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Abstract: The explanation of physiological mechanisms involved in adaptation of the cardiovas-
cular system to intrinsic and environmental demands is crucial for both basic science and clinical
research. Computational algorithms integrating multivariable data that comprehensively depict
complex mechanisms of cardiovascular reactivity are currently being intensively researched. Quan-
titative Complexity Theory (QCT) provides quantitative and holistic information on the state of
multi-functional dynamic systems. The present paper aimed to describe the application of QCT in
an integrative analysis of the cardiovascular hemodynamic response to posture change. Three sub-
jects that underwent head-up tilt testing under beat-by-beat hemodynamic monitoring (impedance
cardiography) were discussed in relation to the complexity trends calculated using QCT software.
Complexity has been shown to be a sensitive marker of a cardiovascular hemodynamic response to
orthostatic stress and vasodilator administration, and its increase has preceded changes in standard
cardiovascular parameters. Complexity profiling has provided a detailed assessment of individual
hemodynamic patterns of syncope. Different stimuli and complexity settings produce results of
different clinical usability.
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1. Introduction

The assessment of hemodynamic response to different stimuli is crucial in clinical
diagnosis. The explanation of the physiological mechanisms involved in the adaptation of
the cardiovascular system to intrinsic and environmental demands is a domain of basic
science, while clinical research has mainly aimed at identifying the cardiovascular reactions
specific to particular diseases and abnormalities.

Short-term changes in the cardiovascular hemodynamic system may be provoked
by noninvasive tests, such as exercise, controlled breathing, handgrip tests, Valsalva ma-
neuver, and posture change [1]. Novel diagnostic tools enable the continuous monitoring
of cardiovascular parameters (beat-to-beat) such as heart rate (HR), blood pressure (BP),
cardiac output (CO), systemic vascular resistance (SVR), and stroke volume (SV), increasing
treatment effectiveness and facilitated diagnosis [2–4]. More advanced analysis provides
their mathematic derivates, such as, e.g., heart rate variability (HRV), blood pressure vari-
ability (BPV), baroreceptor sensitivity (BRS) [5–8]. Computational algorithms integrating
multivariable data have also been applied [9,10]. However, we are still far from having a
“gold standard” of diagnostic and analytic methods that comprehensively depict complex
mechanisms of cardiovascular reactivity.

The Quantitative Complexity Theory (QCT) was introduced in 2005 and presents so-
called “complexity science” [11]. According to this theory, complexity is no longer seen as a
process but as a new physical and quantifiable property of systems. Complexity, therefore,
just as, for example, energy, is an attribute of every system and may be computed based on
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the observable inputs and/or outputs of a given system. While conventional approaches
equate complexity to entropy or to structure, the QCT combines structure—represented by
the topology of the information flow between the agents in a given system—and entropy.
In the QCT, the complexity function is bounded. In proximity of the lower bound, system
dynamics are dominated by structure (e.g., the movement of a watch) and tends to be
deterministic. In proximity of the upper bound—known as critical complexity—, it is
entropy (disorder) that drives dynamics, and system behavior is stochastic (e.g., turbulent
flow). The resilience of a system may be measured based on the relative values of {C_min,
C, C_critical}, where C_min is the lower complexity bound, C is the current value of
complexity, and C_critical is the upper complexity bound. When real-time data streaming
is processed, all these values change over time. In nearly a decade, the QCT has found
numerous applications in clinical scenarios [12–16]. According to this theory, complexity
can be a new additional clinical parameter. Due to its systemic perspective, QCT can help
provide the medical community with quantitative and holistic information on the state of a
patient as a multi-organ dynamic system of systems. Such an approach seems adequate for
assessing the overwhelming complexity of cardiovascular hemodynamic balance.

In our previous study, we reported that QCT is a useful tool to assess the hemodynamic
response of the cardiovascular system to orthostatic stress and proved it to be better than
HR and BP in the predicting head-up tilt testing (HUTT) result [17]. However, our case-by-
case evaluation revealed some important practical issues to be considered in the individual
interpretation of the beat-to-beat complexity measurements.

Therefore, the purpose of this paper was to reveal the nuances of the application of
QCT in an integrative analysis of the cardiovascular hemodynamic response to posture
change. Special attention was paid to the sensitivity of this method to dynamic changes in
response to tilting, nitrate administration, and laying down, with comparisons to classic
parameters, i.e., blood pressure and heart rate.

2. Materials and Methods
2.1. Participants

Three cases of athletic, non-obese healthy males are discussed in the present paper:
S1 (aged 44 years), S2 (31 years), and S3 (36 years). The participants provided informed
consent. The data were collected as a part of project no 126/IWSZ/2007 funded by Polish
Ministry of National Defense, which was approved by the local ethics committee. The
study was performed in accordance with good clinical practice standards and the 1964
Declaration of Helsinki.

2.2. Head-Up Tilt Testing (HUTT)

The subjects underwent HUTT according to Italian Protocol [18] with a slight modifi-
cation (passive phase 15 min). After the stabilization phase (5 min in the supine position),
the subject was tilted to a position of 60–70 degrees. The passive phase of tilting was
followed by a provocation phase of further 15 min after 400 of micrograms nitroglycerine
(NTG) sublingual spray. Test interruption (supine restored) was made when the protocol
was completed in the absence of symptoms, or when there was the occurrence of syn-
cope/presyncope. The examination was started before 2 p.m., in fasting state, in a quiet,
warm, properly ventilated, and illuminated room.

2.3. Hemodynamic Assessment

Beat-to-beat hemodynamic cardiovascular response to tilting was evaluated using
impedance cardiography (ICG), a noninvasive method of hemodynamic monitoring. The
Niccomo™ device (Medis, Ilmenau, Germany) integrated with a Tensoscreen™ module
(Medis, Ilmenau, Germany), dedicated to beat-to-beat blood pressure assessment, was used.
The final analysis included several hemodynamic parameters listed in Table 1.
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Table 1. The hemodynamic parameters measured using impedance cardiography.

Parameter Abbreviation Comment

heart rate HR -
systolic blood pressure SBP -
diastolic blood pressure DBP -
mean blood pressure MBP -
left ventricular ejection time LVET -
pre-ejection period PEP -

stroke volume SV

calculated as SV = VEPT * dZmax * LVET/Z0
VEPT—accounting for weight, height, and sex,
Z0—baseline impedance,
dZmax—maximum change of impedance
(Sramek and Bernstein formula [19])

cardiac output CO calculated as CO = SV * HR

Heather Index

calculated as HI = dZmax * TRC
TRC—the time interval between the R-peak of
the electrocardiogram and C-point of
impedance wave

total artery compliance TAC calculated as TAC = SV / pulse pressure

systemic vascular resistance SVR SVR = 80 * [MBP—central venous
pressure]/CO

2.4. Quantitative Complexity Theory (QCT)

Complexity is a natural and physical property of every system and quantifies the
amount of structured information contained therein. Conventional measures of complex-
ity, such as Halstead complexity, cyclomatic complexity, time complexity, parametrized
complexity, forecasting complexity, effective complexity, and Kolmogorov complexity—a
measure of algorithmic complexity, self-dissimilarity, U-rank, or entropy, are not appli-
cable when measuring the complexity of generic physical systems. A novel measure of
complexity has been proposed [11,14] as the amount of structured information contained
within a system. The complexity of a system that has a state vector {x} of N components is
defined as follows: C = f(S # E), where E (entropy) is an N×N entropy matrix, S (structure)
represents an N × N adjacency matrix, “#” is the Hadamard matrix product operator, and
f is a spectral matrix norm operator. The complexity is measured in bits since entropy is
measured in bits and S has no units. The above equation represents a formal definition of
complexity, and it is not used in its computation. The adjacency matrix entries are 0 or 1,
depending on the presence of interdependency between two state vector components. The
entries of the entropy matrix are computed based on Shannon’s entropy, which constitutes
the fundamental equation of Information Theory:

H = −∑
i

pi log2(pi)

The presence and intensity of interdependency between the components of {x} (so-
called generalized correlation) is computed based on a proprietary algorithm which trans-
forms scatter plots to images (Figure 1) [17]. To determine if a given image is structured
(i.e., if two variables are correlated) or chaotic, images are treated using entropy based
image processing techniques. Images were obtained by subdividing the area of a scatter
plot into pixels. The optimal number of pixels is obtained using

√
M, where M is the

number of data samples. If, for example, M = 100, the area of the scatter plot is subdivided
into 10 × 10 mesh. The intensity of each pixel is proportional to the number of data points
falling into it. Therefore, any pixel has a density equal to m/M, where m is the number of
the data samples falling into it. The main advantage of this approach is that it is indepen-
dent of the numerical conditioning of the data, the presence of outliers, and its ability to
identify the existence of correlation structures where conventional methods fail [11].



Life 2023, 13, 632 4 of 12

Life 2023, 13, x FOR PEER REVIEW 4 of 12 
 

 

plot into pixels. The optimal number of pixels is obtained using √M, where M is the num-
ber of data samples. If, for example, M = 100, the area of the scatter plot is subdivided into 
10 × 10 mesh. The intensity of each pixel is proportional to the number of data points 
falling into it. Therefore, any pixel has a density equal to m/M, where m is the number of 
the data samples falling into it. The main advantage of this approach is that it is independ-
ent of the numerical conditioning of the data, the presence of outliers, and its ability to 
identify the existence of correlation structures where conventional methods fail [11].  

 
Figure 1. Examples of images and corresponding scatter plots [17]. 

The complexity metric is bounded. In proximity of the lower bound, the structural 
component of complexity (S) dominates the dynamics of a given system while in proxim-
ity of the upper bound—known as critical complexity—, and dynamics is dominated by 
uncertainty and is chaotic in nature. In proximity of the lower complexity bound, gener-
alized correlations between the components of the state vector {x} tend to be high, while, 
for those close to critical complexity, these correlations tend to be weak, leading to a less 
stable structure. An example of a complexity map, which represents the structure of inter-
dependencies between the components of {x} at a given time (step), is shown in Figure 2. 

 
Figure 2. Example of complexity map. Off-diagonal connectors represent the most significant inter-
dependencies between two variables. 

Figure 1. Examples of images and corresponding scatter plots [17].

The complexity metric is bounded. In proximity of the lower bound, the structural
component of complexity (S) dominates the dynamics of a given system while in proximity
of the upper bound—known as critical complexity—, and dynamics is dominated by un-
certainty and is chaotic in nature. In proximity of the lower complexity bound, generalized
correlations between the components of the state vector {x} tend to be high, while, for those
close to critical complexity, these correlations tend to be weak, leading to a less stable struc-
ture. An example of a complexity map, which represents the structure of interdependencies
between the components of {x} at a given time (step), is shown in Figure 2.
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The software used to analyze QCT was OntoNet™ (Ontonix s.r.l., Como, Italy). On-
toNet™ is a generic tool for complexity quantification, which processes data in the form
of a rectangular M × N array, where M represents the number of samples, while N is the
number of variables (dimensions). Data may be sampled by time, by frequency, or spatially.

3. Results

The descriptions of complexity evolution (window 100) during HUTT are presented
in the figures and are described in detail below. Subject S1 completed the HUTT with a
negative result. Two others presented vasovagal syncope type 1 (according to the Vasovagal
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International Study (VASIS) classification [20]), which occurred in the passive phase of
HUTT in both.

In all cases, complexity was stable and low when the subjects were resting in the
pre-tilting phase. Sudden tilting resulted in an abrupt increase in complexity followed by a
decrease in baseline values after several minutes. In S1, the effect of nitrate administration
strongly influenced complexity. The restoration of the supine position was also reflected
by a sudden complexity peak. Figure 3b depicts a hemodynamic collapse at the end of
passive phase of HUTT. The vasovagal reaction started with a progressive decrease in mean
blood pressure (MBP), marked in the complexity trend by the presyncopal mound. A HR
depression followed and, eventually, S2 fainted with a steep increase in complexity. In S3, a
distinct increase in complexity commenced 140 seconds before syncope and preceded (by
approximately 80 s) relevant changes in MBP and HR. Complexity revealed to be relatively
resistant to “gaps” in MBP recordings. In all presented examples, complexity revealed to be
a very sensitive and systemic marker of a complex hemodynamic response to the applied
provocations.

In Figure 3a, the HUTT was negative. In the pre-tilting phase (5 min) complexity
was stable (mean value 370 bits). After tilting (10:51:29), complexity suddenly rose to
6510 bits (10:53:01) and then fell to baseline value (stabilization about 10.58.00). After
nitrate administration (11:06:30), it increased to 4430 bits (11:10:20) and fell to baseline after
about 7.30 minutes. After supine restoration (11:22:20), complexity rose again to 4480 bits
(11:24:49). In the pre-tilting phase (5 min), the mean value of HR was 45.8 bpm and the
range of HR during the whole presented examination was 42–78 bpm with a maximum
change from baseline 70%. MBP was 101.9 mmHg, 69–126 mmHg, and 32%, respectively.
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In Figure 3b, the HUTT was positive with syncope type 1 (mixed) according to VASIS
classification [20]. In the pre-tilting phase (5 min), complexity was stable (mean value
320 bits). After tilting (10:27:49), complexity suddenly rose to 4900 bits (10:29:24) and then
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fell to baseline value (stabilization about 10.30). At approximately 10.40, complexity started
to rise again, reaching 1290 bits at 10.42.12, then temporarily dropped to a minimum of
400 bits, and eventually rose to 7500 bits during syncope (11:44:45). In the 10.30−10.40
period, complexity was in the range of 100–500 bits (mean 240 bits). In the pre-tilting phase
(5 minutes), the mean value of HR was 55.0 bpm and the range of HR during the whole
presented examination was 40–95 bpm, with a maximum change from baseline of 73%. In
the case of the MBP, the values were 75.4 mmHg, 52–110 mmHg, and 46%, respectively.

In Figure 3c, the HUTT was positive with syncope type 1 (mixed), according to VASIS
classification [19]. In the pre-tilting phase (5 min), complexity was stable (mean value
270 bits). After tilting (13:08:46), complexity suddenly increased to 10090 bits (13:09:25)
and then fell to baseline value (stabilization about 13.12:00). At approximately 13.17:00,
complexity started to rise again, reaching 7170 bits during syncope (13:19:22). In the pre-
tilting phase (5 min), the mean value of HR was 62.8 bpm, and the range of HR during the
whole presented examination was 40–110 bpm, with a maximum change from baseline
of 74%. In the case of the MBP, the values were 101.5 mmHg, 52–135 mmHg, and 49%,
respectively.

Figure 4 presents complexity trends for different window sizes for S3. In general, the
narrowest window produces results with the highest variability but also with the lowest
lag in relation to the actual hemodynamics. For presentation, in Figure 3c, a window of 100
was chosen as the best-suited option for this particular application.
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window 125.

The examples of a complexity profile (CP) are presented in Figure 5a (S2) and
Figure 5b (S3). The bars correspond to the contribution of each component to the total
system complexity (expressed in percentages). In this example, the bar chart depicts the
order of hemodynamic parameters in terms of their contribution to the vasovagal reac-
tion. For both presented cases, SV and LVET are on the top of the complexity drivers.
Although both subjects were classified as a mixed type of vasovagal syncope, there were
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some clear differences between them. In S2, BP indices (SBP, DBP, PP) and TAC had a
greater contribution than CO and HR; meanwhile, for S3, it was the opposite.
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4. Discussion

These clinical cases show that QCT provides a detailed assessment of the hemo-
dynamic reaction to different stimuli. QCT reveals important details of an individual
cardiovascular response to orthostatic stress and vasodilator administration. We also high-
lighted some pitfalls and limitations of QCT that should be considered by the users of such
analytical methods.

Various mathematical models have been developed to investigate the interaction be-
tween the complex mechanisms involved during postural changes [9,10]. In the present
paper, the application of complexity derived from the QCT in HUTT was presented. Com-
plexity, measured as a scalar function of entropy and adjacency matrices, has been shown
to be a sensitive marker of cardiovascular response to the applied provocations. The inte-
grated analysis of the representative hemodynamic parameters registered by impedance
cardiography revealed strongly expressed dynamic changes in response to tilting, nitrate ad-
ministration, and laying down. The complexity curve indicated decidedly more alterations
from those stimuli than blood pressure and heart rate.

Resting state and stable phase of standing were reflected in low and stable complexity
values. Tilting was related to an abrupt increase in complexity in all presented subjects. A
similar pattern was noted after supine restoration in S1. The response to nitrate was not as
dramatic: complexity increased and decreased gradually. Particularly interesting was the
presyncopal change in complexity observed in S3. The early asymptomatic hemodynamic
disturbances were captured more than two minutes before syncope and more than a minute
before blood pressure and heart rate drop. This observation corresponds with previous
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reports indicating that complexity fluctuations may precede critical or life-threatening
situations [12]. The value of this method in predicting cardiovascular risk was also noted.
Molon et al. [15] reported that complexity and entropy indices based on QCT, calculated
from 24-h beat-to-beat RR intervals in patients with heart failure and an implanted Cardiac
Resynchronization Therapy (CRT) device, well represented the patients’ autonomic function
and were related to a worse clinical outcome at 1-year follow-up.

We presented the prognostic value of complexity in predicting the HUTT outcome in
our previous paper [17]. In 81 healthy volunteers (mean age: 37.8 years), an area under
the curve (AUC) over 0.700 was observed for complexity, measured 2 minutes before the
end of HUTT, with a sensitivity of 63% and specificity of 78%. This prognostic value of
complexity was superior to that of the HR and MBP. Thus, we concluded that beat-to-beat
complexity analysis may be used to terminate HUTT with a high probability of correct
diagnosis before triggering the unpleasant symptoms of the vasovagal reflex [17].

Several earlier studies have suggested hemodynamic differences between
positive and negative HUTT patients. Koźluk et al. [3] reported a higher reduction in SV
(−27.2 ± 21.2 mL vs. −9.7 ± 27.2 mL; p = 0.03) and CO (−1.78 ± 1.62 L/min vs.
−0.34 ± 2.48 L/min; p = 0.032) five minutes after tilting in subjects with positive HUTT
results compared to HUTT-negative ones. Buszko et al. [21] identified the measures of
entropy for stroke volume as the best discriminators between patients with positive and
negative HUTT results. Schang et al. [22] analyzed the pre-tilting supine rest impedance
waveform using neural networks and were able to predict a positive HUTT with 64% speci-
ficity and 88% sensitivity. In addition, Mereu et al. [23] derived the ratio between the RR
interval and systolic blood pressure (dRR/SBP) to predict syncope 44.1 ± 6.6 s in advance
with a sensitivity of 86.2% and a specificity of 89.1% (area under the ROC curve—0.877).
The usefulness of machine learning emerged from the work of Hussain et al. [24], which
presented a preliminary report on the effectiveness of a Support Vector Machine (SVM) in
differentiating patients who do or do not have an induction of syncope and non-syncope
based on their continuous and noninvasive measurements of BP and HR [24].

However, there are also studies suggesting that monitoring only one selected physio-
logical marker may be ineffective in predicting syncope. Fu et al. [25] evaluated sympathetic
neural control and vasomotor responsiveness using Muscle Sympathetic Nerve Activity
(MSNA) while neutrally mediated (pre)syncope. They failed to identify a significant change
in this parameter before hemodynamic collapse. MSNA decreased rapidly at presyncope,
albeit much later than the initial decrease in BP. The authors concluded that it is a moderate
reduction in cardiac output with coincident vasodilatation or a marked fall in cardiac
output with no changes in peripheral vascular resistance that contributes to syncope.

An analysis of complexity profiles provides a deep insight into the pathophysiological
background of vasovagal reaction. The charts in Figure 5a,b present differences in the
individual hemodynamic mechanism within the same type of syncope (mixed). Such
a detailed assessment of hemodynamic triggers may result in more effective treatment,
tailored to individual patterns of vasovagal reaction.

The differences in complexity trends according to different analysis windows (Figure 4)
allow researchers to choose the best option for a specific application. Narrow windows
(e.g., 50) should be preferred when the early detection of hemodynamic disturbances is the
priority. The advantage of a wide window (e.g., 125) lies in its higher resistance to “noise”
and higher specificity to clinically relevant hemodynamic changes.

The complexity assessment is not free from limitations. Firstly, its reliability depends
on the detailed monitoring of the system. Secondly, it requires the sequential acquisition
of the parameters included in the analysis, which, in many clinical settings, frequently
repeated data acquisition may be challenging. Thirdly, in real life, complexity can be
sensitive to many cardiovascular stimuli, which limits its specificity. The appropriate
selection of the parameters for analysis may be crucial for reducing the risk of “false
positive alarms”.
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It is worth mentioning that other noninvasive analytic tools have also been tested to
predict hemodynamics, even in the defined locations of the cardiovascular system. The
computational fluid dynamic (CFD) model is an excellent example. This approach was
applied for predicting the flow within the aorta and carotid arteries, helping to understand
the relationship between local hemodynamics and vascular wall pathologies [26–29]. Past
studies on CFDs clearly show the need for an awareness of the nuances of such advanced
diagnostic tools. Morbiducci et al. [26] highlighted the importance of assumptions regarding
the outflow boundary conditions. Goubergrits et al. [27] proved that the characteristics of
flow at the aorta inlet can significantly affect the assessment of hemodynamics, such as the
peak systole pressure gradient and wall shear stress (WSS). Moreover, Antonucci et al. [28]
showed that the uncertainty of the input parameter gave a remarkable variability on the
volume flow rate waveform at the systolic peak.

The cardiovascular response to upright posture depends on many mechanisms, such
as the redistribution of blood volume to the lower portion of the body, vasomotor activity,
a rapid fall in the central venous pressure, a marked reduction in the ventricular filling
pressure, and, subsequently, a decrease in the SV. The mechanisms of adaptation are also
complex: contraction of the smooth muscle of arterial and venous vessels; autonomic
reflexes, resulting in an increase in heart rate, peripheral vascular resistance, venous tone,
and heart contractility; the ‘skeletal muscle pump’, and neurohormones [9]. Complex-
ity concerns many other aspects of cardiovascular function. Therefore, the undeniable
advantage of QCT is its integration of different biological signals in one simple marker.

This study had some limitations. The three presented cases were of participants in a
single-center study, and the analysis was of retrospectively collected data. Moreover, HUTT
was performed in healthy volunteers without a spontaneous syncope history. The patterns
of complexity could be different in symptomatic patients.

5. Conclusions

Complexity profiling provides a detailed assessment of an individual hemodynamic
pattern of syncope. Different stimuli and complexity settings (e.g., window size) produce
results of different clinical usability. The users of such new analytic methods should be
aware of some details and pitfalls related to the individual cardiovascular hemodynamic
response to orthostatic stress and vasodilator administration.

The possibilities of the noninvasive and continuous monitoring of cardiovascular
systems rapidly develop, both in hospital settings and real life. The need for automated data
analysis grows, especially with a dynamic inflow of data from the market of telemedicine
m-health technologies [30]. The only way to manage this huge volume of data and to
provide an adequate diagnosis and/or therapeutic recommendation is the preselection of
clinically relevant incidents using advanced computed algorithms. Complexity appears to
be suitable for such applications. Moreover, the analysis of complexity profiles could help
to identify the leading hemodynamic abnormality, which is essential to provide adequate
therapeutic intervention.
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