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Abstract: Viral hepatitis, caused by hepatitis A virus (HAV), hepatitis B virus (HBV), hepatitis C virus
(HCV), hepatitis D virus (HDV), or hepatitis E virus (HEV), is a major global public health problem.
These viruses cause millions of infections each year, and chronic infections with HBV, HCV, or HDV
can lead to severe liver complications; however, they are underdiagnosed. Achieving the World
Health Organization’s viral hepatitis elimination goals by 2030 will require access to simpler, faster,
and less expensive diagnostics. The development and implementation of point-of-care (POC) testing
methods that can be performed outside of a laboratory for the diagnosis of viral hepatitis infections is
a promising approach to facilitate and expedite WHO’s elimination targets. While a few markers
of viral hepatitis are already available in POC formats, tests for additional markers or using novel
technologies need to be developed and validated for clinical use. Potential methods and uses for the
POC testing of antibodies, antigens, and nucleic acids that relate to the diagnosis, monitoring, or
surveillance of viral hepatitis infections are discussed here. Unmet needs and areas where additional
research is needed are also described.
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1. Introduction

Hepatitis, or liver inflammation, can be caused by lifestyle choices such as alcohol
overconsumption or drug use, as well as genetics or viruses. Viral hepatitis is the most
common and is the result of an infection with hepatitis A virus (HAV), hepatitis B virus
(HBV), hepatitis C virus (HCV), hepatitis D virus (HDV), or hepatitis E virus (HEV), as
well as other viruses. Each of the five hepatitis viruses belongs to a different virus family
and is distinct in its transmission, replication, and interaction with its infected host. HAV
and HEV are typically transmitted via the fecal–oral route and spread via contaminated
food and water sources [1], but recent outbreaks demonstrated that HAV can also be
transmitted parenterally [2]. HAV and HEV infections are generally self-limiting and
resolve within 6 months after exposure [3,4]. HBV, HCV, and HDV are all blood-borne and
transmitted via exposure to blood or other bodily fluids from infected persons [5]. Signs
and symptoms during the acute phase of infection, which lasts for up to 6 months, are
generally similar among the five hepatitis viruses and can include jaundice, abdominal
pain, fever, aches, dark urine, and clay-colored stool. However, not all hepatitis virus
infections cause noticeable signs or symptoms. Infections that persist for longer than six
months are considered chronic. Chronic infections are typically only associated with HBV,
HCV, and HDV and can lead to severe liver complications including cirrhosis, liver cancer,
and liver failure [5–7].

The global burden of viral hepatitis is high. Together, the five hepatitis viruses cause
tens of millions of infections each year [8–11]. More than one million global deaths are
attributed to chronic HBV and HCV infections each year [9]. These infections and deaths
occur despite the availability of vaccines for HAV and HBV and curative therapeutic drugs
for HCV [12–14]. Many viral hepatitis infections are undiagnosed, and most published
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prevalence numbers are based on estimates. Significant proportions of infected individuals
may be asymptomatic for prolonged periods and unaware of their infection. Without a di-
agnosis, infected persons cannot be linked to care and may continue to engage in behaviors
that could transmit their infection to others. To alleviate the health burdens caused by viral
hepatitis, the World Health Organization (WHO) set goals that include 90% reductions in
the number of new HBV and HCV cases and 65% reductions in HBV- and HCV-associated
deaths by the year 2030 [15]. Meeting these goals and decreasing the burden of HAV,
HDV, and HEV will require improvements in prevention, diagnosis, and linkage to care.
Point-of-care (POC) testing for various markers of hepatitis virus infections, immunity, or
contamination is an attractive approach that could facilitate achieving these goals.

2. Point-of-Care Testing
2.1. Overview

Point-of-care testing can be performed at or near the patient or sample collection
site. Typically, POC tests can be performed outside of a laboratory, with minimal or no
equipment, and without extensive operator training [16]. Ideally, such testing yields results
while the patient waits. Rapid diagnostic tests (RDTs) are a class of tests that produce
results quickly, usually in 30 min or less and are often, but not always, compatible with
POC use. While POC tests for certain infection markers have existed for decades, it was the
COVID-19 pandemic that demonstrated the power of POC testing to improve infectious
disease testing access and uptake on a large scale [17]. Most POC tests that have been
developed for infectious diseases detect antibody or antigenic markers, but technologies
for nucleic acid detection are improving rapidly.

To guide the development of tests that would meet the needs of health care systems
in the developing world, the WHO’s Sexually Transmitted Disease Diagnostics Initia-
tive released the ASSURED criteria in 2004, which encourage new diagnostic tests to be
Affordable, Sensitive, Specific, User-friendly, Rapid and robust, Equipment-free, and De-
liverable [18]. These criteria have been adopted to describe an ideal POC test. Updated
REASSURED criteria that include Real-time connectivity and Ease of sample collection
were proposed in 2019 [19]. The precise target criteria for what is considered an appro-
priate POC test will vary based upon the disease marker and the population being tested.
Affordable POC tests should have per-sample costs below those of comparable laboratory
tests. Tests with low costs will have greater opportunities for improving widespread access
to care. When estimating affordability, the costs of any personnel, infrastructure, and
necessary equipment needs to be accounted for. Sensitivity and specificity describe how
well a test correctly classifies a sample as positive or negative for the tested analyte. These
performance characteristics should be as close as possible to 100%; however, acceptable
sensitivity and specificity will depend on the intended use of the test andthe clinical actions
that the test result will be used to inform. Pretest and posttest probabilities should be
taken into consideration when assessing whether a particular POC test is appropriate.
The use of tests with low sensitivity or specificity may have different implications for the
interpretation of results, depending on the prevalence of a particular infection within the
population being tested. The number and duration of manual user steps, the duration
and complexity of required user training, and the ease of interpreting results determine
the user-friendliness of a test. POC tests that are easy to conduct and interpret maximize
testing throughput and streamline results reporting. Rapid testing, which can be completed
in less than 60 min, will promote the delivery of testing results while the tested individual
waits and potentially allows for immediate clinical intervention wherever needed. Robust
POC tests are unaffected by less-than-ideal conditions that could be experienced during
transportation, storage, and operation of the test. The equipment required to perform a
test should be minimized to reduce costs and increase access. Ideally, POC tests would not
require any equipment, electricity, or other infrastructure. For a POC test to be effective
in improving testing access, it needs to be deliverable to the end user without logistical,
financial, or other burdens. In today’s world, most technology is connected via the internet.
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Real-time connectivity for POC tests could improve quality assurance by monitoring test
runs and standardizing result interpretation as well as allowing for reporting test results to
a provider or health care facility. POC testing will be most user- and patient-friendly when
there is ease of sample collection. Where possible, sample materials that are less invasive
to collect, like fingerstick blood or saliva, should be used in place of venous whole blood,
serum, or plasma for POC tests. When judging the suitability of a POC test based upon
these criteria, it is important to keep in mind the potential clinical impact of its use for a
particular population or purpose. For instance, high sensitivity would be critical for POC
tests that are intended to assess the attainment of a sustained viral response after therapy.
On the other hand, high specificity, low cost, and ease of use may be a more important test
criterion for surveillance or diagnosis in general population settings.

Traditional laboratory assays for the detection of antibody, antigen, and nucleic acid
markers are well established and represent the standards against which novel techniques
are judged. Serological assays for antibody or antigenic markers are commonly performed
either manually or on automated testing platforms [20]. The standard for detection of
nucleic acids is via quantitative polymerase chain reaction (qPCR) or quantitative reverse
transcription polymerase chain reaction (qRT-PCR) [21]. These laboratory-based methods
have high sensitivity and specificity, but they are often expensive and time-consuming and
require extensive equipment and training. Therefore, POC tests that overcome some of
these drawbacks are attractive as a way to increase access to diagnostic testing.

Point-of-care tests have been developed to detect various markers of viral hepatitis
infections (Table 1). Point-of-care tests for the detection of HAV-specific antibodies or
nucleic acids could assist in the rapid identification of food-borne outbreaks and help
to inform mitigation efforts. Currently, the CDC recommends hepatitis B testing of all
adults aged 18 years and older at least once in their lifetime using a multianalyte test that
includes HBV surface antigen (HBsAg) and antibody markers. Point-of-care tests could
potentially make this screening, as well as more frequent HBsAg testing among high-risk
individuals, more accessible and allow for earlier diagnosis of an infection. The standard
testing algorithm for HCV includes initially testing for HCV-specific antibodies, followed
by reflex testing for HCV RNA, if positive. The use of POC tests for these markers of
HCV infection would allow this testing to be accessible outside of the laboratory and for
a faster diagnosis and linkage to care. The identification of HDV infections, which occur
simultaneously with some HBV infections, could be an attractive use of RDTs due to their
ability to be multiplexed for the detection of multiple antibodies and/or antigens. Like
HAV, the rapid detection of HEV infections using POC tests could streamline outbreak
identification and ensuing mitigation efforts. Here, we will describe the current testing
approaches that are compatible with the detection of antibodies, antigens, and nucleic
acids in a POC format and where future development and evaluation efforts should be
directed. We will also highlight POC tests that have been approved by the U.S. Food and
Drug Administration (FDA) or prequalified by the WHO and summarize their performance
characteristics and impact in real-world testing situations (Table 2).

Table 1. Interpretation of hepatitis virus markers.

Virus Marker Interpretation

HAV IgG anti-HAV past HAV infection or HAV vaccination

IgM anti-HAV current or recent HAV infection

HAV RNA current HAV infection

HAV capsid antigen current HAV infection
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Table 1. Cont.

Virus Marker Interpretation

HBV IgM anti-HBc acute HBV infection

total anti-HBc current or resolved HBV infection

anti-HBs resolved HBV infection or HBV vaccination

anti-HBe partial immune control of HBV infection

HBV DNA current HBV infection

HBsAg current HBV infection

HBeAg early-stage or chronic pre-seroconversion HBV infection

HCV anti-HCV current or resolved HCV infection

HCV RNA current HCV infection

cAg current HCV infection

HDV anti-HDV current or resolved HDV infection

HDV RNA current HDV infection

HDAg current HDV infection

HEV IgG anti-HEV past HEV infection or HEV vaccination

IgM anti-HEV current or recent HEV infection

HEV RNA current HEV infection

HEV capsid antigen current HEV infection

Table 2. WHO-prequalified point-of-care tests for hepatitis virus markers.

Test Analyte Test Name (Company) Sample Types Time (min.)

HBsAg Determine HBsAg 2 (Alere Medical, Waltham,
MA, USA) venous or capillary blood, plasma, or serum 15–30

HBsAg Bioline HBsAg (Abbott Diagnostics, Abbott
Park, Il, USA) venous blood, plasma, or serum 20

anti-HCV Rapid Anti-HCV Test (InTec Products,
Xiamen, China) venous or capillary blood, plasma, or serum 15–20

anti-HCV Standard Q HCV Ab Test (SD Biosensor,
Suwan, Republic of Korea) venous or capillary blood, plasma, or serum 5–20

anti-HCV OraQuick HCV Rapid Antibody Test (OraSure
Technologies, Bethlehem, PA, USA)

venous or capillary blood, plasma, serum, or
oral fluids 20–40

anti-HCV Bioline HCV (Abbott Diagnostics, Abbott Park,
IL, USA) venous or capillary blood, plasma, or serum 5–20

HCV RNA Genedrive HCV ID kit (Genedrive, Manchester,
United Kingdom) plasma and serum 90

HCV RNA Xpert HCV Viral Load (Cepheid, Sunnyvale,
CA, USA) plasma or serum 105

HCV RNA Xpert HCV VL Fingerstick (Cepheid,
Sunnyvale, CA, USA) venous or capillary blood 60–75

2.2. Lateral Flow Tests

Lateral flow tests (LFTs), which use immunochromatography, are the most common
format for POC RDTs that detect the presence of antibodies or antigens [22]. These tests
are similar to laboratory assays for antibody and antigen detection except that they are
performed on lateral flow strips, do not involve liquid transfers or washes, and they produce
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results that can be interpreted visually without the need for an instrument (Figure 1).
Lateral flow strips are composed of a sample pad, conjugate pad, reaction membrane, and
an absorbent pad. The sample pad is where the sample is added, and the conjugate pad
contains the detection molecule, conjugated to a tag. The tag is often a colored particle,
such as colloidal gold or latex, but fluorescent and enzymatic tags can also be used [23,24].
The reaction membrane, usually made from nitrocellulose, allows the sample and detection
molecule to flow via capillary action towards the absorbent pad and across the capture
molecules that are immobilized at the test and control lines on the reaction membrane.
If the tested analyte is present, a colored band will develop at the test line. If the test is
operating properly, a colored band will be visible at the control line. Lateral flow tests for
antigens usually take 10 to 30 min to produce a result and are hands-off after the sample
is added.

The sample type and the detection and capture molecules used in LFTs differ based
upon the analyte of interest. For LFTs that detect antibodies, samples are generally blood,
serum, plasma, or saliva. The detection molecule that is conjugated to colored particles
is typically a primary antibody that is specific for the immunoglobulin G (IgG) or im-
munoglobulin M (IgM) of the species that the sample came from, such as antihuman IgG
if human samples are being tested. The detection antibody will bind to antibodies in the
sample as it flows over the conjugate pad towards the reaction membrane (Figure 1A). The
test line contains immobilized antigen that will be specifically bound by the antibodies that
the test is designed to detect. For example, HCV antigens would be immobilized at the
test line for the detection of anti-HCV antibodies. Antibodies specific for the antigen will
bind to it and the tagged detection antibodies that are bound to the sample antibodies will
be retained at the test line, creating an observable band. This process is analogous to an
indirect immunoassay. The control line contains an immobilized molecule that will capture
tagged detection antibodies that flow past the test line, allowing for an observable band
to develop. For example, the control line may have an immobilized secondary antibody
that is specific to the immunoglobulin of the species that the detection antibody is from.
Variations of this approach are common, but they follow the same general principles for
capturing the desired antibodies from the sample.

Lateral flow tests that detect antigens include a conjugate pad containing primary
antibodies that are specific for the antigen of interest and are conjugated to colored particles
(Figure 1B). Antibodies that are specific for the antigen of interest will also be immobilized
at the test line. Specific antigens present in the sample will be sandwiched between these
primary antibodies and result in a colored band developing at the test line. As in LFTs that
detect antibodies, the control line contains antibodies that will specifically bind the primary
antibody from the conjugate pad. If the antigen from the sample is inaccessible due to
a higher-order molecular structure or the antigen existsin antibody–antigen complexes,
it may be necessary to process samples with heat or chemicals before testing to ensure
accurate detection.

2.3. POC Nucleic Acid Tests

Detection of nucleic acids requires three steps. First, nucleic acids need to be released
from the viruses or cells harboring them. The extraction of nucleic acids can also include
purification. Second, the extracted target nucleic acids need to be amplified to increase the
amount present within the sample. Third, the amplified nucleic acids of interest need to be
detected. Streamlining these processes for a POC format, while maintaining appropriate
sensitivity and specificity characteristics, is challenging (Figure 2).
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Figure 1. Lateral flow tests for detection of antibodies and antigens. (A) In antibody detection assays,
sample is added to the sample pad (gray). Assay solution and sample flow across the conjugate
pad (yellow), which contains primary antibodies tagged with a detection molecule (purple), to the
reaction membrane containing immobilized antigen at the test line (light blue) and immobilized
secondary antibody (green) at the control line. If the antibody of interest is present within the sample,
it will be bound by the tagged primary antibody and bind to the immobilized antigen, producing
a detectable band at the test line. (B) In tests for the detection of antigens, sample, which is added
to the sample pad (gray), mixes with tagged primary antibody #1 (orange) on the conjugate pad
(yellow). The sample and conjugate flow across the reaction membrane containing immobilized
primary antibody #2 (blue) at the test line and immobilized secondary antibody (green) at the control
line. Antigen (gray) present in the sample will become sandwiched between the tagged primary
antibody and the immobilized primary antibody, allowing for a detectable band at the test line. For
both antibody and antigen detection assays, a valid test will have a detectable band at the control line
where the tagged primary antibody is bound by the immobilized secondary antibody.
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Figure 2. Detection of nucleic acids at the point of care. Simple-to-collect sample types, such
as fingerstick blood, are used for POC testing. Depending on the test being used, pre-extraction
processing, such as plasma separation from whole blood, may be required. To release nucleic acids
from virus in the sample, simple processes such as heating, osmotic stress, or a chemical lysis buffer
can be used. Concentration of extracted nucleic acids or removal of amplification inhibitors present
within the sample can improve assay performance. These processes are achieved using purification
methods such as magnetic bead- or silica membrane-based techniques. Approaches for the rapid
amplification of nucleic acids that are attractive for point-of-care use include isothermal methods
such as LAMP and RPA and rapid RT-PCR techniques. Amplified nucleic acids can be detected via
a variety of techniques that can be measured visually or with simple equipment. These techniques
include colorimetric-, turbidimetric-, fluorescent-, lateral flow-, luminescent-, and CRISPR-Cas12/13-
based approaches.

Methods for extracting nucleic acids include heat, osmotic stress, and chemical ly-
sis [25–29]. These approaches are generally compatible with a POC format but may require
equipment such as heating devices or considerations for the use and disposal of hazardous
chemicals found in lysis buffers. Body fluid samples contain molecules that can inhibit
or interfere with downstream amplification and detection processes. Purification of the
extracted nucleic acid from these inhibitory molecules are routine in the laboratory and can
be performed using selective precipitation of nucleic acids or collecting them on solid-phase
substrates such as silica membranes or magnetic particles [30]. However, adapting these
approaches for use in POC formats is difficult due to the number of manual steps, length
of time, and the requirement for equipment such as centrifuges. Magnetic microspheres
with properties that allow for the capture and separation of nucleic acid sample materials
may represent the most promising approach to sensitive POC applications [27,31]. Indeed,
several simple devices for the automated processing of small-volume samples to purify
nucleic acids based on magnetic bead separation technologies or other technologies have
been reported [32–34]. Techniques for POC separation of plasma from whole blood prior to
nucleic acid extraction that may allow for improved detection of nucleic acid targets from
blood samples have also been developed [35–38].

The nucleic acid amplification methods used in POC tests need to be rapid. Isothermal
methods are attractive because they produce large amounts of product in 10–30 min at
a single temperature. The two most common isothermal methods are loop-mediated
isothermal amplification (LAMP) and recombinase polymerase amplification (RPA). Both
methods can be paired with a reverse transcriptase (RT) for the detection of RNA targets.
LAMP reactions use four or six primers that are complementary to six or eight regions of the
target nucleic acid [39,40]. In these reactions, polymerases with high strand displacement
properties synthesize large DNA products containing hairpin loops when the temperature
is maintained between 60 ◦C and 65 ◦C. In RPA reactions, recombinase and single-strand
binding proteins allow for the rapid amplification of DNA at a temperature between 37 ◦C
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and 42 ◦C using two primers [41]. In addition to isothermal methods, rapid PCR techniques
have also been developed, but these require the use of more complex devices [42–45].

There is a range of ways to detect amplified nucleic acid products that could be
compatible with POC use. Equipment-free methods include colorimetric, lateral flow, and
turbidimetric detection. Colorimetric methods rely on a color change that occurs because
of the presence of DNA amplification products, the production of pyrophosphate as a
by-product of amplification, or the acidification of the reaction solution that occurs during
amplification [46–49]. Colorimetric methods are non-specific and will detect any nucleic
acid amplification, which can lead to specificity issues if the reaction amplifies non-target
nucleic acids. Additionally, subtle color changes can be difficult to distinguish by eye [50].
Lateral flow strips can be used to detect amplified nucleic acids if the primers used for
amplification contain tags such as biotin and fluorescein [41,51]. DNA products containing
the tagged primers will result in the development of a positive test line band when they
are captured by immobilized streptavidin at the test line and bound by fluorescein-specific
antibodies that are conjugated to colored particles. Nucleic acid amplification reactions
can yield large amounts of DNA product that will cause the solution to become turbid [52].
Turbidity can be judged by eye or measured with a turbidimeter.

Other methods for the detection of amplified nucleic acids, such as the measurement
of fluorescence and luminescence, require equipment. Fluorescent methods require a fluo-
rometer, and measurements can be obtained in real time or at the end of the amplification
reaction. The generation of fluorescence can be specific or non-specific for the nucleic acid
target. Non-specific fluorescent methods use molecules that are fluorescent only when
double-stranded DNA is present [53]. Specific methods use nucleic acids tagged with fluo-
rophores and quenchers that are specific for the nucleic acid target and fluoresce only after
the successful amplification of that target [25,41,54,55]. Methods such as bioluminescent
assay in real time (BART) require a luminometer to measure luminescence produced by
luciferase [56]. In this approach, pyrophosphate produced as a by-product of nucleic acid
amplification is converted into Adenosine Triphosphate (ATP) and used as a substrate
by luciferase.

The adaptation of methods for the specific detection of target gene amplification
using clustered regularly interspersed short palindromic repeat (CRISPR)-associated (Cas)
proteins in POC formats has recently gained attention. These proteins originally evolved as
a part of bacterial and archaeal adaptive immune systems for the purpose of destroying
foreign nucleic acids. Nucleic acids that are complementary to trans-activating CRISPR
RNA (crRNA) are specifically targeted by Cas proteins possessing nuclease activities. Two
of these proteins, Cas12 and Cas13, have potential application for nucleic acid detection due
to their non-discriminant DNase and RNase activity after recognizing their target nucleic
acid. These applications include the DNA endonuclease-targeted CRISPR trans reporter
(DETECTR) assay that uses Cas12 and the specific high-sensitivity enzymatic reporter
unlocking (SHERLOCK) assay that uses Cas13 for the detection of DNA and RNA targets,
respectively [57,58]. Both methods could allow for highly specific detection of amplified
nucleic acids in a POC format when coupled with fluorescent or lateral flow read-outs.

2.4. Multiplex Tests

Multiplex tests, which can detect more than one test analyte simultaneously, may
be advantageous in a POC setting, because they allow for the determination of more
information about a patient’s health or a sample without additional time or effort. The
signs and symptoms of infection with hepatitis viruses are difficult to distinguish in the
absence of specific diagnostic tests for each of the five hepatitis viruses. The sample types
used for these diagnostic tests include whole blood, serum, or plasma which can be used to
test for antibodies, antigens, and nucleic acids. Non-hepatitis virus markers with similar
risk characteristics and that use the same sample type, such as HIV or antibody markers
from blood and enteric viruses from stool, may also be included in multiplex tests to
increase the breadth of what can be evaluated in a single test. Some multiplex POC tests
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involving hepatitis virus markers are mentioned in the sections below. A drawback of
multiplex tests is that there can be non-uniform performance for the detection of all analyte
components.

3. Tests by Viral Agent
3.1. Hepatitis A Virus

Hepatitis A virus is a positive-sense RNA virus in the Picornaviridae family. It encodes
11 genes that are expressed as polyproteins [59]. The structural proteins form the virus
capsid that encloses the genomic RNA in virions. Virions that are shed in the feces are
non-enveloped, while virions that are shed in the blood can contain a lipid membrane that
surrounds the capsid in a quasi-envelope [60]. Virions are stable and can remain infectious
for months [61]. There are three genotypes of HAV (I, II, and IIII) that infect humans;
however, there is only a single serotype.

HAV caused an estimated 159 million acute infections and nearly 4000 deaths globally
in 2019 [8]. Children and adolescents generally exhibit few or no symptoms and resolve
their infection without complications. Older adults, however, can experience severe dis-
ease. In countries with high endemicity, most people are infected early in life, develop an
antibody response, and are protected from reinfection. In high-income countries, improved
sanitation and hygiene have limited exposure to HAV, resulting in adult populations who
are susceptible to HAV [62]. The primary route of HAV infection is via the ingestion of con-
taminated food or water and close contact with infected persons. Recently, unsafe injection
drug and sexual practices have been recognized as additional modes of transmission in
populations without preexisting immunity [63]. After infection, it typically takes between
three and five weeks before any symptoms develop [3]. HAV is found in the blood and
shed in the stool during infection. Antibodies appear within a few weeks after infection.
IgM anti-HAV antibodies appear first and wane after the resolution of infection [3]. The
presence of these IgM antibodies indicates a current or recently resolved HAV infection.
IgG anti-HAV antibodies appear later during infection and rise to high titers that can
persist for decades. An effective vaccine that protects against HAV infection exists and
is recommended for children and at-risk adults [12]. Vaccination can also be used as a
postexposure prophylactic if given within two weeks after exposure to HAV [64].

Diagnosis of HAV infection generally occurs after the presentation of signs of liver
inflammation such as jaundice and elevated alanine aminotransferase (ALT) levels. HAV
infections can be diagnosed via laboratory tests that detect the presence of IgM anti-
HAV antibodies or HAV RNA. Immunity to HAV from infection or vaccination can be
determined by the presence of IgG anti-HAV in the absence of IgM anti-HAV. Diagnosis
of HAV infection at the POC or with a POC-compatible test could improve patient care
and speed outbreak responses, promote interventions such as vaccination to decrease
transmission, and allow for postexposure prophylactic vaccination of people who may
have been exposed to HAV. However, there are currently no POC tests for markers of HAV
infection or immunity that have been approved by the FDA or prequalified by the WHO.

Several rapid LFTs for the detection of IgG and/or IgM anti-HAV antibodies have
been developed. An LFT that detects IgM anti-HAV from serum or plasma samples in
20 min was reported to have 100% sensitivity and 99% specificity when compared with
an enzyme immunoassay for testing 150 samples from patients with acute HAV infections
and 75 healthy individuals [65]. The Bioline HAV IgG/IgM Rapid Test (Abbott Diagnostics,
Abbott Park, IL, USA), which allows for multiplex detection of both IgG and IgM anti-HAV
from serum or plasma in 20 min, was evaluated against laboratory immunoassays using
patient cohorts from Brazil, Burkina Faso, and India [66–68]. These reports suggest different
performance characteristics for the detection of the two antibody isotypes. For IgG anti-
HAV, the sensitivity was poor (49–67%) and the specificity was high (98–100%), while for
IgM anti-HAV, the sensitivity was high (86–100%) but the specificity was lower (80–99%).
Interestingly, when used in an outbreak setting, the specificity of IgG anti-HAV decreased
to 21% [68]. This could indicate performance differences between the rapid test and the
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laboratory immunoassay used as a comparison for detecting early IgG seroconversion.
Additionally, problems with interpreting results may be an issue with this test, as there was
only 60–80% agreement among three observers [68]. The EuDx-HE (A,B,C) (Eudipia Inc.,
Cheongju, Republic of Korea) is a multiplex test that detects IgM anti-HAV, hepatitis B virus
surface antigen (HBsAg), and anti-HCV from plasma in 15 min. Its performance in terms
of detection of IgM anti-HAV is similar to the Bioline HAV IgG/IgM Rapid Test, with a
sensitivity of 94.7% (95% CI, 85.4–98.9%) and a specificity of 99.4% (95% CI, 98.9–99.7%) [69].
As an alternative to using antigens for the detection of antibodies, proteinticles, which are
nanoscale protein particles that display antigenic peptides on their surface, have been used
to develop an LFT that is capable of multiplex detection of antibodies, targeting HAV, HCV,
and HIV in 30 min [70]. The sensitivity for detection of total anti-HAV (IgG and IgM) using
this assay was determined to be 100%, with a specificity of 100%, although this analysis
included a relatively small number of samples. Most of the evaluations of LFTs for the
detection of anti-HAV have been performed in laboratory setting using serum or plasma.
Before these tests can recognize their potential for POC use to diagnose HAV infection by
the presence of IgM anti-HAV or indicate immunity by the presence of IgG anti-HAV, their
performance outside of the laboratory and with whole blood collected through fingerstick
need to be evaluated.

Commercial tests for the POC detection of HAV RNA are not available; however,
some laboratory-developed tests with characteristics that are attractive for use in settings
with low resources have been developed. An RT-LAMP assay that has a similar limit of
detection to qRT-PCR and can detect HAV genotypes IA, IB, and IIIA in 30–50 min using
real-time fluorescence was reported [71]. However, this assay uses laboratory approaches
for extracting and purifying HAV RNA from stool samples. An RPA assay that is capable
of detecting HAV RNA from 0.5 mL of whole blood treated with a rapid nucleic acid
extraction reagent in 30 min using lateral flow strips for visual interpretation of results was
reported to have perfect sensitivity and specificity when evaluated using a small number
of samples [72]. These examples suggest that a POC test for the detection of HAV RNA
may be possible; however, additional developments and evaluations, especially related
to using sample types and sample processing methods that are relevant to a POC format
are needed.

Testing for markers of immunity or infection are not the only possible uses of POC
tests related to HAV infection. The primary route of transmission for HAV is contaminated
food and water. Testing food and water for HAV is uncommon, and when it does occur,
it is often reactive and in response to an outbreak. Due to the length of time between
HAV exposure and the onset of symptoms, the contaminated food or drink item is not
usually available for testing. Simplifying food and water testing with POC-compatible
formats would move testing outside of the laboratory and potentially allow for routine
screening of items such as shellfish, leafy produce, and frozen vegetables that are commonly
associated with outbreaks. An assay that uses RT-LAMP in combination with real-time
bioluminescent detection was developed and shown to be capable of detecting low-level
HAV contamination of green onions, strawberries, mussels, and milk [73]. However, the
laboratory methods used for the processing of the samples and the length of time needed
to perform the assay (>100 min) were not necessarily attractive for POC use. Additionally,
since HAV contamination levels on food or in water are typically low, the limit of detection
of POC HAV RNA tests may need to be improved to allow for testing that is sensitive
enough to accurately identify foodstuffs that are contaminated with HAV.

3.2. Hepatitis B Virus

HBV is an enveloped virus with a 3.2 kilobase partially double-stranded DNA genome
that is a member of the Hepadnaviridae family. HBV is divided into at least nine genotypes
(A–I) [74]. It replicates via reverse transcription of a pregenomic RNA intermediate to
produce its DNA genome [75]. Its virion is composed of the DNA genome within a capsid
composed of the HBV core antigen (HBcAg) and enveloped in a lipid membrane that is
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studded with HBV surface antigen (HBsAg) [76]. Additionally, HBV e antigen (HBeAg)
can be found in the blood of most infected people before partial immune control of viral
replication occurs [77].

HBV is transmitted via percutaneous and perinatal routes of infection. An estimated
296 million people are currently infected with HBV, but only 10% of them have been diag-
nosed [78]. Major risk factors include being born to an HBV-infected mother, unsafe sexual
behaviors, and exposure to contaminated blood or bodily fluids. Acute HBV infections are
generally asymptomatic. When symptoms do occur, they are typically observed approxi-
mately 2 months after exposure to the virus. HBV DNA and HBsAg are observed in the
blood within a few weeks of exposure and can be used to diagnose current HBV infection.
Antibodies targeting HBcAg (total anti-HBc) first appear a few months after exposure. IgM
anti-HBc are present during acute HBV infection but wane rapidly [79]. IgG anti-HBc, on
the other hand, persists after the resolution of infection or during chronic infection. While
total anti-HBc is a marker of exposure to HBV, these antibodies do not provide protection
against HBV. Antibodies targeting HBsAg (anti-HBs) do provide protection against HBV
infection and are present after vaccination or resolution of an HBV infection [13]. The
probability of an HBV infection resolving during the acute phase varies with the age of the
infected person. Most HBV infections in newborns (up to 95%) will become chronic, while
less than 10% of HBV infections in adults will become chronic [80,81].

Chronic HBV infections can be categorized into stages based upon virus replication,
HBeAg expression, and serum ALT levels, which are a marker of liver inflammation [80–82].
These stages can vary in length and progression. The immune-tolerant (HBeAg-positive
chronic infection) stage is categorized by high HBV DNA levels, HBeAg expression, and
normal ALT levels. During the immune-active (HBeAg-positive chronic hepatitis B) stage,
high HBV DNA levels and HBeAg expression remain, but the targeting of the HBV infection
by the immune system leads to liver inflammation and elevated serum ALT levels. The
inactive carrier stage (HBeAg-negative chronic infection) occurs when antibodies targeting
HBeAg (anti-HBe) appear and promote control of HBV replication. During this stage, HBV
DNA and ALT levels are low, HBeAg is undetectable, and the probability of transmission is
low, even during childbirth [82]. Anti-HBe can select for HBV mutants that downregulate
or prevent HBeAg expression and can promote increased HBV replication and liver inflam-
mation during the HBeAg-negative chronic hepatitis B stage [83]. Achieving undetectable
HBsAg expression during the HBsAg-negative stage, with or without anti-HBs, is a good
prognostic indicator for low risk of new HBV-associated liver damage [84].

The best preventative measures for HBV infections are vaccination and avoiding risky
behaviors. HBV vaccination shortly after birth can reduce the probability of mother-to-child
transmission [85]. There is no cure for chronic HBV infections, and available therapeutics
often only suppress viral replication without leading to HBsAg seroconversion. These
therapeutics for HBV infection include pegylated interferon alpha and nucleos(t)ide analog
drugs (NUCs), such as entecavir and tenofovir [78,81,83]. Due to the risk of reactivation of
HBV replication after ending therapy, NUCs often need to be taken for extended periods of
time [86,87].

Many POC tests for the detection of HBsAg are commercially available and routinely
used in certain settings. Rapid HBsAg tests are typically compatible with whole blood,
plasma, or serum samples and provide a result in less than 20 min. These types of tests
generally exhibit good performance when compared with laboratory tests. Indeed, a meta-
analysis that included 30 studies evaluating the performance of 33 different HBsAg LFTs
found an overall sensitivity of 90.0% (95% CI, 89.1–90.8%) and specificity of 99.5% (95%
CI, 99.4–99.5%) [88]. More recent evaluations of commercial HBsAg LFTs have shown
sensitivities above 91% and specificities above 94% [89–91]. Mutations within the antigenic
determinants of HBsAg appear to have little impact on the performance of certain HBsAg
LFTs, although this may depend on the specific antigen epitopes that are recognized by the
antibodies used in the test [92]. Lateral flow tests have also been developed that are capable
of differentiating HBV genotypes A, B, C, and D using genotype-specific antibodies that are
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immobilized at multiple test lines [23]. The performance of HBsAg detection remains high
when multiplexed with the detection of antibodies targeting HAV, HCV, or HIV [69,93,94].
Point-of-care HBsAg testing has been demonstrated to reduce testing costs and improve
linkage to care compared with traditional laboratory testing for certain populations with
high burdens of HBV infection [95].

Rapid tests for the detection of HBeAg are available, but they generally have poor
sensitivities ranging from 29.8% to 82%, making them impractical for accurately assessing
the stage of chronic HBV infection or evaluating the risk of mother-to-child transmission
at the POC [96–99]. However, a recently reported LFT using nanoparticle complexes to
amplify the test-line signal exhibited high sensitivity and specificity for the detection of
HBeAg [100]. Rapid tests for antibody markers that are related to HBV infection have also
met with limited success. POC tests for anti-HBs could be used to assess HBV vaccine
uptake, immunity, or resolution of HBV infections, but the LFTs that have been reported for
this analyte have poor sensitives that range from 50.4% to 69.5% and specificities between
93.0% and 98.4% [101–104]. Similarly, LFTs for the detection of anti-HBeAg could be used
to identify patients in a stage of partial immune control of their HBV infections at the POC,
but reported tests have sensitivities in the 45.2% to 82.8% range [97,102,103].

Although HBsAg LFTs work well for the POC diagnosis of current HBV infection,
POC tests for HBV DNA could be useful for monitoring antiviral therapy and informing
decision making regarding HBV therapy. Several approaches have been used to develop
HBV DNA tests that are rapid, inexpensive, and could be compatible with POC use. Several
LAMP tests that are specific for HBV DNA have been developed. A recent meta-analysis
of nine such tests that can be completed in under 60 min showed that they had a pooled
sensitivity of 91% (95% CI, 89–92%) and specificity of 97% (95% CI, 94–99%) compared
with conventional PCR-based tests [105]. Recombinase polymerase amplification assays
have also shown promise for the rapid detection of HBV DNA. These RPA-based tests are
typically faster than LAMP-based tests and have limits of detection of 10–1000 HBV DNA
copies per reaction when used with real-time fluorescence or lateral flow strip detection
methods [106–108]. These methods are compatible with the multiplex detection of a control
DNA that is spiked into the sample to verify that the RPA reaction is working [109,110].
Combining RPA and LAMP in a method known as Penn-RAMP may improve the sensi-
tivity and speed of HBV DNA detection compared with either method alone [111]. Ad-
ditional isothermal methods have also been reported to work well for amplification of
HBV DNA [112,113]. Both LAMP and RPA have been successfully coupled with Cas12- or
Cas13-based methods to improve the sensitivity and specificity of HBV DNA detection
via real-time fluorescence or lateral flow strips within 60 min [114,115]. A LAMP- and
Cas12-based detection method was able to discriminate HBV genotypes B and C and may
be adapted to identifying other genotypes [116].

Evaluations of rapid methods for HBV DNA detection often use commercial nucleic
acid extraction kits with plasma or serum samples, which are poorly compatible with point-
of-care sample collection and use. However, a few studies using plasma or whole blood
samples with simple heating or lysis buffer methods for nucleic acid extraction have found
decreased sensitivity of HBV DNA detection in LAMP or RPA reactions [106,117,118]. One
such study evaluating simple boil-and-spin or bead-based extraction methods with serum
samples found that these approaches have high sensitivity and specificity to diagnose
HBV DNA levels above 200,000 IU/mL, which is a relevant clinical threshold to treatment
recommendations for preventing mother-to-child HBV transmission [119].

The Xpert HBV Viral Load Test on the GeneXpert instrument (Cepheid, Sunnyvale,
CA, USA) is the only commercially available rapid test for HBV DNA that has been publicly
evaluated. The test provides quantitative HBV DNA levels in under 60 min with minimal
user intervention but is only marketed for use with serum or plasma samples. It has a limit
of quantitation of 10 IU/mL, and its results correlate well with automated laboratory qPCR
tests [120,121]. With this test, dried blood spots have been shown to be a suitable sample
type that provide results that correlate well with plasma samples [122,123].
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3.3. Hepatits C Virus

HCV is a small, enveloped virus from the Flaviviridae family that has a 9.6 kb positive-
sense RNA genome. HCV is classified into at least eight distinct genotypes (1–8), with mul-
tiple subtypes in each [124]. The genetic material is expressed as a single polyprotein that
is post-translationally processed into 10 structural and non-structural (NS) proteins [125].
Virions are composed of the RNA genome, complexed with a capsid made of core antigen
(cAg) and enclosed in a lipid membrane studded with envelope proteins 1 and 2 (E1 and
E2) [126].

HCV infects an estimated 58 million people worldwide, with around 1.5 million
new infections each year, but only 21% of them have received a diagnosis [9]. HCV is
transmitted percutaneously by contaminated blood and bodily fluids. Major risk factors
for HCV infection include having received a transfusion prior to routine screening of the
blood supply in the early 1990s and participating in unsafe injection practices [127]. After
exposure to the virus, HCV RNA and cAg can be detected in the blood in one to two
weeks. Fewer than 30% of HCV-infected people exhibit symptoms, which can appear by
six weeks. Antibodies targeting HCV proteins (anti-HCV) can be first observed between
4 and 12 weeks after exposure but do not provide protection from current or future HCV
infections [128]. Antibody responses vary among infected persons, but most commonly
target cAg, NS3, NS4a, NS4b, and NS5a. More than half of HCV infections will persist for
longer than six months and become chronic. Chronic infections can last for decades and are
associated with increased risk of liver cirrhosis and cancer [6]. Fortunately, antiviral drugs
that target the NS3/NS4a protease, NS5a, or the NS5b polymerase and have >95% cure
rates after 12–24 weeks of treatment are available [14,129]. No vaccines that can prevent
HCV infection have been developed, and the best way to prevent infection is to avoid
risky behaviors.

Traditional diagnostic algorithms test for anti-HCV followed by reflex testing anti-
HCV-positive samples for HCV RNA or cAg to identify current HCV infections [130]. This
approach economizes testing but will miss infections in people who have not yet developed
anti-HCV antibodies. Since testing for current HCV infections is performed in a laboratory,
access to testing can be an issue for some populations, and the need for health care provider
follow-up, which is required to receive a diagnosis, could lead to patients never being
linked to care [131]. Using rapid and inexpensive POC tests to diagnose HCV infections
while a patient waits could allow for test-and-treat diagnostic algorithms that reduce access
barriers and promote linkage of infected persons to care [132] (Figure 3). Since HCV RNA
and cAg are the only markers for diagnosing a current HCV infection, reliable POC tests
that detect them will be needed to allow for test-and-treat diagnostic strategies. The WHO
recommends 3000 IU/mL as an acceptable target for POC HCV RNA tests [133].

A few commercially available tests that can rapidly extract and detect HCV RNA
via quantitative RT-PCR have been developed. Thorough evaluations have been reported
for the Genedrive HCV ID Kit (Genedrive, Manchester, UK), Xpert HCV Viral Load kit
(Cepheid, Sunnyvale, CA, USA), and Xpert HCV VL Fingerstick kit (Cepheid, Sunny-
vale, CA, USA), which have received WHO prequalification, but not FDA approval. The
Genedrive HCV ID Kit can detect HCV RNA from 30 µL of plasma or serum in 90 min.
This test can be operated outside of a laboratory but involves 12 manual steps. Its limit of
detection is 2362 IU/mL, it can detect the most common HCV genotypes and subtypes,
and its sensitivity and specificity compared with laboratory HCV RNA detection methods
range from 96.2 to 100% and 99.5 to 100%, respectively [134–136]. Similarly, the Xpert
HCV Viral Load kit that operates on the Cepheid GeneXpert instrument detects HCV RNA
from plasma samples in 105 min but requires no manual steps after addition of the sample
to the test cartridge. This test has a lower limit of quantitation of 10 IU/mL and good
quantitative correlation, sensitivity, and specificity compared with laboratory HCV RNA
detection methods [137–139]. While neither of these tests are truly POC in nature due
to the need for plasma or serum samples and their run times are greater than one hour,
their speed, simplicity, and equipment requirements make them attractive alternatives to
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traditional laboratory methods. The existing commercial test with the best applicability for
POC HCV diagnosis is the Xpert HCV VL Fingerstick kit that is also run on the GeneXpert
instrument. This test detects HCV RNA as low as 40 IU/mL and quantifies HCV RNA as
low as 100 IU/mL from 100 µL of fingerstick blood in 60 min [140]. A recent meta-analysis
including seven published evaluations of this test found a pooled sensitivity of 99% (95%
CI, 97–99%) and specificity of 99% (94–100%) compared with paired plasma or serum
samples tested using laboratory HCV RNA tests [141]. Eighty percent of positive results
from this test are obtained within 40 min, potentially allowing for an even faster diagnosis
of HCV infections [142]. However, potential drawbacks of the Xpert HCV VL Fingerstick
kit are the occasional return of invalid test results and costs that may be prohibitive in
certain markets [141,143].
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Figure 3. Point-of-care tests could simplify HCV diagnosis and linkage to care. (A). Traditional
algorithms for the diagnosis of HCV infections require venous blood draw specimens to be sent to a
laboratory for anti-HCV testing. Samples positive for anti-HCV are reflex-tested for HCV RNA to
diagnose current HCV infections. Patients need to return to their health care provider to receive a
positive HCV infection diagnosis and to be linked to treatment. This requirement for an additional
visit to a health care provider can result in patients never receiving a diagnosis or being linked to
treatment. Additionally, some people may have poor access to testing due to geography or cost.
(B). Point-of-care tests for HCV RNA or cAg from capillary blood could alleviate some of the issues
with current testing algorithms by making HCV diagnostics less expensive, able to be performed
in more locations, and rapid. Tests with these features may make test-and-treat diagnostic models
possible, allowing for testing, diagnosis, and treatment initiation to occur in a single visit to a health
care provider.

Several RT-LAMP assays for the detection of HCV RNA that have limits of detection
and sensitivities similar to qRT-PCR assay with amplification times under 60 min have been
reported [144–149]. The performance of these methods has typically only been reported
using nucleic acids that are purified from serum or plasma samples using commercial
nucleic acid extraction kits that are poorly compatible with POC use due to time and
equipment needs. In studies that did evaluate simpler nucleic acid extraction methods,
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heat treatment of plasma samples exhibited poor sensitivity, while magnetic-bead-based
purification approaches looked promising [150,151]. Several devices to simplify the ampli-
fication and detection of HCV RNA using RT-LAMP have been developed. These include
portable battery-operated LED heaters integrated with ion sensors to detect nucleic acid
amplification and heat-block-compatible microfluidics devices that integrate amplifica-
tion and lateral flow detection of HCV RNA as low as 398 copies per reaction in under
40 min [152,153]. A microfluidics device that is capable of integrating magnetic-bead-based
nucleic acids extraction from plasma samples with RT-LAMP and colorimetric detection
was reported to be able to detect 500 HCV virions per mL in 45 min [33]. Microfluidics
devices have also been developed for the multiplex LAMP detection of HBV, HCV, and HIV
nucleic acids [154]. Fluorescent and lateral flow detection of HCV RT-LAMP products via a
Cas12-based method was reported to have 96% sensitivity and 100% specificity compared
with a reference RT-PCR test with a runtime of 60–90 min [155].

Recombinase polymerase amplification has also been applied to the detection of HCV
RNA. A pan-genotypic RPA test was reported to have a limit of detection of 25 copies per
reaction with 100% sensitivity and specificity compared with qRT-PCR, although separate
reverse transcription and RPA reactions were needed to achieve this performance [156].
A one-step RT-RPA that integrates the two reactions was reported to detect 10 copies of
HCV RNA per µL in 30 min using a lateral flow strip, but the genetic region targeted by the
RPA primers is unlikely to broadly detect the range of HCV genotypes [157]. Combining
RT-RPA with LAMP may allow for faster and more sensitive detection of HCV RNA than
RT-LAMP alone [108]. Other isothermal techniques, including catalytic hairpin assembly
and polymerase spiral reaction, have been demonstrated to work for sensitive and rapid
visual detection of HCV RNA [158,159]. However, before any isothermal nuclei acid
amplification techniques can be considered POC tests for HCV RNA, simple methods for
extracting HCV RNA from fingerstick whole blood samples will need to be developed.

Detection of HCV cAg indicates current HCV infection, but commercial POC tests for
this marker have not been developed. A few LFTs have been reported for the detection of
HCV cAg from serum or plasma in 15–20 min [160,161]. However, further development for
using these types of tests with fingerstick blood samples and samples from people who
have antibodies targeting HCV cAg will be necessary to support their use at the POC.

Detection of anti-HCV is the first step in traditional HCV diagnostic algorithms.
However, anti-HCV cannot be used to diagnose current HCV infections and is used only to
screen for which patients or samples should have follow-up testing for HCV RNA or cAg.
Testing for anti-HCV at the POC would not be compatible with test-and-treat models but
could simplify screening samples to determine which ones require HCV RNA reflex testing
using a laboratory or POC test. Anti-HCV LFTs are widely available and several tests have
WHO prequalification, including the OraQuick HCV test (Orasure, Bethlehem, PA, USA),
which is FDA-approved. Two meta-analyses evaluating the published use of anti-HCV
LFTs with whole blood, serum, or plasma samples found pooled sensitivities of 97.4% (95%
CI, 95.9–98.4%) and 98% (95% CI, 98–100%) and specificities of 99.5% (95% CI, 99.2–99.7%)
and 100% (95% CI, 100–100%) [162,163]. Similarly, a recent large-scale evaluation of seven
anti-HCV LFTs with serum or plasma samples found sensitivities ranging from 97.2 to 100%
and specificities above 99.5% for all but one test [164]. Some anti-HCV LFTs, including the
OraQuick HCV Test, are approved for use with saliva or oral fluid samples. The sensitivity
for the detection of anti-HCV from saliva or oral fluids is poorer than from blood, serum,
or plasma, but may still be adequate for screening in high-prevalence settings such as drug
clinics or needle exchange centers [160,162,165]. Anti-HCV LFTs can be multiplexed with
other markers of viral infection. Several multiplex tests have been developed that can
detect anti-HAV, HBsAg, and anti-HIV while maintaining sensitive and specific detection
of anti-HCV [69,70,93,94].
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Point-of-care testing used in the diagnosis of HCV infections could allow for health
care cost savings and improved patient perception of the testing process. In high-prevalence
settings, such as among intravenous drug users, POC HCV RNA tests may represent a cost-
saving alternative to traditional laboratory diagnostic algorithms that also allows for earlier
diagnosis of HCV infection [166,167]. However, in most settings with an anti-HCV preva-
lence below 74%, POC anti-HCV testing followed by reflex testing using POC HCV RNA
testing may have the lowest cost per diagnosis and treatment initiation [168]. Similarly, in
low- and middle-income countries (LMICs), POC anti-HCV testing followed by POC HCV
RNA may be the most cost-effective strategy, unless POC HCV RNA test costs decline [169].
Even with the cost savings associated with POC testing, current test pricing may make
elimination goals difficult to afford for many LMICss. An additional advantage of these
testing strategies is that POC anti-HCV and HCV RNA testing using fingerstick blood
samples is generally well regarded by patients in terms of ease, acceptability, and preference
compared with venipuncture [170,171]. A large evaluation of the cost-effectiveness of HCV
self-testing in four different countries demonstrated that self-testing was not cost-efficient,
but that it significantly increased the number of diagnosed and cured individuals [172].
However, cost differences were driven primarily by the treatment price and not the cost of
diagnosis. A recent systematic meta-analysis including 45 studies from both high-income
countries and LMICs and comparing HCV POC viral load testing with laboratory-based
RNA testing has informed new WHO recommendations to adopt POC HCV testing as an
alternative to lab-based platforms in order to promote better linkage to care [173]. This
meta-analysis found that on-site POC testing and mobile POC testing had treatment up-
takes of 77% (72–83%) and 81% (60–97%), respectively, compared with 53% (31–75%) for
standard laboratory testing.

3.4. Hepatitis D Virus

HDV, also known as hepatitis delta virus, is a satellite virus from the Kolmioviridae
family that is dependent upon HBV for replication. The 1.7 kb circular RNA genome of
HDV is the smallest of any known agent that infects humans. HDV is categorized into eight
genotypes (1–8) [174]. It encodes a single gene that can be expressed in two forms, the small
HDV antigen (HDAg) and the large HDAg. Virions are composed of these antigens and
the viral genome that is packaged within lipid membranes containing HBsAg, expressed
by HBV [175]. Like HBV, HDV is transmitted through contaminated blood products, and
risk factors include unsafe sexual and injection practices and birth to a mother infected
with HBV and HDV. There are an estimated 12 million people who have or have had an
HDV infection globally [10]. The clinical course of HDV infections depends on when the
infection occurs in relationship to HBV infection. Co-infections of HBV and HDV at the
same time are often self-limiting, with less than 5% of cases becoming chronic, but they
can cause fulminant hepatitis in some cases [7,176]. Superinfections by HDV in people
with chronic HBV will lead to chronic HDV infections in 70–90% of cases [7,177]. These
superinfections can exacerbate the signs and symptoms of hepatitis and lead to an earlier
onset of cirrhosis. Vaccination against HBV also prevents HDV infection. Current interferon
therapies for HDV are ineffective; however, bulevirtide and other HDV-specific therapies
are being investigated [175,176].

Diagnostic markers for HDV infection include anti-HDV, HDAg, and HDV RNA,
where the presence of HDV RNA or HDAg in the blood is used to diagnose current HDV
infections. There are no FDA- or WHO-prequalified laboratory or point-of-care tests for
either marker. Multiplex tests that detect both HDV and HBV markers would be ideal due
to the intimate association between these two viral infections.

Of the five hepatitis viruses, HDV has received the least attention in relation to POC test
development. An LFT for the detection of IgG anti-HDV antibodies from serum or plasma
within 20 min was recently reported [178]. This test exhibited 94.6% (91.6–96.5%) sensitivity
and 100% (97.4–100%) specificity when evaluated using a collection of 474 patient samples,
including a range of anti-HDV titers and HDV genotypes. Additionally, the anti-HDV test
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was able to be multiplexed with lateral flow detection of HBsAg to allow for simultaneous
diagnosis of HBV and identification of exposure to HDV. An RT-LAMP method for the
detection of HDV RNA has also been developed and was able to confirm all HDV RNA-
positive samples and identified more positive samples than enzyme immunoassays did for
HDAg or anti-HDV [179]. For POC testing purposes, it would need to be integrated into
simpler sampler processing and detection approaches.

3.5. Hepatitis E Virus

HEV is a non-enveloped, positive-sense RNA virus from the Hepeviridae family. It has
a 7.2 kb genome and is genetically classified into at least eight genotypes (1–8), although
only genotypes 1–4 infect humans [180,181]. The HEV genotypes are antigenically similar
and comprise a single serotype. HEV is transmitted via the fecal–oral route and caused
an estimated 19 million global infections in 2017 [11]. The primary source of infection
and the epidemiological profile often differ by the development status of a country. In
low- and middle-income countries, sewage contamination of drinking water can lead to
large-scale outbreaks, typically involving HEV genotypes 1 and 2 [4]. In high-income
countries, HEV infection is sporadic. In these places, improved sanitation and hygiene have
made zoonotic transmission from the consumption of undercooked pork and game the
main source of infections, typically with genotypes 3 and 4 [182]. HEV infections are often
asymptomatic. When symptoms do occur, they appear one to two months after exposure
and are generally self-limiting. Some hepatitis E cases can be severe, causing fulminant
hepatitis and case–fatality rates between 1 and 3% [4]. HEV is particularly dangerous to
pregnant women, where mortality rates of up to 30% have been reported [4,183]. Chronic
HEV infections lasting longer than 6 months have occasionally been observed, but these
are typically in immunocompromised patients infected with HEV genotype 3 [184]. A
vaccine for HEV has been approved in China but is not available elsewhere [185]. There
are no approved HEV therapeutics, although ribavirin has shown promise, and others are
in development [186,187].

During HEV infection, both IgG and IgM anti-HEV antibodies can be detected about
three to four weeks after exposure. The IgG antibodies are long-lived, while the IgM
antibodies wane over an approximately 6-month period. Therefore, IgM anti-HEV is
commonly used to identify acute infections. HEV is found in the blood and shed in stool
of infected persons [188]. Both blood and stool can be used for diagnosing current HEV
infection via HEV RNA or HEV antigen.

Commercial POC tests for the detection of IgM anti-HEV antibodies do exist; however,
none have been approved by the FDA or prequalified by the WHO. Point-of-care testing for
HEV would be particularly useful for rapidly identifying HEV outbreaks to allow for timely
interventions that could minimize the scope of the outbreak. Additionally, POC tests could
find use for screening water supplies and meat products from potentially infected animals.

The Assure HEV IgM rapid test (MP Biomedicals, Irvine, CA, USA) is an LFT that
can detect IgM anti-HEV from serum, plasma, or whole blood in 15 min. Independent
evaluations using serum or plasma samples have found sensitivities ranging from 92.6
to 96.7% and specificities ranging from 98.6 to 100% [187–189]. This test may have de-
creased sensitivity, 82% (68.6–91.4%), when used with samples from sporadic genotype
3 HEV infections and decreased specificity in samples containing high levels of rheumatoid
factor [189,190]. There is often poor concordance among laboratory IgM anti-HEV tests,
so reported sensitivities and specificities may need to be interpreted with caution [191].
Another test, the HEV IgM Rapid Test (Wantai Biopharm, Beijing, China), performs simi-
larly to the Assure HEV IgM Rapid Test, with sensitivity above 90% [192]. This test was
shown to have lower sensitivity, 73.3% (55.4–91.2%), when used with immunocompromised
patients [193]. To evaluate the performance of these IgM anti-HEV LFTs as POC tests for the
diagnosis of HEV, additional research should focus on the use of these tests with fingerstick
blood specimens, rather than serum or plasma.
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Researchers have developed tests for the detection of HEV capsid antigen or HEV
RNA that have format attributes that are attractive for POC use. Unlike IgM anti-HEV,
these markers would allow for the direct identification of HEV infection or environmental
contamination. An LFT has been reported to detect HEV capsid antigen in 15 min with a
sensitivity of 92% and a specificity of 100% [194]. This test uses a fluorescent tag that can
be observed by eye or with a fluorimeter, rather than a colorimetric tag, for detection. It
is compatible with both stool and serum samples and has a limit of detection equivalent
to approximately 1000 HEV RNA genome copies per milliliter. For HEV RNA detection,
RT-LAMP protocols have been reported [195]. One method using gold nanoparticles for col-
orimetric visual identification of DNA product amplification can be completed in less than
60 min and can detect samples with as little as 10 HEV RNA copies per reaction [196]. How-
ever, this method has not been evaluated with POC-compatible techniques for extracting
HEV RNA or with whole blood or stool samples.

Isothermal nucleic acid amplification methods have also been adapted for use to
detect HEV RNA from swine and shellfish samples. Pigs are a natural reservoir of HEV,
and shellfish grown in contaminated waterways can concentrate viruses, such as HEV.
Using nucleic acids extracted from pig bile or shellfish, RT-LAMP can detect approximately
10 HEV RNA copies per microliter of extract in 60 min using turbidity or colorimetric
techniques for visual identification of DNA amplification [197,198]. An assay using RT-RPA
with homogenized pork livers was found to have a limit of detection of 34 HEV RNA
copies per microliter of extracted sample in only 20 min using either real-time fluorescence
measurements or lateral flow test strips [199]. Each of these studies uses laboratory-
based methods for sample homogenization and nucleic acid extraction due to the inherent
complexity of the shellfish and liver sample types. While these isothermal methods are
simpler and faster than conventional RT-PCR for detection of HEV RNA, simplifications to
the sample preparation steps will be required before they are compatible with POC use to
rapidly identity contaminated food items or animals.

Most large-scale HEV outbreaks occur due to contaminated sources of drinking water.
However, rapid methods for HEV detection have not been applied to these sample types.
Sensitivity may be an issue for this sample type due to the low levels of virus that are
typically found in contaminated drinking water [200]. Laboratory testing of water sources
for viruses often requires the lengthy concentration of liters of sample to smaller volumes
that are compatible with extraction and amplification methods [201,202]. Simplifying these
procedures for use at the POC will be difficult, although at least one method for performing
virus concentration from water samples in the field with simple and inexpensive equipment
has been described [203]. With technological advances, field testing of water sources may
allow for drinking water screening or for the faster identification of outbreak sources.

4. Clinical Markers of Hepatitis

Symptoms of acute viral hepatitis, such as fever, nausea, and vomiting, can resemble
those of other viral infections. Clinical signs of liver disease or dysfunction include high
serum levels of bilirubin and/or liver enzymes like ALT. Identification of these clinical
signs can indicate that testing for viral hepatitis infections is justified. While no commer-
cial POC tests for elevated bilirubin or ALT levels exist, tests that are compatible with
POC use have been developed. Bilirubin is an intermediate product formed during the
catabolism of heme that can build up during liver disease. A bilirubin test that uses plasma
separation cards and a battery-operated device for measuring absorbance can measure
clinically relevant bilirubin levels from a few drops of whole blood in less than 5 min [204].
During liver disease, liver enzymes, such as ALT, are released into the bloodstream from
damaged hepatocytes. A paper-based test that uses plasma separation and colorimetric
semiquantitative measurement of ALT activity allows for assessment of whether ALT levels
are elevated in serum or fingerstick blood samples in 30 min [205]. While use of this test
with serum samples correlated well with a reference laboratory test, measurements made
using whole blood samples were systematically lower. ALT levels above 40 IU/L can
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be used to evaluate whether HBV treatment should be initiated [80]. An LFT that uses
ALT-specific antibodies has been characterized for its ability to identify plasma or whole
blood samples with ALT levels above 40 IU/L [206]. The interpretation of results can be
either quantitative using a handheld reader or semiquantitative using visual comparison to
a standard. This method generally has a good predictive performance for determination of
eligibility for HBV therapy compared with laboratory tests. The continued development of
POC tests for measuring levels of bilirubin or ALT in blood samples is needed, because it
may make diagnosis of liver disease and clinical decision making regarding viral hepatitis
infections faster and able to be performed in resource-limited settings.

5. Conclusions

The five hepatitis viruses, HAV, HBV, HCV, HDV, and HEV, are major public health
threats that cause millions of new cases and high levels of mortality each year. In general,
diagnosis of these viruses is performed in laboratories, which leads to underdiagnosis due
to a lack of access to testing or loss of patients to follow-up with testing results. Point-of-care
testing methods for antibodies, antigens, and nucleic acids, which are rapid, inexpensive,
and accurate, represent promising approaches for improving patient diagnosis, preventing
the spread of disease, monitoring food and water for contamination with HAV or HEV,
and improving linkage to care and treatment for chronic HBV and HCV infections. Rapid
tests have been developed for many of the markers used in hepatitis virus diagnosis, with
performance characteristics that are similar to their corresponding laboratory-based tests.
Commercially available POC tests for HBsAg and anti-HCV are widely available and in
use, while other markers such as viral hepatitis nucleic acids have only recently begun to
be developed or made available. With additional improvements in cost, performance, and
usability, the widespread adoption of POC tests could provide important tools for making
progress towards the 2030 WHO viral hepatitis elimination goals.
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