 95.10 95.40

APK-YOLOv4 96.3 96.5 96.3 96.2

5 hybrid deep
CNN-Cov-19-Res-Net [75] 97.18 97.15 97.30 97.2

APK-YOLOv4 98.1 98.2 98.1 98.1
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Table 17 shows the proposed solution’s performance, as compared to a recent solution [75].
The results showed that the proposed solution outperformed the comparable solution, with an
accuracy of up to 98%.

The proposed solution was compared with a high-performance and highly accurate
solution, which had been proposed in 2020 [76]. For datasets 1 and 2, the solution obtained
98.7%, 98.2%, 99.6%, and 99% for classification accuracy and F1-Score, respectively. How-
ever, as shown in Tables 18 and 19 with the best values across 7 folds, the proposed solution
had excellent classification performance in terms of accuracy, recall, precision, and F1-score,
as compared to the comparable 2020 approach.

Table 18. Data classification (recall, precision, accuracy, and F1-score) on dataset 1.

Algorithm Recall Precision F1 Accuracy

Deep Features and
Fractional-Order
Marine Predators

[76]

98.2 98.5 99.6 98.7

APK-YOLOv4 98.8 99.1 99.8 99.1

Table 19. Data classification (recall, precision, accuracy, and F1-score) on dataset 2.

Algorithm Recall Precision F1 Accuracy

Deep Features and
Fractional-Order
Marine Predators

[76]

97.7 98.1 99 98.2

APK-YOLOv4 98.5 99.3 98.1 99.6

The excellent performance and accuracy of the proposed solution could be attributed
to the optimization of the k-means clustering, which enhanced the recognition of the image
characteristics by the classifier. Additionally, the optimization of the YOLOv4 algorithm
through modified layers improved the ability to detect and recognize features, resulting in
an overall improvement in performance.

In order to evaluate the performance of the proposed solution on a vast amount of medical
image detection, a set of big-medical-data was used, as described in Section 7.2 and (Table 3).
Table 20 shows the performance of the proposed solution, as compared to recent approaches.
The performance of the proposed solution in terms of recall, precision, F1-score and accuracy
was up to 10% better than the comparable solutions.

The results of the proposed approach using advanced parallel k-means clustering,
logistic regression, and YOLOv4 for medical data classification and image detection could
have important implications for the field of healthcare. The accurate classification and
detection of medical data could have a significant impact on patient outcomes by enabling
earlier diagnoses and more effective treatment planning. The proposed approach has
potential for improving the accuracy and efficiency of these tasks, which could ultimately
lead to better patient outcomes and reduced healthcare costs.

Furthermore, the proposed approach has the potential to contribute to the develop-
ment of new solutions in these areas by providing a more efficient and effective means
of pre-processing medical data. The use of advanced parallel k-means clustering for pre-
processing reduced the dimensionality of the data, which made it easier to classify and
detect patterns. This could lead to the development of new algorithms that are more effec-
tive for identifying specific medical conditions and abnormalities and could, ultimately,
lead to new treatments and therapies.
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Table 20. Image detection recall, precision, F1-score, and accuracy performance of Folds
(1–5) (big-medical-data image sets).

Fold Algorithm Recall Precision F1 Accuracy

1 VGGCOV 19-NET [70] 77.30 77.20 77.10 77.34
CAD-based YOLOv4 [71] 78.80 78.9 78.5 78.4

APK-YOLOv4 85.1 84.1 85.3 85.7

2 VGGCOV 19-NET [70] 90.30 90.40 90.60 90.4
CAD-based YOLOv4 [71] 90.6 91.2 91.6 91.8

APK-YOLOv4 94.3 95.1 95.2 95.1

3 VGGCOV 19-NET [70] 88.60 88.85 87.40 87.74
CAD-based YOLOv4 [71] 91.3 91.1 91.5 91.4

APK-YOLOv4 96.52 96.27 97.1 96.8

4 VGGCOV 19-NET [70] 95.30 95.24 95.34 95.61
CAD-based YOLOv4 [71] 94.7 94.25 94.7 94.8

APK-YOLOv4 97.7 98.5 97.8 97.9

5 VGGCOV 19-NET [70] 96.60 96.30 95.9 95.76
CAD-based YOLOv4 [71] 95.2 95.13 95.22 95.12

APK-YOLOv4 98.8 98.4 98.7 98.6

Additionally, the proposed approach could aid in the development of new medical
imaging technologies. By improving the accuracy of image detection, the proposed ap-
proach could assist in identifying abnormalities that are difficult to detect using traditional
imaging methods. This could lead to the development of new imaging technologies that
are more accurate and effective and could, ultimately, improve patient outcomes.

In terms of the overall medical-data field, the proposed approach using advanced par-
allel k-means clustering for pre-processing medical data, combined with logistic regression
and YOLOv4 for classification and image detection, respectively, could contribute to the
development of new solutions for medical data classification and image detection.

Firstly, the use of advanced parallel k-means clustering for pre-processing medical
data could significantly reduce the processing time and improve the accuracy of subsequent
classification and detection tasks. This could be especially beneficial for large-scale medical
datasets, where traditional clustering methods may not be feasible due to computational
limitations.

Secondly, the combination of logistic regression and YOLOv4 for classification and
image detection, respectively, could improve the accuracy of these tasks in medical applica-
tions. Logistic regression is a simple and efficient algorithm that could be used for both
binary and multi-class classification, while YOLOv4 is a state-of-the-art object detection
algorithm that can detect multiple objects in an image with high accuracy.

Thirdly, the proposed approach could potentially aid in the diagnosis, treatment
planning, and disease monitoring in healthcare. The accurate classification and detection of
medical data could provide clinicians with valuable insights into a patient’s condition and
assist them in making informed decisions regarding treatments.

Lastly, the proposed approach could also serve as a framework for the development
of new solutions in medical data classification and image detection. The combination of
advanced clustering methods, logistic regression, and object detection algorithms could
be customized and optimized for specific medical applications and datasets. This could
lead to the development of innovative solutions that address the unique challenges and
complexities of medical data analysis.

9. Conclusions

The proposed approach using advanced parallel k-means clustering for pre-processing
medical data, combined with logistic regression and YOLOv4 for classification and image
detection, respectively, effectively improved the performance of these algorithms, particularly
when applied to large medical datasets. The results of the classification task showed that the
approach was able to accurately classify the medical data, and the results of the image detection
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task using X-ray and CT scan images showed that the approach was able to effectively detect
and classify the medical images. The use of advanced parallel k-means pre-processing and
acceleration of the neural engine processor contributed to the improved accuracy and efficiency
of the approach. This approach has the potential to significantly impact the field of healthcare,
as it can aid in diagnostics, treatment planning, and disease monitoring. Further research
and evaluation on larger and more diverse medical datasets could reveal additional benefits
and potential applications. While the proposed solution has shown promise in improving the
accuracy and efficiency of these tasks on large medical datasets, there were still limitations
that should be considered. One limitation was the hardware dependency, as the acceleration
of the k-means clustering was highly dependent on the neural engine processor, multi-core
processor, and the operating system’s support for hardware management. Another limitation
was the ability to improve 24-bit color images, which require a different number of k-values
and could affect the clustering performance negatively.
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33. Khalifa, Y.; Mandic, D.; Sejdić, E. A review of Hidden Markov models and Recurrent Neural Networks for event detection and
localization in biomedical signals. Inf. Fusion 2021, 69, 52–72. [CrossRef]

34. Altaheri, H.; Muhammad, G.; Alsulaiman, M.; Amin, S.U.; Altuwaijri, G.A.; Abdul, W.; Bencherif, M.A.; Faisal, M. Deep learning
techniques for classification of electroencephalogram (EEG) motor imagery (MI) signals: A review. Neural Comput. Appl. 2021, 1–42.
[CrossRef]

35. Heidari, A.; Navimipour, N.J.; Unal, M.; Toumaj, S. The COVID-19 epidemic analysis and diagnosis using deep learning: A
systematic literature review and future directions. Comput. Biol. Med. 2022, 141, 105141. [CrossRef] [PubMed]

36. Battineni, G.; Chintalapudi, N.; Amenta, F. Machine learning in medicine: Performance calculation of dementia prediction by
support vector machines (SVM). Inform. Med. Unlocked 2019, 16, 100200. [CrossRef]

37. Houssein, E.H.; Emam, M.M.; Ali, A.A.; Suganthan, P.N. Deep and machine learning techniques for medical imaging-based
breast cancer: A comprehensive review. Expert Syst. Appl. 2021, 167, 114161. [CrossRef]

http://dx.doi.org/10.1007/s41870-020-00430-y
http://dx.doi.org/10.1007/s00180-022-01260-1
http://dx.doi.org/10.1016/j.ejor.2018.02.009
http://dx.doi.org/10.1016/j.jnca.2019.102526
http://dx.doi.org/10.3390/s21093263
http://dx.doi.org/10.1016/j.conbuildmat.2020.121949
http://dx.doi.org/10.1016/j.procs.2022.01.135
http://dx.doi.org/10.1007/s00371-023-02790-5
http://dx.doi.org/10.1016/j.compag.2022.106715
http://dx.doi.org/10.1109/TIP.2019.2952201
http://dx.doi.org/10.1007/s11554-021-01070-6
http://dx.doi.org/10.3390/app12146860
http://dx.doi.org/10.1007/s11042-021-10711-8
http://dx.doi.org/10.1108/WJE-10-2020-0529
http://dx.doi.org/10.1007/s00500-018-3618-7
http://dx.doi.org/10.3390/electronics9030427
http://dx.doi.org/10.1016/j.inffus.2020.11.008
http://dx.doi.org/10.1007/s00521-021-06352-5
http://dx.doi.org/10.1016/j.compbiomed.2021.105141
http://www.ncbi.nlm.nih.gov/pubmed/34929464
http://dx.doi.org/10.1016/j.imu.2019.100200
http://dx.doi.org/10.1016/j.eswa.2020.114161


Life 2023, 13, 691 33 of 34

38. Kaur, P.; Singh, G.; Kaur, P. Intellectual detection and validation of automated mammogram breast cancer images by multi-class
SVM using deep learning classification. Inform. Med. Unlocked 2019, 16, 100151. [CrossRef]

39. Charbuty, B.; Abdulazeez, A. Classification based on decision tree algorithm for machine learning. J. Appl. Sci. Technol. Trends
2021, 2, 20–28. [CrossRef]

40. Shakhovska, N.; Yakovyna, V.; Chopyak, V. A new hybrid ensemble machine-learning model for severity risk assessment and
post-COVID prediction system. Math. Biosci. Eng. 2022, 19, 6102–6123. [CrossRef] [PubMed]

41. Ma, J.J.; Nakarmi, U.; Kin, C.Y.S.; Sandino, C.M.; Cheng, J.Y.; Syed, A.B.; Wei, P.; Pauly, J.M.; Vasanawala, S.S. Diagnostic image quality
assessment and classification in medical imaging: Opportunities and challenges. In Proceedings of the 2020 IEEE 17th International
Symposium on Biomedical Imaging (ISBI), Iowa City, IA, USA, 3–7 April 2020; IEEE: New York, NY, USA, 2020; pp. 337–340.

42. Sarvamangala, D.; Kulkarni, R.V. Convolutional neural networks in medical image understanding: A survey. Evol. Intell. 2022,
15, 1–22. [CrossRef] [PubMed]

43. Alshamma, O.; Awad, F.; Alzubaidi, L.; Fadhel, M.; Arkah, Z.; Farhan, L. Employment of multi-classifier and multi-domain
features for PCG recognition. In Proceedings of the 2019 12th International Conference On Developments In ESystems Engineering
(DeSE), Kazan, Russia, 7–10 October 2019; pp. 321–325.

44. Kattenborn, T.; Leitloff, J.; Schiefer, F.; Hinz, S. Review on Convolutional Neural Networks (CNN) in vegetation remote sensing.
ISPRS J. Photogramm. Remote Sens. 2021, 173, 24–49. [CrossRef]

45. Alzubaidi, L.; Al-Shamma, O.; Fadhel, M.; Arkah, Z.; Awad, F. A deep convolutional neural network model for multi-class fruits
classification. In Proceedings of the Intelligent Systems Design And Applications: 19th International Conference On Intelligent
Systems Design And Applications (ISDA 2019), Auburn, WA, USA, 3–5 December 2019; pp. 90–99.

46. Anwar, S.M.; Majid, M.; Qayyum, A.; Awais, M.; Alnowami, M.; Khan, M.K. Medical image analysis using convolutional neural
networks: A review. J. Med. Syst. 2018, 42, 226. [CrossRef]

47. Alzubaidi, L.; Fadhel, M.; Oleiwi, S.; Al-Shamma, O.; Zhang, J. DFU QUTNet: Diabetic foot ulcer classification using novel deep
convolutional neural network. Multimed. Tools Appl. 2020, 79, 15655–15677. [CrossRef]

48. Kora, P.; Ooi, C.P.; Faust, O.; Raghavendra, U.; Gudigar, A.; Chan, W.Y.; Meenakshi, K.; Swaraja, K.; Plawiak, P.; Acharya, U.R.
Transfer learning techniques for medical image analysis: A review. Biocybern. Biomed. Eng. 2022, 42, 79–107. [CrossRef]

49. Alzubaidi, L.; Al-Shamma, O.; Fadhel, M.; Farhan, L.; Zhang, J.; Duan, Y. Optimizing the performance of breast cancer classification
by employing the same domain transfer learning from hybrid deep convolutional neural network model. Electronics 2020, 9, 445.
[CrossRef]

50. Chen, W.; Li, X.; Gao, L.; Shen, W. Improving computer-aided cervical cells classification using transfer learning based snapshot
ensemble. Appl. Sci. 2020, 10, 7292. [CrossRef]

51. Khanday, A.M.U.D.; Rabani, S.T.; Khan, Q.R.; Rouf, N.; Mohi Ud Din, M. Machine learning based approaches for detecting
COVID-19 using clinical text data. Int. J. Inf. Technol. 2020, 12, 731–739. [CrossRef]

52. Deepa, N.; Prabadevi, B.; Maddikunta, P.K.; Gadekallu, T.R.; Baker, T.; Khan, M.A.; Tariq, U. An AI-based intelligent system for
healthcare analysis using Ridge-Adaline Stochastic Gradient Descent Classifier. J. Supercomput. 2021, 77, 1998–2017. [CrossRef]

53. Wu, J.; Hicks, C. Breast cancer type classification using machine learning. J. Pers. Med. 2021, 11, 61.
54. Krishnamoorthi, R.; Joshi, S.; Almarzouki, H.Z.; Shukla, P.K.; Rizwan, A.; Kalpana, C.; Tiwari, B. A novel diabetes healthcare

disease prediction framework using machine learning techniques. J. Healthc. Eng. 2022, 2022, 1684017. [CrossRef]
55. Shakouri, S.; Bakhshali, M.A.; Layegh, P.; Kiani, B.; Masoumi, F.; Ataei Nakhaei, S.; Mostafavi, S.M. COVID19-CT-dataset: An

open-access chest CT image repository of 1000+ patients with confirmed COVID-19 diagnosis. BMC Res. Notes 2021, 14, 178.
[CrossRef]

56. Gaur, L.; Bhatia, U.; Jhanjhi, N.; Muhammad, G.; Masud, M. Medical image-based detection of COVID-19 using deep convolution
neural networks. Multimed. Syst. 2021, 1–10. [CrossRef]

57. Mijwil, M.M.; Al-Zubaidi, E.A. Medical Image Classification for Coronavirus Disease (COVID-19) Using Convolutional Neural
Networks. Iraqi J. Sci. 2021, 62, 2740–2747.

58. Islam, M.R.; Nahiduzzaman, M. Complex features extraction with deep-learning model for the detection of COVID19 from CT
scan images using ensemble based machine learning approach. Expert Syst. Appl. 2022, 195, 116554. [CrossRef]

59. Abirami, R.N.; Vincent, P.; Rajinikanth, V.; Kadry, S. COVID-19 Classification Using Medical Image Synthesis by Generative
Adversarial Networks. Int. J. Uncertain. Fuzziness-Knowl.-Based Syst. 2022, 30, 385–401. [CrossRef]

60. Ozturk, T.; Talo, M.; Yildirim, E.A.; Baloglu, U.B.; Yildirim, O.; Acharya, U.R. Automated detection of COVID-19 cases using deep
neural networks with X-ray images. Comput. Biol. Med. 2020, 121, 103792. [CrossRef]

61. Cohen, J.P.; Morrison, P.; Dao, L. COVID-19 image data collection. arXiv 2020, arXiv:2003.11597.
62. Wang, X.; Peng, Y.; Lu, L.; Lu, Z.; Bagheri, M.; Summers, R.M. Chestx-ray8: Hospital-scale chest x-ray database and benchmarks

on weakly-supervised classification and localization of common thorax diseases. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 2097–2106.

63. Chowdhury, M.E.; Rahman, T.; Khandakar, A.; Mazhar, R.; Kadir, M.A.; Mahbub, Z.B.; Islam, K.R.; Khan, M.S.; Iqbal, A.; Al
Emadi, N.; et al. Can AI help in screening viral and COVID-19 pneumonia? IEEE Access 2020, 8, 132665–132676.

64. Lu, W. Improved K-means clustering algorithm for big data mining under Hadoop parallel framework. J. Grid Comput. 2020, 18,
239–250. [CrossRef]

http://dx.doi.org/10.1016/j.imu.2019.01.001
http://dx.doi.org/10.38094/jastt20165
http://dx.doi.org/10.3934/mbe.2022285
http://www.ncbi.nlm.nih.gov/pubmed/35603393
http://dx.doi.org/10.1007/s12065-020-00540-3
http://www.ncbi.nlm.nih.gov/pubmed/33425040
http://dx.doi.org/10.1016/j.isprsjprs.2020.12.010
http://dx.doi.org/10.1007/s10916-018-1088-1
http://dx.doi.org/10.1007/s11042-019-07820-w
http://dx.doi.org/10.1016/j.bbe.2021.11.004
http://dx.doi.org/10.3390/electronics9030445
http://dx.doi.org/10.3390/app10207292
http://dx.doi.org/10.1007/s41870-020-00495-9
http://dx.doi.org/10.1007/s11227-020-03347-2
http://dx.doi.org/10.1155/2022/1684017
http://dx.doi.org/10.1186/s13104-021-05592-x
http://dx.doi.org/10.1007/s00530-021-00794-6
http://dx.doi.org/10.1016/j.eswa.2022.116554
http://dx.doi.org/10.1142/S0218488522400128
http://dx.doi.org/10.1016/j.compbiomed.2020.103792
http://dx.doi.org/10.1007/s10723-019-09503-0


Life 2023, 13, 691 34 of 34

65. Wu, Y.; Zhang, Q.; Hu, Y.; Sun-Woo, K.; Zhang, X.; Zhu, H.; Li, S. Novel binary logistic-regression model based on feature
transformation of XGBoost for type 2 Diabetes Mellitus prediction in healthcare systems. Future Gener. Comput. Syst. 2022, 129,
1–12. [CrossRef]

66. Dubey, P.K.; Naryani, U.; Malik, M. Logistic Regression Based Myocardial Infarction Disease Prediction. In Intelligent System
Algorithms and Applications in Science and Technology; Apple Academic Press: Palm Bay, FL, USA, 2022; pp. 39–51.

67. Mansour, N.A.; Saleh, A.I.; Badawy, M.; Ali, H.A. Accurate detection of COVID-19 patients based on Feature Correlated Naive
Bayes (FCNB) classification strategy. J. Ambient Intell. Humaniz. Comput. 2022, 13, 41–73. [CrossRef]

68. Uddin, M.N.; Gaskins, J.T. Shared Bayesian variable shrinkage in multinomial logistic regression. Comput. Stat. Data Anal. 2023,
177, 107568. [CrossRef]

69. Botlagunta, M.; Botlagunta, M.D.; Myneni, M.B.; Lakshmi, D.; Nayyar, A.; Gullapalli, J.S.; Shah, M.A. Classification and diagnostic
prediction of breast cancer metastasis on clinical data using machine-learning algorithms. Sci. Rep. 2023, 13, 485. [CrossRef]

70. Karacı, A. VGGCOV19-NET: Automatic detection of COVID-19 cases from X-ray images using modified VGG19 CNN architecture
and YOLOv4 algorithm. Neural Comput. Appl. 2022, 34, 8253–8274. [CrossRef]

71. Al-Antari, M.A.; Hua, C.H.; Bang, J.; Lee, S. Fast deep learning computer-aided diagnosis of COVID-19 based on digital chest
x-ray images. Appl. Intell. 2021, 51, 2890–2907. [CrossRef]

72. Alzubaidi, L.; Duan, Y.; Al-Dujaili, A.; Ibraheem, I.K.; Alkenani, A.H.; Santamaría, J.; Fadhel, M.A.; Al-Shamma, O.; Zhang, J.
Deepening into the suitability of using pre-trained models of ImageNet against a lightweight convolutional neural network in
medical imaging: An experimental study. PeerJ Comput. Sci. 2021, 7, e715. [CrossRef]

73. Alzubaidi, L.; Hasan, R.I.; Awad, F.H.; Fadhel, M.A.; Alshamma, O.; Zhang, J. Multi-class breast cancer classification by a
novel two-branch deep convolutional neural network architecture. In Proceedings of the 2019 12th International Conference on
Developments in eSystems Engineering (DeSE), Kazan, Russia, 7–10 October 2019; IEEE: New York, NY, USA, 2019; pp. 268–273.

74. Zhu, Z.; Xingming, Z.; Tao, G.; Dan, T.; Li, J.; Chen, X.; Li, Y.; Zhou, Z.; Zhang, X.; Zhou, J.; et al. Classification of COVID-19 by
compressed chest CT image through deep learning on a large patients cohort. Interdiscip. Sci. Comput. Life Sci. 2021, 13, 73–82.
[CrossRef]

75. Kumar, K.A.; Prasad, A.; Metan, J. A Hybrid Deep CNN-Cov-19-Res-Net Transfer Learning Architype for an Enhanced Brain Tumor
Detection and Classification Scheme in Medical Image Processing; Elsevier: Amsterdam, The Netherlands, 2022; Volume 76, p. 103631.

76. Sahlol, A.T.; Yousri, D.; Ewees, A.A.; Al-Qaness, M.A.; Damasevicius, R.; Elaziz, M.A. COVID-19 image classification using deep
features and fractional-order marine predators algorithm. Sci. Rep. 2020, 10, 15364. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.future.2021.11.003
http://dx.doi.org/10.1007/s12652-020-02883-2
http://dx.doi.org/10.1016/j.csda.2022.107568
http://dx.doi.org/10.1038/s41598-023-27548-w
http://dx.doi.org/10.1007/s00521-022-06918-x
http://dx.doi.org/10.1007/s10489-020-02076-6
http://dx.doi.org/10.7717/peerj-cs.715
http://dx.doi.org/10.1007/s12539-020-00408-1
http://dx.doi.org/10.1038/s41598-020-71294-2

	Introduction
	Data Classification
	Image Detection Technique
	Medical Data Classification and Detection
	Medical Data and Image Classification
	Medical Image Detection

	Related Works
	Proposed Solution
	Advanced Parallel K-Means Clustering
	Advanced Classification Solution
	Advanced Image Detection
	Stage 2: YOLOv4 Image Detection
	Stage 3: K-Means–YOLOv4 Clustering

	Performance Evaluation and Datasets
	Performance Metrics
	Dataset
	Operating System Implementation

	Results and Discussion
	Operating System Performance
	Data Classification Model
	Training Proposed Model
	Object Detection Speed
	Object Detection Performance

	Conclusions
	References

