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Abstract: Mathematical models are a core component in the foundation of cancer theory and have
been developed as clinical tools in precision medicine. Modeling studies for clinical applications
often assume an individual’s characteristics can be represented as parameters in a model and are
used to explain, predict, and optimize treatment outcomes. However, this approach relies on the
identifiability of the underlying mathematical models. In this study, we build on the framework
of an observing-system simulation experiment to study the identifiability of several models of
cancer growth, focusing on the prognostic parameters of each model. Our results demonstrate
that the frequency of data collection, the types of data, such as cancer proxy, and the accuracy
of measurements all play crucial roles in determining the identifiability of the model. We also
found that highly accurate data can allow for reasonably accurate estimates of some parameters,
which may be the key to achieving model identifiability in practice. As more complex models
required more data for identification, our results support the idea of using models with a clear
mechanism that tracks disease progression in clinical settings. For such a model, the subset of
model parameters associated with disease progression naturally minimizes the required data for
model identifiability.

Keywords: observing-system simulation experiment; mathematical oncology; computational oncology;
clinical application; model identifiability; prostate cancer; precision treatment; mathematical model

1. Introduction

Mathematical models serve an important role in the development of cancer theory
and provide a framework to integrate and understand clinical data [1–9]. The attractive-
ness of mathematical models in clinical application comes from their ability to predict
possible outcomes of a hypothetical treatment scenario based off of a set of mechanisms,
which contrasts the black-box approaches in machine learning. Mathematical modelers
assume that the relevant characteristics of an individual for treatment design can be
represented by a set of parameters [10–13]. The influence of these parameters is then
expressed in functional responses, which dictate the rate of each reaction within a preset
model structure. The particular forms of the functional response and model structure are
often borrowed from classic ecology and population studies and tested on the data of
cohorts of patients, which make them a shared canvas for all patients [14]. On the other
hand, the set of parameters that distinguishes the treatment outcome is unique to each
individual [15–17]. If this unique set of parameters can be determined for a particular
patient, then the model is presumed to be useful in predicting the most appropriate
treatment for that patient. Thus, the concept of mathematical modeling coincides with
the central idea behind precision medicine, where treatment should be formulated from
the characteristics of each individual [18,19].
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Mathematical models can be used to fit clinical observations and make real-time
predictions of treatment outcomes. Given a sufficient amount of data for a patient and
an appropriate model, one can use various statistical techniques to estimate the patient-
specific set of parameters. Yet, “sufficient” is a quantity determined by model complexity.
Comprehensive models, such as those found in system biology studies, are more biolog-
ically realistic, but the extra layers of complexity often hinder attempts to estimate the
patient-specific set of parameters. On the flip side, simpler models with fewer parameters
may not be capable of fully capturing the set of possible clinical outcomes qualitatively
and quantitatively. Yet, simple models can still sometimes be too complex relative to the
available data. Let us consider a thought experiment using a simple differential equation
describing the birth and death processes of a population of cancer cells x:

x′ = βx− δx = (β− δ)x = mx, (1)

where β and δ are the per capita birth and death rates, respectively. We define m = β− δ.
This is perhaps the simplest growth equation that can be used as a building block for a
more complex model. One example of the use of this simple model is by Claret et al. [20].
In clinical settings, estimates of cancer growth are available over time, either by direct
methods, such as imaging or indirect estimates from tumor proxy [21–23]. The clinical data
would then come in pairs of (tn, xn), where xn is the cancer population measured at time
tn. We can assume that the model fits the data perfectly in this thought experiment. Yet,
without prior knowledge of β or δ, there would be no way to determine a unique value
for either parameters in this very simple model. We can only find an infinite number of
pairs of β and δ that give the same value for m. Note that this is related, but distinct from
uncertainty or sensitivity analysis, where the uncertainty in each parameter is constrained
based on the error in the parameter estimation.

The above thought experiment is a toy example meant to demonstrate the concept of
model unidentifiability, which heuristically implies the inability to estimate the unique
patient-specific set of parameters from the data. In other words, if the model is not
identifiable (relative to the available data), then it is possible to find many sets of
parameters that fit the data equally well statistically. To see why model identifiability
represents a great obstacle in realizing the potential of mathematical models in precision
medicine, we look at a specific example by Wu et al. [24]. This example comes from a
modeling study using data from a clinical trial testing intermittent androgen deprivation
therapy for treatment of metastatic prostate cancer [25]. The model used in the study
is a mechanistic model developed from the classic Droop cell quota model and tested
against several clinical datasets [11,15,26,27]. In fact, most of the model parameters
can be determined directly from information in literature [13,28], yet the model is still
unidentifiable with respect to the available clinical data. Figure 1 shows that five distinct
sets of parameters demonstratively capture the data well in the fitting portion, yet
only one provides accurate forecast. This example illustrates why potential issues of
model unidentifiability should be addressed completely prior to clinical application of
mathematical models.
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Figure 1. Figure adapted from Wu et al. [24] with permission distributed under a Creative Commons
Attribution (CC BY) license. The color of the fitted parameters corresponds to the forecast trajectory of
the same color. In the fitting portion, five different sets of parameters produce nearly indistinguishable
good fits to the data. However, in the forecasting portion, only one set provides accurate forecasting.

2. Materials and Methods
2.1. Structural and Practical Identifiability

Depend on the types of model identifiability, there are various examples and tech-
niques to address the issues of model identifiability [29–40]. Here, we offer our perspective
on this issue. Consider a dynamical system of the form:

x′(t) = f (t, x(t), u(t), θ), (2)

y(t) = h(x(t), u(t), θ), (3)

where x(t) ∈ Rm represents the state variables, y(t) ∈ Rd represents the measurable
output (e.g., the data), u(t) ∈ Rp represents the (control) input vectors, for example
the administered drug, and θ ∈ Rq represent the set of constant parameters. Note that
while θ can contain time-varying parameters, for a biological system, this complexity can
usually be avoided by using a functional representation of the time-varying parameters
or explicitly modeling the underlying processes that drive the temporal changes. Thus,
for simplicity, we take θ to contain only constant parameters. The general definition of
model identifiability follows [29,31].

Definition 1 (Model identifiability). The dynamic system given by Equations (2) and (3) is
identifiable if θ can be uniquely determined from the given input u(t) and measurable output y(t).
If a system is not identifiable, then it is unidentifiable. Furthermore, if y(t) does not contain error,
then the identifiability of the system is referred to as structural identifiability. Otherwise, it is
referred to as practical identifiability.

The first example that we gave is an instance of structural unidentifiability and the
second is a case of practical unidentifiability. We expand on what it means for a dynamical
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model to be identifiable with respect to a measurable output. For this next example, we
will look at a one dimensional logistic equation

x′ = rx
(

1− x
K

)
. (4)

Here, r and K are the intrinsic rate of growth and carrying capacity, respectively, for the
population denoted by x. Let (r1, K1) and (r2, K2) be two sets of parameters and assume
perfect measurement y(t) = x(t). We will also assume that x(0) is known. Then, if (r1, K1)
and (r2, K2) results in the same models dynamics, then

x′(t, r1, K1) = x′(t, r2, K2) ⇐⇒ r1x(t)− r1

K1
x(t)2 = r2x(t)− r2

K2
x(t)2. (5)

For the condition above to hold for all x(t), we must have r1 = r2 and r1
K1

= r2
K2

,
which implies (r1, K1) = (r2, K2) for almost all x(0), except for possibly a set of measure
zero. For instance, if x(0) = 0 or K, then the system is at its steady state, making the
aforementioned comparison obsolete. To put it simply, if a model is identifiable, then two sets of
parameters that give the same model dynamics must be identical. This means that an identifiable
model does not have potential issue in Figure 1. Instead, the uncertainty in model forecast
is solely dependent on the uncertainty in the data.

We remark that the above system does not contain a control term; however, for bio-
logical systems, if the identifiability of the system without the control can be studied, then
adding the control term afterward usually does not change its structural identifiability, see
the example given by Eisenberg and Jain [31]. What we showed here is an example of a
direct test of model identifiability, originally used by Denis-Vidal and Joly-Blanchard [41].
While the direct test method is often not used in practice, it serves as an intuitive description
for model identifiability from a dynamical system perspective.

To test for model structural identifiability, software built on differential algebra theory,
such as DAISY, is the gold standard [42]. However, structural identifiability does not
guarantee practical identifiability, which is necessary for clinical application. The practical
identifiability of a model should be studied with data, in particular using the Fisher
information matrix or profile likelihood [24,31]. In these scenarios, the available data
dictates the formulation of the model. However, because mathematical models are often
developed independent of the data collection, modelers often must sacrifice certain realistic
aspects of the model to keep it identifiable relative to the available data. Reversely, if one
first builds a set of candidate models and finds out the required data for accurate model
identification, then it may be possible to obtain these data during the collection process.
We consider the latter case an ideal scenario, where mathematical modelers and clinicians
can collaborate effectively.

2.2. Observing-System Simulation Experiment via Monte Carlo Method

In the ideal scenario mentioned above, Monte Carlo simulation experiment is our tool
of choice to obtain the information on the data required for a model to be identifiable. First,
we introduce the statistical model [43]:

y(ti) = h(x(ti), u(ti), θ) + ε(ti). (6)

where h(x(ti), u(ti), θ) is the measurement, θ is the vector of parameters estimated from
{y(ti)}N

i=1 observations at time {t1, . . . , tN}. Assuming no model error, then the general
form of the measurement error is

εi = hi(x(ti), u(ti), θ) f εi, (7)

with f ≥ 0, εi taken to be independent and identically distributed random variables
with mean 0 and variance σ2

0 . For biological application, it is reasonable to expect the
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measurement error to be proportional to the measurement itself, so we fix f = 1, giving us
a relative error. The steps of the Monte Carlo simulation method follow [29,44].

1. Determine the appropriate set of true parameters θ0 for the simulation.
2. Numerically solve the ODE model to obtain the measurements at desired time points.
3. Generate M sets of simulated data from the statistical model (6) and (7) with a Gaussian

error structure and a chosen standard deviation σ0% around mean 0.
4. Fit the model to each of the M simulated data sets to obtain the parameter estimates

θ̃i, i = 1, . . . , M. Here, we take M to be 200 sets.
5. Calculate the average relative estimation error (ARE) for each element of θ as

ARE(θ(k)0 ) = 100%
1
M

M

∑
j=1

∣∣∣θ(k)0 − θ̃
(k)
i

∣∣∣
|θ(k)0 |

, (8)

where θ
(k)
0 and θ̃

(k)
i are the k-th element of θ0 and θ̃i, respectively.

6. Repeats steps 2 through 5 with increasing σ0 = 0, 5, 15, 25%.

A model is practically identifiable if the ARE is less than the variance (σ > 0%), meaning
we want the error in the parameter estimation to be less than the error in the data. When
the variance σ is 0% and ARE is sufficiently close to 0%, then the model is considered to
be structurally identifiable. We borrow the idea from the observing-system simulation
experiment where we will use different hypothetical sets of data to test whether they
can help us identify key parameters [45,46]. By continually restricting the amount of
information we have from the data, we can approximate the threshold of information
required for model identification.

The MC simulation approach is not error-free. One such limitation comes from
choosing the initial guesses. For example, if we start our initial guess close enough to the
true set of parameters, then the effect of the error σ may be limited. However, if we have
our guesses far away from the true set of parameters, then the numerical optimization
may become trapped in some local minimum away from the true estimate or the param-
eters may not be sensitive enough to be estimable. One can start with random samples
of initial guesses to have a better chance at reaching the true estimates. However, this
sampling approach does not inherently deal with the issue of the insensitive parameters.
Here, we pick the initial guesses randomly within 50% of the true value. In order to rule
out any parameters that are not sensitive with respect to the tolerance of the numerical
optimization schemes, we carry out the MC approach for each individual parameter with
error-free data (σ0 = 0%). Any parameters that cannot be refitted within reasonable ARE
will be eliminated (or become fixed) from the pool of free parameters. The remaining
parameters are deem to be sensitive enough for the numerical scheme. As we amp up
the tolerance of the numerical scheme, eventually we should be able to fit all parameters
when no error is present in the data.

2.3. Two Mathematical Models for Prostate Cancer

Many mathematical models for prostate cancer have been developed in the past two
decades [1,18,47] with many recent studies focused on immuno- and chemo-treatments
of prostate cancer [48–56]. Here, we divert from this trend and instead use two simpler
mechanistic models to demonstrate the concept of model identifiability in practice. Both
models contain a clear prognostic parameter that keeps track of cancer progression, which
greatly simplifies their structure. Using these models, we aim to show that even if the
model itself may not be identifiable, having a model-based prognostic parameter allows
modelers to focus the resource to identify these key parameters. This would be helpful in
practical settings due to limitation in data acquisition.

A cancer stem cell model. Cancer stem cells propel cancer’s therapeutic resistance
and are thought to be a primary factor in the initiation and progression of prostate
cancer [57–60]. Utilizing the mathematical model below, in conjunction with the stem
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cell hypothesis, could provide a better understanding of prostate cancer’s acquisition
of castration resistant cells and their heterogeneity within a mass. Prostate cancer stem
cells are thought to express little to no androgen receptors, giving them the ability to
multiply their population without a hormone requirement [61]. Resistance is achieved
with cancer stem cells’ ability to thrive in the absence of androgen, which provides a
means for cancer to continue to evolve during and after intervention with intermittent
androgen deprivation therapy [12,17,62].

Prostate cancer stem cells continue to rapidly divide after treatment, either asym-
metrically to form differentiated cells or symmetrically to form additional stem cells.
The production of differentiated cells results in negative feedback of the production of stem
cells. However, unlike stem cells, differentiated cells are affected negatively by androgen
deprivation therapy. The ability to withstand androgen deprivation is just one of the many
contributing factors that give rise to the renewal of stem cells. For instance, mitochondrial
fission factor expression plays a role in the evolution and multiplicity of prostate cancer
stem cells [63].

Here, we use a novel model built upon this concept for prostate cancer from the studies
by Brady-Nicholls et al. [12,17,62]. The model consider three compartments, the cancer
stem cells (S), the differentiated cancer cell (D), and the PSA byproduct (P). While it is
simpler in structure, the model has shown promises in its applicability.

dS
dt

=
S

S + D
psλS︸ ︷︷ ︸

growth

, (9)

dD
dt

=

(
1− S

S + D
ps

)
λS︸ ︷︷ ︸

growth

− αTxD︸ ︷︷ ︸
death

, (10)

dP
dt

= ρD︸︷︷︸
production by cancer cell

− ψP︸︷︷︸
clearance

. (11)

The cancer stem cell population S is assumed to divide at a rate λ to produce either
one stem cell and one cancer cell with probability ps, or two cancer cells. This division
has a negative feedback from the differentiated cancer cells, which takes the form S

S+D .
The cancer cell is killed by the drug at a constant rate α, where Tx denotes the application
of the drug. PSA is produced by cancer cells at a rate ρ, which is cleared from the blood
stream at a rate ψ.

Since the drug applications for these model, u and Tx, are known input. For simplicity,
we can treat them as constant. Since they are known, their variation in time should not
affect the identification of the other factors. Additionally, in practice, the drug application
would be fixed for a certain period of time depending on the specific treatment. We take
the following parameter values as the true values for our study: Tx = 0.5 (dimensionless),
ps = 0.03 (dimensionless), λ = ln(2) day−1, α = 0.05 day−1, ρ = 1.87× 10−4 µg L−1day−1,
and ψ = 0.085 day−1 [62].

A cell quota cancer model. Prostate cancer cells require androgen for growth, which is
why the effect of androgen is regularly incorporated into prostate cancer model [1,64,65].
However, the quantitative connection between androgen and prostate cancer growth is not
well characterized, leading to various functional forms used for this purpose.

Here, we use a cancer model that integrates the effect of androgen based on
a stoichiometric modeling framework [15,66,67]. The model was developed in a series
of studies that highlight the importance of androgen dynamics in prostate cancer
growth [11,13,16,26–28,64,68,69]. In this model, cancer independence to androgen is mod-
eled as a variable explicitly and can be used as an indicator of cancer growth. Meade et al.
later expanded on this idea to build a more biologically realistic model of cancer growth for
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predicting treatment failure [16]. Despite its simplicity, the model is founded on established
biological principle and can capture and predict the dynamics of cancer progression.

dx
dt

= µm

(
1− q

Q

)
x︸ ︷︷ ︸

growth

−
(

ν(t)
R

Q + R
+ δx

)
x︸ ︷︷ ︸

death

, (12)

dν

dt
= − dν︸︷︷︸

rate of gaining androgen independence

, (13)

dQ
dt

= (γ1u + γ2)(Qm −Q)︸ ︷︷ ︸
androgen influx to cells

− µm(Q− q)︸ ︷︷ ︸
uptake

, (14)

dP
dt

= bQ︸︷︷︸
baseline production

+ σxQ︸︷︷︸
production by cancer cells

− εP︸︷︷︸
PSA clearance

. (15)

The cancer population, denoted by x, grows based on the Droop cell-quota model.
The death rates are contributed by an androgen dependent term, ν(t) R

Q+R x, and a density
dependent term, δx2. Here, ν(t) is the maximal androgen dependent death rate for the
cancer. The authors assume that the cancer cells lose their dependence on androgen at a rate
−dν, which can be interpreted as the “rate of gaining androgen independence”. With this
interpretation, under androgen deprivation therapy, the treatment would gradually become
ineffective. Q and P are the intracellular androgen level and serum PSA, respectively.
The dynamics of Q is governed by an influx of serum androgen and the uptake of cancer
cells. γ1 and γ2 represent the rates at which androgen is being produced by the testes and
the adrenal gland, respectively, with the drug application denoted by u. P is assumed to
be produced as a baseline by normal cells, but mainly by cancer cells, and is cleared from
the blood stream at a constant rate. We take the following parameter values as the true
values for our study: u = 0.5 (dimensionless), µm = 0.009 day−1, q = 0.4 nmol day−1,
R = 3 nmol L−1, δ = 45 L−1day−1, d = 0.0001 day−1, γ1 = 0.08 day−1, γ2 = 0.004 day−1,
Qm = 30 nmol L−1, b = 0.0001 µg nmol−1day−1, σ = 0.001 µg nmol−1L−1day−1, and
ε = 0.1 day−1 [13,15].

2.4. Parameter Optimization

When the data are of a single type, we use the standard root mean squared error
(RMSE), for example, the cancer stem cell model with PSA data. When the data composed
of multiple types of data, for example with PSA and androgen, we weigh the error
contribution from each source equally. Any variation from this fitting procedure will
be mentioned on a case-by-case basis. Finally, we use the built-in function lsqnonlin
(MATLAB) for our optimization.

3. Results
3.1. The Identifiability of Two Prostate Cancer Models

First, we study the identifiability of the model given the measurements that are usually
available directly for parameter estimation. In the case of the cancer stem cell model, this
measurement is taken to be PSA. In the case of the cell quota model, the measurements are
PSA and androgen. We also note that the spacing between the synthetic data points is kept
constant in this section.

The cancer stem cell model. An example of the synthetic data and fitting for the cancer
stem cell model is presented in Figure 2. Table 1 shows the results from the sensitivity test
for each individual parameter for the cancer stem cell model. Out of the seven parameters
and initials, ps and D(0) are not sensitive enough to be identifiable for larger measurement
error. On the other hand, λ, α, ρ, ψ, and S(0) appear to be sufficiently sensitive. Thus, we
fix ps and D(0).
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Figure 2. An example of data fitting with only PSA synthetic data. In this example, the parameters
being fitted are λ and ρ with σ0 = 0. (a) Fitting of PSA. (b) Simulation of the S using the best fitted
parameters. (c) Simulation of D using the best fitted parameters.

Table 1. ARE% calculated for Brady et al. model with respect to σ. The test is carried out individually
for each parameter and initial. 200 samples are used. The results indicate that five (λ, α, ρ, ψ, S(0)) out
of seven components are sufficiently sensitive to to the numerical optimization.

σ0 0% 5% 15% 25%

ps 0.028 37.72 92.89 130.77
λ 0.01 2.17 6.51 10.85
α 0.01 2.94 8.89 15.20
ρ 0.01 2.50 7.49 12.48
ψ 0.01 2.12 6.61 11.89

S(0) 0.01 2.18 6.54 10.90
D(0) 0.20 35.95 87.01 121.86

Next, we carry out the MC scheme for all of the remaining parameters at once,
namely λ, α, ρ, ψ, S(0). The results in Table 2 show that only ψ is practically identifiable.
To see why the other parameters are not identifiable with only PSA data alone, we fix ψ
and test the identifiability of all 2-combinations of the remaining parameters (e.g., fit
two parameters at a time while fixing the rest). We find that none of the 2-combinations
are practically identifiable. Since each parameter being tested is sensitive enough to
be identifiable by themselves, this indicates the existence of an unknown relationship
among the remaining four parameters (e.g., λ, α, ρ, S(0)). To demonstrate this point,
we plot the estimated values of these parameters in 2-combinations and show that
an approximate relationship between these parameters can be obtained by a simple
regression Figure 3. Without error (σ0 = 0%), the relationships between λ, α, and ρ are
evident by performing the 2-combination test.

In Brady et al. [62], the authors find that the prostate cancer stem cell renewal rate
ps is a good indicator of resistance timing. However, our analysis shows that in order to
utilize ps to make clinical predictions, modelers must have a solid grasp on the values
of all other parameters and a good understanding of the appropriate value for ps in the
cancer stem cell model. This agrees with the approach taken in Brady et al. to obtain model
identifiability for ps [17,62].
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Table 2. ARE% calculated for Brady et al. model with respect to σ using the MCMC method. The test
is carried out for all five parameters and initial together. In total, 200 samples are used. The results
indicate that when fitting together, only ψ is practically identifiable.

σ0 0% 5% 15% 25%
λ 54.79 246.64 243.88 220.03
α 52.51 131.37 123.11 131.75
ρ 50.59 130.77 200.50 206.93
ψ 1.12 6.36 13.98 21.11

S(0) 13.66 37.48 70.88 101.84

Figure 3. Parameter relation obtained from the 2-combination parameter test for the case of σ0 = 0.
(a) α and λ are positively correlated. (b) ρ and λ are negatively correlated. (c) α and ρ are positively
correlated. If the parameters are linearly correlated, (a,b) would imply that α and ρ are negatively
correlated; however, this is not the case in (c). This suggests all three parameters are involved in a
non-linear relationship.

The cell quota cancer model. An example of the synthetic data and fitting for the cancer
stem cell model is presented in Figure 4 Similarly, we carry out these tests with respect to
the 13 parameters and initials for the cell quota cancer model. Table 3 shows that out of
these, only µ, Qm, and ε are sufficiently sensitive when each parameter is fitted individually
with PSA and androgen data.

Table 3. ARE% calculated for BK 1 model with respect to σ using the MCMC method. The test is
carried out individually for each parameter and initials. In total, 200 samples are used. The results
indicate that 3 (µ, Qm, ε) out of 13 components are sufficiently sensitive to continue with the procedure.
Note that δ and σ appear to be insensitive, so we exclude them.

σ0 0% 5% 15% 25%

µ 0.00 4.48 13.49 22.68
q 5.78 × 10−5 86.18 94.87 97.21
R 0.51 68.42 68.05 67.87
δ 5.02 5.02 5.02 5.02
d 11.70 66.07 65.74 65.91

γ1 2.39 × 10−4 10.89 32.76 51.04
γ2 0.00 21.73 57.28 73.29
Qm 2.28 × 10−5 2.27 6.81 11.35
b 5.51 32.40 46.65 50.32
σ 1.05 14.94 14.96 15.97
ε 1.82 × 10−4 2.34 7.33 13.24

x(0) 0.57 59.84 60.14 59.75
v(0) 0.46 78.75 78.57 78.29

When fitting the three sensitive parameters together, we find that only ε is practically
identifiable, see Table 4. To see why the remaining two parameters (µ and Qm) are not
identifiable, we fix ε and study the correlation between these two parameters. Here, we
find a similar linear relationship between estimates for µ and Qm with or without error
in the data, see Figure 5. This hidden correlation interferes with the estimability of these
two parameters.



Life 2023, 13, 410 10 of 18

In Baez and Kuang, the parameter d (or variable ν(t)) is created to keep track of the
development of cancer resistance. However, our analysis indicates a similar issue to the
cancer stem cell model where the relevant parameter is not identifiable with the available
data. If we want to have an accurate estimate of d, we must have a strong grasp on the
values of all other variables in the model and a good guess for an appropriate value for d.

Figure 4. An example of data fitting with PSA and androgen synthetic data. In this example,
the parameters being fitted are µ and Qm with σ0 = 0. (a) Fitting of PSA. (b) Simulation of the
cancer population using the best fitted parameters. (c) Simulation of the parameter ν (associated with
treatment resistance) using the best fitted parameters. (d) Fitting of androgen.

Figure 5. Parameter relation obtained from the 2-combination parameter test. (a) When σ0 = 0, µ and
Qm are slightly correlated with the best fit values concentrated around µ = 9.00× 10−3 and Qm = 30.
(b) When σ0 = 5%, the relationship between µ and Qm is much clearer, leading to a larger ARE%.



Life 2023, 13, 410 11 of 18

Table 4. ARE% calculated for BK 1 pop model with respect to σ using the MCMC method. The test is
carried out for all five parameters and initials together. In total, 200 samples are used. The results
indicate that when fitting all four parameters together, only ε is practically identifiable. It is worth
pointing out that when the measurement error is 0, the ARE% of all four parameters are very close to
0, indicating structural identifiability.

σ0 0% 5% 15% 25%

µ 0.02 64.85 87.60 92.13
Qm 0.01 32.77 43.91 45.80
ε 0.00 2.34 7.32 13.23

3.2. Observing-System Simulation Experiment—Identifiability of Treatment Resistance Parameter

Now, we turn our focus to answering the question: what amount of data are necessary
to determine the key model-based prognostic parameter? To address this question, we
synthesize candidate sets of data that vary in the type and frequency of data collected. Then,
we attempt to study the identifiability of these key parameters using each synthetic dataset.

The identifiability of ps in the cancer stem cell model. Recall that ps is not identifiable
even when being estimated by itself with only PSA data (Table 1). Thus, we will carry
out simulation to determine the amount of data required to sufficiently characterize the
ps, which is used to predict treatment success and failure in Brady et al. [17,62]. For the
experiment, we assume all parameters (except for ps) can be obtained from other means,
which means they are fixed to the values used to make the synthetic dataset for these
simulation experiments.

Table 5 summarizes the main results of the experiments to determine the identi-
fiability of ps. The frequency of data points appears to be the most influential factor
to identify ps, which is followed by the inclusion of the measurement of cancer stem
cells. On the other hand, measurement of the cancer population, optimization tolerance,
and (linear) weight contribution from different sources of error have less of an impact on
the identifiability of ps. Interestingly, if a measurement of PSA can be taken roughly ev-
ery 5 h, then we could accurately determine ps as well (given that it is the only parameter
we need to estimate).

While the results in Table 5 suggest the frequency of measurements plays a key role,
when fitting all parameters together with pseudo-continuous measurement of PSA and
cancer stem cells, the model remains to be unidentifiable (see Table 6). However, if the
measurements are very precise (σ0 ≈ 0%), estimated values of each parameter are within
acceptable ranges that may still be useful in making predictions (less than 10% difference
from the true value).

The identifiability of d in the cell quota cancer model. Similarly, recall that d is not identifiable
in the cell quota cancer model even when being estimated by itself with both androgen and
PSA data (Table 3). Hence, we carry out simulation to determine the amount of data required
to identify ps. As before, we fix all other parameters for these simulation experiments.

Table 7 summarizes the main results of the experiments. We reach a similar conclusion
that the frequency of data points appears to be the most influential factor in identifying d,
which is followed by the inclusion of the measurement of cancer cells. However, with larger
error margins, the measurement of cancer cells loses its effectiveness, which is problematic
due to the fact that accurate estimations of cancer populations are difficult in practice.
Meanwhile, all other factors have a negligible effect on the estimation of d. Finally, if a
measurement of cancer cells, androgen, and PSA can be taken every 24 h, then we could
accurately determine d. Interestingly, if a measurement of the cancer population is not
available, but we can obtain pseudo-continuous data for Q and P, then it is possible to
determine the value of d within a reasonable range.
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Table 5. The identification of ps in the cancer stem cell model. The test is carried out for ps (all other
parameters and initials are fixed to their true values). Baseline frequency (data) indicates a measurement
is taken every 10 days. Pseudo-continuous data indicates a measurement is taken roughly every 2.4 h.
Increased optimization tolerance refers to one fold increase in the function tolerance and optimality
tolerance of the optimization function. Weight (ω) comes from the minimization objective. ω > 0.5
means higher weight is given to the error in P and ω < 0.5 means higher weight is given to the error in
S, which is given by ω× RMSEP + (1−ω)× RMSES. Asterisk (∗) indicates practical identifiability.

σ0 0% 5% 15% 25%

Fitting using P (baseline frequency) 0.03 37.72 92.89 130.77
Fitting using S and P (baseline frequency) 0.00 19.45 55.43 81.93
Fitting using D and P (baseline frequency) 0.00 30.33 79.48 113.78
Fitting using S, D, and P (baseline frequency) 0.00 29.47 77.71 111.34

Fitting using S and P (baseline frequency × 2) 0.00 13.38 39.08 60.22
Fitting using S and P (baseline frequency × 10) 0.00 6.15 18.45 30.60
Fitting using S and P (pseudo-continuous data) (∗) 0.00 1.86 5.57 9.29

Fitting using P (pseudo-continuous data) (∗) 0.00 3.69 11.05 18.42
Fitting using P (baseline frequency × 50) 0.00 5.53 16.58 27.62

Fitting using S and P (increased optimization tolerance) 0.00 19.45 55.43 81.93

Fitting using S and P (weight = 0.4) 0.00 19.43 55.38 81.87
Fitting using S and P (weight = 0.25) 0.00 19.41 55.34 81.82

Table 6. ARE% calculated for the cancer stem cell model with respect to σ. The experiment is carried
out using pseudo-continuous data of S and P.

σ0 0% 5% 15% 25%

ps 1.97 34.68 97.35 107.28
λ 6.46 90.26 154.45 167.19
α 2.20 30.27 53.20 72.75
ρ 5.07 37.08 60.01 70.64
ψ 0.06 0.86 1.95 3.77

S(0) 0.02 0.43 0.93 1.44
D(0) 4.83 11.26 17.68 34.10

Table 7. The identification of d in cancer cell quota model. The test is carried out for ps (all other pa-
rameters and initials are fixed to their true values). Baseline frequency (data) indicates a measurement
is taken every 10 days. Pseudo-continuous data indicates a measurement is taken roughly every 2.4 h.
Increased optimization tolerance refers to a one-fold increase in the function tolerance and optimality
tolerance of the optimization function fmincon (MATLAB). Weight1 = ω1 and weight2 = ω2 come
from the minimization objective, which is ω1 × RMSEP + ω2 × RMSEQ + (1−ω1 −ω2)× RMSEX .
Asterisk (∗) indicates practical identifiability. (∗∗) indicates d is identifiable at very high error.

σ0 0% 5% 15% 25%

Fitting using Q and P (baseline frequency) 11.70 66.07 65.74 65.91
Fitting using X, Q, and P (baseline frequency) 0.09 24.12 50.96 60.37

Fitting using X, Q, and P (baseline frequency × 10) 0.10 6.34 19.73 27.75
Fitting using X, Q, and P (baseline frequency × 50) (∗) 0.10 3.90 8.23 12.29
Fitting using X, Q, and P (pseudo continuous data) (∗) 0.08 2.78 6.78 10.79

Fitting using Q and P (pseudo continuous data) (∗∗) 3.67 10.44 10.69 10.75

Fitting using X, Q, and P (increase optimization tolerance) 0.09 29.04 62.88 74.00

Fitting using X, Q, and P (weight1 = 0.4, weight2 = 0.33) 0.11 25.33 46.66 52.43
Fitting using X, Q, and P (weight1 = 0.25, weight2 = 0.25) 0.09 19.90 43.54 52.83
Fitting using X, Q, and P (weight1 = 0.4, weight2 = 0.2) 0.10 23.33 46.81 54.39
Fitting using X, Q, and P (weight1 = 0.25, weight2 = 0.5) 0.10 21.26 41.25 45.78
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As before, if none of the other parameters are known, then the identifiability of the
model is not possible even with pseudo-continuous data of the cancer population, androgen,
and PSA (see Table 8). Yet, if those measurements can be taken very precisely (σ0 ≈ 0%),
then the parameters can still be estimated within reasonable accuracy for application.

Table 8. ARE% calculated for the cell quota cancer model with respect to σ. The experiment is carried
out using pseudo-continuous data of x, Q, and P.

σ0 0% 5% 15% 25%

µ 6.55 5.41 11.41 19.38
q 0.75 2.53 1.53 1.69
R 4.18 3.90 4.53 5.46
δ 5.17 4.48 4.97 4.90
d 0.04 12.78 14.30 18.69

γ1 5.83 11.79 14.98 23.74
γ2 3.36 15.88 11.63 14.00
Qm 4.81 2.66 3.71 5.56
b 0.44 9.57 27.39 42.59
σ 0.03 26.09 34.05 39.14
ε 0.01 0.34 1.02 1.68

x(0) 0.37 1.65 4.30 6.84
v(0) 1.71 3.97 4.37 5.25

4. Discussion

Mathematical models not only contribute to the foundation of cancer theory but
can also be integrated to provide a better prognostic tool for clinicians in clinical set-
tings. For example, one may apply mathematical models to better understand cancer
progression dynamics and make predictions of treatment outcomes based on a patient’s
characteristics [18]. Yet, the issue of practical identifiability remains a major obstacle
to realizing the clinical potential of mathematical models. In this study, we explore the
issue of model identifiability from a clinical perspective. First, we study the general
identifiability property of the model. Then, we narrow down the parameter that can
be used to predict treatment outcomes and look for the appropriate set of data for its
identification using Monte Carlo simulation. Our results provide insights into the type
of data acquisition that can enable future incorporation of mathematical models into
clinical applications.

The frequency of data collection plays a major role in model identifiability. It is well known
that increasing the number of measurements increases the chances of obtaining true esti-
mates of model parameters assuming that the measurements are perfect and the model is
structurally identifiable [70]. Here, we demonstrate in both examples that increasing the
frequency of measurements, even in the presence of Gaussian noise, can increase model
identifiability. However, simply increasing the number of data points will not overcome the
issue of structural identification. The dataset should cover multiple temporal regions of can-
cer growth, so that the model can be tested more comprehensively to prove its usefulness.
This finding suggests the development of devices or procedures to obtain measurements,
such as PSA and androgen, on a regular basis can help to accurately identify the values of
prognostic parameters.

Cancer population data can help reduce the uncertainty in model identifiability. We demon-
strate that the inclusion of cancer population measurements (or stem cells) can increase the
model identifiability. In practice, this can be completed by using imaging data or indirectly
measuring circulating cancer cells [71–75]. On the other hand, for models that incorporate
mechanisms for cancer growth using androgen, androgen data seem to be necessary for
model identifiability. Unfortunately, these measurements are not widely adopted, mak-
ing it difficult to integrate these ideas effectively. Furthermore, we carried out the same
computational experiments on several cancer models with multiple subpopulations (not
shown). The results suggest a measurement that helps to distinguish different cancer
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subpopulations (e.g., the frequency of each cancer subpopulation) may be necessary to
obtain model identification.

Highly accurate data may be the key to addressing model identifiability in practice. Perhaps
the most intriguing finding is that with very accurate data, the prognostic parameters
and some other model parameters are reasonably identifiable. Unlike the frequency of
measurements, the accuracy of measurements does not require additional compliance from
the patients. With continual advances in the techniques and equipment to measure the
relevant biomarkers, high-accuracy data may be the key to obtaining model identifiability
in practice. We also note that certain biological markers, such as androgen, vary signifi-
cantly throughout the day and with diets [64], so better clinical protocols may need to be
implemented to obtain more accurate measurements.

So far, we have only discussed the applicability of model identifiability in terms of key
prognostic parameters. However, one can analytically derive treatment outcomes based on
a combination of a set of model parameters with mathematical analysis. This can provide a
deeper understanding of key factors that drive the progression of cancer and may even
shed light on novel treatments. However, to apply analytical results in practice, one needs
to assess the interconnection between the parameters and how they may change based
on external factors. If how these parameters change over time during treatment can be
assessed, one can then use the analytical condition to determine the treatment outcome
directly. Nevertheless, the issue of model identifiability remains a crucial component for
this approach to work.

Another aspect of model identifiability is the statistical method used for parameter
estimation. Most approaches in literature use an individual fitting, which limits the amount
of data used for parameter estimation for each individual data. An alternative approach
is to use population fitting with mixed effects. This should not be confused with pulling
individual data and fit to the average. Instead, this approach assumes that for each
parameter, its value varies per individual, but follows some distributions for the whole
population. Thus, we can utilize the data of all patients simultaneously to fit the model.
A software often used to implement this approach is Monolix [76]. Examples of this
approach can be found in within-host viral dynamics literature [77,78]; however, it has yet
to gain traction in mathematical and computational oncology literature.

In summary, we find that incorporating frequent data measurements, different types
of data (especially those related to the cancer population), and high-accuracy measure-
ments will increase the likelihood of practical identification of prognostic parameters.
As more complex models contain more parameters, making it a more difficult task to
obtain complete model identification, our results advocate for the use and development
of models with a mechanism that tracks disease progression. By incorporating such a
mechanism, a subset of model parameters (associated with the mechanism) naturally be-
comes the focus of model identifiability. This reduces the issue of model unidentifiability
and provides a means for making predictions regarding the outcome of treatment. There
are several major limitations to our studies, such as the assumption of a perfect model
(no model error). These issues can perhaps be accounted for by continually improving
the model development or by using a data assimilation approach, such as the Kalman
filter [79,80]. We also do not employ patient-specific data for our simulation study. These
can be explored in future studies.
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