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Abstract: Dinoflagellates make up the second largest marine group of marine unicellular eukaryotes
in the world ocean and comprise both heterotrophic and autotrophic species, encompassing a wide
genetic and chemical diversity. They produce a plethora of secondary metabolites that can be toxic
to other species and are mainly used against predators and competing species. Dinoflagellates
are indeed often responsible for harmful algal bloom, where their toxic secondary metabolites can
accumulate along the food chain, leading to significant damages to the ecosystem and human health.
Secondary metabolites from dinoflagellates have been widely investigated for potential biomedical
applications and have revealed multiple antimicrobial, antifungal, and anticancer properties. Species
from the genus Amphidinium seem to be particularly interesting for the production of medically rele-
vant compounds. The present review aims at summarising current knowledge on the diversity and
the pharmaceutical properties of secondary metabolites from the genus Amphidinium. Specifically, Am-
phidinium spp. produce a range of polyketides possessing cytotoxic activities such as amphidinolides,
caribenolides, amphidinins, and amphidinols. Potent antimicrobial properties against antibiotic-
resistant bacterial strains have been observed for several amphidinins. Amphidinols revealed instead
strong activities against infectious fungi such as Candida albicans and Aspergillus fumigatus. Finally,
compounds such as amphidinolides, isocaribenolide-I, and chlorohydrin 2 revealed potent cytotoxic
activities against different cancer cell lines. Overall, the wide variety of antimicrobial, antifungal,
and anticancer properties of secondary metabolites from Amphidinium spp. make this genus a highly
suitable candidate for future medical applications, spanning from cancer drugs to antimicrobial
products that are alternatives to currently available antibiotic and antimycotic products.

Keywords: Amphidinium; dinoflagellates; biological activity; anticancer; antifungal; antimicrobial
compounds

1. Introduction

Dinoflagellates are a group of microalgae widely distributed in freshwater and marine
environments, which comprise autotrophic, heterotrophic, and mixotrophic species. A num-
ber of dinoflagellate species have been described as symbionts (e.g., Symbiodinium, Pelago-
dinium), parasites (e.g., Amoebophrya, Ichthyodinium), and grazers (e.g., Gyrodinium) [1–7].
The number of species belonging to this taxon has been recently estimated at ca. 6000 species;
among them, more than 60% are living and the remaining part represent fossil species [8].
The variety of feeding behaviours is comparable to their biochemical diversity, that leads to
the production of a plethora of secondary metabolites, most of them possessing significant
biological activities towards cancer cell lines, bacteria, viruses, fungi, larvae, and other
algae [9–16]. Among them, some toxic molecules (saxitoxin, tetrodotoxin, okadaic acid)
have been largely investigated to assess their potential in the pharmaceutical field since
the 2000s [17]. However, toxins can be detrimental for human health, especially when mas-
sively released in the water column during harmful algal blooms (HABs). HAB frequency
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has been constantly increasing over the last few decades because of climate change and
coastal eutrophication [18–20]. Among the huge species richness of dinoflagellates, the
genus Amphidinium seems to be particularly relevant for its high potential in producing
bioactive metabolites. Species belonging to this genus, along with other closely related
genera, produce several poliketides, including amphidinols, amphidinolids, amphidinins,
and iriomoteolides, and lots of these secondary metabolites possess significant cytotoxic
activity, which is described in the present article. With respect to other dinoflagellates,
usually characterised by low growth rates [21], Amphidinium spp. are able to perform rapid
growth, and reach high abundances and relatively high biomass yields under appropriate
culturing conditions [22,23]. This could be advantageous in a perspective of a large-scale
production of metabolites potentially marketable in the industrial sector. Moreover, modu-
lation of culture conditions, such as light intensity and nutrient supply, can further promote
the production of specific metabolites [24]. In the present paper, we collected informa-
tion available in literature about the most significant biological activities of Amphidinium
spp.-derived metabolites, highlighting the potential of this genus as a source of bioactive
compounds including pharmaceuticals, but also the main bottlenecks currently avoiding
the commercialisation of their bioactive metabolites. Figure 1 represents cells of the strain
Amphidinium carterae CCMP 1314 (also known as FE102 clone).
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Figure 1. Amphidinium carterae CCMP 1314. This species is included in the culture collection of the
Ecosustainable Marine Biotechnology Department at SZN, and the micrograph was taken through an
inverted microscope Zeiss Axio Observer 7 (Jena, Germany) at 200× magnitude by I. Orefice.

Antimicrobial resistance developed by some pathogens is a serious public health
issue that needs to be resolved through the common efforts of the scientific community,
society, and policy makers. An increasing number of infectious diseases caused by dif-
ferent pathogens, such as bacteria, parasites, viruses, and fungi, are difficult to prevent
and to treat because of adaptation mechanisms evolved by several distinct pathogens to
overcome the action of several commonly used drugs. Antimicrobial resistance has been
reported to cause ca. 700,000 fatalities per year worldwide [25]. In particular, bacterial
resistance to antibiotics seems to be the microbe-driven drug adaptation strategy leading to
the most serious issues for human health; indeed, several bacterial species exhibit antibiotic
resistance, and bacterial infections can often lead to severe consequences [26]. Bacteria
exhibiting the most dangerous drug adaptation patterns are multidrug-resistant strains
affiliated to the species Staphylococcus aureus, Escherichia coli, Enterococcus faecium, Strepto-
coccus pneumoniae, Klebsiella pneumoniae, and Pseudomonas aeruginosa [27]. Innovative and
high-quality antibacterial compounds are thus urgently required to replace the antibiotics
that are going to be rendered increasingly ineffective by drug resistance [28]. Since most
of the antibiotics known to date have been developed from natural products, the marine
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environment can represent a promising source, still little explored, of new bioactive com-
pounds with antibacterial activity. Although the dinoflagellate Amphidinium produces a
plethora of secondary metabolites with numerous bioactive properties, few studies have
investigated the potential of Amphidinium spp. as a source of antibacterial molecules. The
first evidence was reported by Kubota and co-authors [29], in which the amphidinolide Q, a
cytotoxic 12-membered macrolide, and four new 4,5-seco-analogues, namely amphidinins
C, D, E, and F, were identified in the liquid medium in which Amphidinium sp. strain
2012-7-4A was cultured. This strain was isolated from the marine flatworm Amphiscolops
sp. collected at Ishigaki, Okinawa, Japan. The antibacterial activity was evaluated against
two Gram-positive bacteria, S. aureus and Bacillus subtilis, and a Gram-negative bacterium,
E. coli. Results demonstrated that amphidinins C and E and amphidinolide Q were ac-
tive against S. aureus and B. subtilis, while only amphidinolide Q was effective against E.
coli (minimum inhibitory concentration—MIC—of 32 µg/mL for all trials except B. sub-
tilis treated with amphidinolide Q, MIC of 16 µg/mL (Table 1)). Amphidinins D and F
and the glycosides-related compounds did not show antibacterial activity. More recently,
Barone and co-authors [30] evaluated the antibacterial activity of Amphidinium carterae
strain LACW11, isolated on the west Irish coast, against two Gram-positive bacteria, S.
aureus and E. faecalis. The activity was detected mainly in three fractions obtained by ethyl
acetate extraction and C18 fractionation with increasing percentages of methanol, namely
fractions J (80% methanol), I (90% methanol), and K (100% methanol), with an MIC ranging
from 16 µg/mL to 64 µg/mL for S. aureus and from 64 µg/mL to 256 µg/mL for E. faecalis
(Table 1). The chemical identification of these fractions, through a metabolomic approach,
highlighted the presence of amphidinol AM-A and a new derivative, dehydroAM-A, in
fractions I and J, respectively. These two compounds were mostly responsible for the
antibacterial activity against S. aureus. Fraction K, which showed bioactivity against E.
faecalis, did not contain known amphidinols, suggesting the presence of other bioactive
molecules in this fraction. Antimicrobial activity occurs throughout nature; there are many
examples of bioactive secondary metabolites produced by a variety of both land-based
and underwater sources [31]. Terrestrial and marine secondary metabolites have different
structural features and bioactive proprieties, probably due to the different environmental
characteristics in which the original organisms occur [32]. Chassagne and co-authors [33]
reported a systematic analysis of scientific data about plants possessing significant an-
tibacterial activities, selecting data on 958 species derived from 483 scientific articles. This
analysis indicated the crude extracts of the plant species Sambucus nigra L. (Adoxaceae),
Echinops kebericho Mesfin (Asteraceae), Mikania glomerata Spreng. (Asteraceae), Curcuma
longa L. (Zingiberaceae), and Combretum album Pers., (Combretaceae) as those with the most
potent antibacterial activity, with MIC values ranging from 3.5–16 µg/mL, comparable
or slightly lower compared to MIC of Amphidinium-related compounds. Essential oils are
concentrated hydrophobic liquids extracted from plants; they are generally very complex
in terms of chemical composition, showing a powerful antibacterial activity, with MIC
values that reached 0.09 µg/mL for the plant Hibiscus surattensis L. (Malvaceae), probably
due to the synergistic effect between the different compounds present in the extracts. In
addition to antibacterial activities, the species A. carterae has been also investigated for its
antialgal and antilarval activity, as reported by Kong and co-authors [9]. These properties
were tested to find environmentally friendly antifouling compounds for marine industries.
A series of unsaturated and saturated 16- to 22-carbon fatty acids, including hexadecanoic
acid, octadecanoic acid, 9-octadecenoic acid, octadecatetraenoic acid, eicosapentaenoic
acid (EPA), and docosahexaenoic acid, exhibited antialgal activity against the diatom Skele-
tonema costatum, as indicated by changes in the chlorophyll a fluorescence intensity of the
microalgal suspension, and antilarval activity against Amphibalanus amphitrite larvae with
relatively low lethal concentrations. The antimicrobial properties of fatty acids isolated
from marine organisms are well documented [34]. The type and potency of bioactivity
depends on the chemical structure, in terms of degree of saturation, length of carbon chain,
and the orientation of the double bonds [35]. Among the most promising fatty acids, EPA
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showed potent activity against different bacteria [36], and palmitic acid revealed antialgal
activity and antifouling properties against the diatom Cylindrotheca closterium with a half-
maximal effective concentration (EC50) value of 45.5 µg/mL [37]. However, literature data
on the most used antifouling agents, such as diuron, copper thiocyanate, and tolylfluanid,
showed a more powerful antialgal activity, with an EC50 always lower than 1 µg/mL,
compared to compounds isolated from natural sources [38–40]. On the other hand, the
use of chemical agents represents a serious environmental risk, due to their persistence
and toxicity to nontarget organisms. Recently, the stricter restrictions on the European
Community have limited the use of these chemical agents, leading to a growing need
to find alternatives to synthetic antifouling compounds [41]; within this context, further
efforts to prove the validity of Amphidinium spp. as a valuable natural source of antifouling
molecules are mandatory.

Table 1. Major active compounds from Amphidinium spp. possessing antimicrobial properties.
Abbreviations: MIC, minimum inhibitory concentration; EC50, half-maximal effective concentration,
LC50, half-maximal lethal concentration. 1 Metanol/ethyl acetate extraction and SPE C18 fractionation
(Fraction K with 100% methanol). 2 Mix of hexadecanoic acid, octadecanoic acid, 9-octadecenoic acid,
octadecatetraenoic acid, eicosapentaenoic acid, and docosahexaenoic acid.

Compound or Extract Type Species Properties Target Microbs Activity Reference

Amphidinin C Polyketide Amphidinium sp.
(2012-7-4A strain) Antibacterial S. aureus MIC: 32 µg/mL [29]

Amphidinin C Polyketide Amphidinium sp.
(2012-7-4A strain) Antibacterial B. subtilis MIC: 32 µg/mL [29]

Amphidinin E Polyketide Amphidinium sp.
(2012-7-4A strain) Antibacterial S. aureus MIC: 32 µg/mL [29]

Amphidinin E Polyketide Amphidinium sp.
(2012-7-4A strain) Antibacterial B. subtilis MIC: 32 µg/mL [29]

Amphidinolide Q Polyketide Amphidinium sp.
(2012-7-4A strain) Antibacterial E. coli MIC: 32 µg/mL [29]

Amphidinolide Q Polyketide Amphidinium sp.
(2012-7-4A strain) Antibacterial S. aureus MIC: 32 µg/mL [29]

Amphidinolide Q Polyketide Amphidinium sp.
(2012-7-4A strain) Antibacterial B. subtilis MIC: 16 µg/mL [29]

Amphidinol AM-A Polyketide A. carterae
(LACW11 strain) Antibacterial S. aureus MIC: 16 µg/mL [30]

Amphidinol AM-A Polyketide A. carterae
(LACW11 strain) Antibacterial E. faecium MIC: 64 µg/mL [30]

Amphidinol
dehydroAM-A Polyketide A. carterae

(LACW11 strain) Antibacterial S. aureus MIC: 16 µg/mL [30]

Amphidinol
dehydroAM-A Polyketide A. carterae

(LACW11 strain) Antibacterial E. faecium MIC: 128 µg/mL [30]

Methanol extract 1 NA A. carterae
(LACW11 strain) Antibacterial S. aureus MIC: 64 µg/mL [30]

Methanol extract 1 NA A. carterae
(LACW11 strain) Antibacterial E. faecium MIC: 256 µg/mL [30]

C16–22 fatty acids 2 Fatty acids A. carterae Antialgal S. costatum EC50 at 72 h:
12.9 µg/mL [9]

C16–22 fatty acids 2 Fatty acids A. carterae Antilarval A. amphitrite LC50 at 24 h:
15.1 µg/mL [9]
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2. Antifungal Activity

Fungal infections represent a serious clinical problem, especially for immunocompro-
mised and seriously ill patients. Among clinical infections, those caused by the species
Aspergillus niger and Candida albicans can cause morbidity and mortality when associated
with other diseases, advanced age, and/or patients who have undergone an organ trans-
plant [42]. Dinoflagellates include a high proportion (ca. 70%) of species possessing biocide
activity against fungal infections [43], and most of them were tested on the abovementioned
fungi [12,44,45]. Some potent dinoflagellate-derived compounds with antifungal activity
were isolated over 30 years ago from the species Gamberdiscus toxicus [46], identified as
polyether compounds termed as gambieric acids [47]. However, most of the antifungal com-
pounds derive from the genus Amphidinium. In less recent works (from the late 1990s to the
first decade of the 2000s), the biological activity of Amphidinium compounds was evaluated
by susceptibility tests based on paper disks impregnated of specific concentrations of the
agent, which were aimed at identifying the minimum effective concentration (MEC) able to
inhibit fungal proliferation [48,49]. More precise in vitro assays were performed to detect
the MIC of the antifungal agents during the last decade. MIC can be assessed by colorimet-
ric assays based on the reduction of resazurin, a nonfluorescent blue dye that is reduced to
the pink-coloured resorufin [50], or by the broth microdilution method [51], which is based
on the inoculation of a standardised number of organisms in a liquid medium exposed to
serial dilutions of an antifungal agent [12]. MIC values of Amphidinium-derived compounds
(Table 2) are comparable or slightly higher than organic extracts obtained from natural
compounds of plant origin, such as Abutilon theophrasti, Acacia nilotica, Cinnamomum verum
and Ficus polita, while they are—as expected—lower than plant-derived essential oils [52].
Amphidinols can be also considered equally or more effective than other antifungal com-
pounds isolated from some marine organisms [53], such as the bacterium Acinetobacter sp.,
which produces indolepyrazines exhibiting a MIC of 12–14 µg/mL against C. albicans [54],
and the fungus Penicillum sp., which contains andrastone C and andrastone B exhibiting
MIC values against C. albicans of 6 and 13 µg/mL, respectively [55]. The antifungal effects
exhibited by compounds from Amphidinium spp. and other marine organisms towards as-
pergillosis is comparable (MIC values have the same order of magnitude) to plant-derived
solvent extracts from the families Asteraceae and Lamiaceae, but generally produce a more
marked effect of flavonoids and phenolic compounds extracted from other several species
(families: Fabaceae, Aizoaceae, Anacardiaceae, Hypericaceae, Cornaceae, Bignoniaceae,
Aquifoliaceae) that possess MIC values of 0.01–6.25 mg/mL [56]. Antifungal activity of
Amphidinol A, C, and 18 against C. albicans can be considered also comparable to that of
fluconazole, one of the most common synthetic compounds that is actually considered as
one of the mainstays for the treatment of Candida-derived infections. Indeed, MIC values of
these compounds are inside or below the range of the susceptible dose-dependent (SDD,
MIC: 16–32 µg/mL) clinical breakpoint for fluconazole and Candida, and below the resistant
(R; MIC ≥ 64 µg/mL) breakpoint [57]. Few data regarding Amphidinium-derived molecules
with antifungal activity are available in the literature with respect to those of synthetic
compounds (e.g., triazoles), and the application of different methodologies can make the
direct comparison among these natural compounds with the most common antifungal
agents difficult. Moreover, the increasing resistance exhibited by Candida and Aspergillus
species towards the most common biocides [58–60] have already highlighted the need to
test and validate the efficiency of novel azoles with improved spectra of activity [61]; we
hypothesise that this research can be extended also to natural sources, including marine
bioactive compounds from Amphidinium spp.
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Table 2. Main antifungal agents isolated from Amphidinium spp. and related activity towards Candida
albicans or Aspergillus species.

Compound Species Target Fungus Activity Reference

Amphidinol 22 Amphidinium carterae Aspergillus fumigatus MIC: 64 µg/mL; 100% growth inhibition
at 560 µg/mL [62]

Amphidinol 21 Amphidinium carterae Aspergillus niger MEC: <15 µg/disk [49]

Amphidinol 20 Amphidinium carterae Aspergillus niger MEC: <15 µg/disk [49]

Amphidinols 18 Amphidinium carterae Candida albicans MIC: 9 µg/mL [12]

Amphidinol 13 Amphidinium carterae Aspergillus niger growth inhibition: 132.0 mg/disk [45]

Amphidinol 12 Amphidinium carterae Aspergillus niger growth inhibition: >100 mg/disk [45]

Amphidinol 11 Amphidinium carterae Aspergillus niger growth inhibition: 256.6 mg/disk [45]

Amphidinol 10 Amphidinium carterae Aspergillus niger growth inhibition: 154.0 mg/disk [45]

Amphidinol 9 Amphidinium carterae Aspergillus niger growth inhibition: 32.9 mg/disk [45]

Amphidinol 7 Amphidinium klebsii Aspergillus niger MEC: 10 mg/disk [48]

Amphidinol 4 Amphidinium carterae Aspergillus niger growth inhibition: 58.2 mg/disk [45]

Amphidinol 2,6 Amphidinium klebsii Aspergillus niger growth inhibition: 6 µg/disk [63]

Amphidinol 2 Amphidinium carterae Aspergillus niger growth inhibition: 44.3 mg/disk [45]

Amphidinol C Amphidinium carterae Aspergillus fumigatus,
Candida albicans

minimum fungicidal concentration:
8 µg/mL (A. fumigatus);
16 µg/mL (C. albicans)

[63,64]

Amphidinol A Amphidinium carterae Candida albicans MIC: 19 µg/mL [44,45]

3. Anticancer Activity

In addition to antimicrobial and antifungal activities, the genus Amphidinium has
been widely investigated for the anticancer properties of its secondary metabolites. Both
symbiotic and free-living Amphidinium spp. have been reported to possess several anti-
cancer compounds. An extensive review on the anticancer properties of macrolides and
polyketides produced by Amphidinium spp. is provided by Kobayashi and Tsuda [65].
Overall, these authors classified all the amphidinolides isolated and identified back in 2006,
and reported the presence of 34 cytotoxic amphidinolides in 7 Amphidinium sp. strains. The
first bioactive compounds were isolated from an Amphidinium sp. symbiont of the flatworm
Amphiscolops breviviridis and named amphidinolides B, G, and H [66]. In particular, amphidi-
nolides G and H have proven to be very effective against murine leukemia cells (Table 3).
Amphidinolide B, Amphidinolide H, and amphidinolide H3 revealed instead cytotoxic ac-
tivity against murine leukemia and human epidermoid carcinoma (Table 3). Amphidinol-22
was isolated from crude extracts of A. carterae and was found to exhibit moderate cytotoxic
activity against lung, liver, and pancreas cancer cell lines [62]. The amphidinolides most
effective against cancer cells are Amphidinolide N, which was found to exhibit potent
cytotoxic activity against human cervix adenocarcinoma cells—half maximal inhibitory
concentration (IC50) = 0.01 ng/mL—and Amphidinolides B and H, which were revealed to
be effective against murine leukemia (IC50 = 0.14 and 0.48 ng/mL, respectively, Table 3).
In addition to amphidinolides, Amphidinium spp. possess other long-chain compounds
such as luteophanols, colopsinols, and caribenolide, the latter possessing cytotoxic prop-
erties [67]. The most potent anticancer compounds identified to date are two macrolides
(isocaribenolide-I and chlorohydrin-2) recently isolated from a free-living Amphidinium
sp. (strain KCA09053) and found to possess high cytotoxic activity against human cervix
adenocarcinoma cells [68]. Caribenolide I, isolated from a free-living Amphidinium sp.,
was found to possess cytotoxic activities towards human colon tumour cells [69]. Tsuda
et al. [70] identified amphidinolide U while Kobayashi et al. [71] isolated amphidinolides
T2, T3, and T4, from a symbiotic Amphidinium sp.. These amphidinolides exhibit moderate
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cytotoxic activity (IC50 = 7–12 µg/mL) against murine leukemia (L1210) [70,71]. Since the
concentration of amphidinolides can be, in most cases, extremely low within Amphidinium
spp. cells, several authors synthesised amphidinolides in the laboratory; for example,
Lu et al. [72] synthesised amphidinolide B2 and demonstrated its activity against human
solid (IC50 = 1.6 ng/mL) and blood tumour cells (53.9 ng/mL). Furstner et al. [73] pub-
lished a protocol for the synthesis of the most effective amphidinolides: Amphidinolides
B, D, G, and H. In addition, very potent anticancer molecules (IC50 = 68 ng/mL against
melanoma cell lines A2058) similar to amphidinols have been recently isolated from the
Octocoral Stragulum bicolor [74]. Overall, on the one hand laboratory synthesis of am-
phidinolides allows for the selection of specific compounds and the implementation of a
single synthetic process, leading to amphidinolides at a higher degree of purity, on the
other hand mass culturing Amphidinium spp. under the appropriate physical and chemical
conditions may lead to the production and the extraction of these amphidinolides without
applying complex laboratory protocols. The comparison between these two alternative
processes for the production of selected anticancer compounds needs to be evaluated for
each specific molecule.

Table 3. Main anticancer compounds/solvent extracts from Amphidinium spp. and related biological
activity towards cancer cell lines.

Compound or
Extract Species Target Cancer Cells IC50 Reference

Isocaribenolide-I Amphidinium sp.
(strain KCA09053)

Human cervix
adenocarcinoma cells 0.02 ng/mL [68]

Chlorohydrin 2 Amphidinium sp.
(strain KCA09053)

Human cervix
adenocarcinoma cells 0.06 ng/mL [68]

Amphidinolide N Amphidinium sp.
(strain KCA09053)

Human cervix
adenocarcinoma cells 0.01 ng/mL [68]

Amphidinolide B Amphidinium sp. Murine leukemia (L1210) 0.14 ng/mL [67]

Amphidinolide H Amphidinium sp. Murine leukemia (L1210) 0.48 ng/mL [66]

Amphidinolide H Amphidinium sp. Human epidermoid carcinoma 0.52 ng/mL [66]

Amphidinolide N
(Caribenolide I)

Amphidinium
operculatum Human colon cell lines 1 ng/mL [69]

Amphidinolide H3 Amphidinium sp. Murine leukemia (L1210) 2 ng/mL [67]

Amphidinolide B Amphidinium sp. Human epidermoid
carcinoma (KB) 4.2 ng/mL [67]

Amphidinolide G Amphidinium sp. Murine leukemia (L1210) 5.4 ng/mL [66]

Amphidinolide G Amphidinium sp. Human epidermoid carcinoma 5.9 ng/mL [66]

Amphidinolide H3 Amphidinium sp. Human epidermoid
carcinoma (KB) 22 ng/mL [67]

Iriomoteolide-3a Amphidinium sp.
(strain HYA024) Human B lymphocyte DG-75 80 ng/mL [75]

Lingshuiol Amphidinium sp. Human lung carcinoma (A549) 0.28 µg/mL [76]

Lingshuiol Amphidinium sp. Promyelotic leukemia (HL-60) 0.31 µg/mL [76]

90% aqueous
methanol extract

Amphidinium
operculatum Human colon cell lines 0.35 µg/mL [69]

Amphirionin-2 Amphidinium sp.
(strain KCA09051)

Human colon
carcinoma Caco-2 0.1 µg/mL [77]

Iriomoteolide-13a Amphidinium sp.
(strain KCA09053)

Human cervix adenocarcinoma
HeLa cells 0.5 µg/mL [78]

Amphirionin-2 Amphidinium sp.
(strain KCA09051)

Human lung adenocarcinoma
A549 0.6 µg/mL [77]
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Table 3. Cont.

Compound or
Extract Species Target Cancer Cells IC50 Reference

Iriomoteolides-11a Amphidinium sp.
(strain KCA09052)

Human cervix
adenocarcinoma (HeLa) 0.7 µg/mL [79]

Iriomoteolide-10a Amphidinium sp.
(strain KCA09053)

Human cervix
adenocarcinoma (HeLa) 0.7 µg/mL [80]

Iriomoteolide-4a Amphidinium sp.
(strain HYA024) Human B lymphocyte DG-75 0.8 µg/mL [81]

Iriomoteolide-5a Amphidinium sp.
(strain HYA024) Human B lymphocyte DG-75 1.0 µg/mL [81]

Iriomoteolide-10a Amphidinium sp.
(strain KCA09053) Human B lymphocyte DG-75 0.9 µg/mL [80]

Iriomoteolide-10a Amphidinium sp.
(strain KCA09053)

Murine
hepatocellular carcinoma

MH134
1.9 µg/mL [80]

Amphidinolide V Amphidinium sp. Murine leukemia (L1210) 3.2 µg/mL [82]

Amphidinolide V Amphidinium sp. Epidermoid carcinoma (KB) 7 µg/mL [82]

Iriomoteolide-15a Amphidinium sp.
(strain KCA09052)

Human cervix adenocarcinoma
(HeLa) 4 µg/mL [83]

Iriomoteolide-14a Amphidinium sp.
(strain KCA09052)

Human cervix adenocarcinoma
(HeLa) 4 µg/mL [83]

Iriomoteolides-9a Amphidinium sp.
(strain KCA09052)

Human cervix adenocarcinoma
(HeLa) 5.6 µg/mL [79]

Amphidinolide T3 Amphidinium sp.
(strain Y71) Murine leukemia (L1210) 7 µg/mL [71]

Amphidinolide T2 Amphidinium sp.
(strain Y71) Murine leukemia (L1210) 10 µg/mL [71]

Amphidinolide T4 Amphidinium sp.
(strain Y71) Murine leukemia (L1210) 11 µg/mL [71]

Amphidinolide U Amphidinium sp. Murine leukemia (L1210) 12 µg/mL [70]

Amphidinol 22 Amphidinium carterae Hepatocyte carcinoma HepG2 11 µg/mL [62]

Amphidinol 22 Amphidinium carterae Human lung carcinoma (A549) 13 µg/mL [62]

Amphidinol 22 Amphidinium carterae Pancreas carcinoma (MiaPaca) 14.9 µg/mL [62]

Amphidinolide T1 Amphidinium sp.
(strain Y71) Murine leukemia (L1210) 18 µg/mL [71]

Irimoteolide-12a Amphidinium sp.
(strain KCA09053) Human B lymphocyte DG-75 18 µg/mL [80]

Amphidinol 22 Amphidinium carterae Human skin melanoma
(A2058) 27 µg/mL [62]

Amphidinol 22 Amphidinium carterae Breast adenocarcinoma (MCF7) 27.5 µg/mL [62]

Chloroform extract Amphidinium carterae Promyelotic leukemia (HL-60) 50 µg/mL [84]

4. Discussion

The great variety of biological activities associated with natural products (NPs) ren-
ders them an attractive source for drug discovery. They represent, indeed, ca. one-third of
the new molecular entities approved from the Food and Drug Administration [85]. With
respect to synthetic compounds, NPs show a greater structural diversity which results in a
higher spectrum of biological functionalities [86]. However, in a perspective of a large-scale
production of NP-derived drugs, the main bottleneck of the use of natural sources is related
to their massive consumption. For example, huge amounts of arable land and clean water
are required for the exploitation of plant-derived NPs, posing serious risks of competition
in the use of arable land between food production and NPs production. The use of aquatic
animals for the massive production of NPs carries instead the risk of incidental release in
the environment, which, in case of allochthonous species, can seriously alter ecosystem
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health. Among NPs, ca. 28,500 compounds have been identified from marine sources [87],
most of them exhibiting cytotoxic and anticancer properties [88], and a high proportion
of marine natural products (MNPs) derives from microorganisms [87], including microal-
gae [89,90]. The true distinctive strength of exploiting microalgae as a source of natural
compounds is the possibility of culturing them in areas that do not enter competition
for land and space with other organisms. Moreover, microalgae show high growth rates
with respect to the natural life cycle of other organisms and are not strictly influenced
by seasonal variations, especially if cultured in enclosed systems. To date, the massive
production of microalgae is mostly limited to few species belonging to the genera Dunaliella,
Chlorella, Haematococcus, Tisochrysis, Tetraselmis, and Schizochytrium, which are usually em-
ployed as live feed in aquaculture or as source of food and feed ingredients [91,92]. Among
dinoflagellates, the only species that has been cultured at an industrial scale to produce
docosahexaenoic acid as a dietary supplement was Crypthecodinium cohnii [92]. Recently,
some efforts were made in using pilot-scale systems as predictive models for large scale-
cultivation of the genus Amphidinium [23,93], to produce high-valuable compounds such
as polyunsaturated fatty acids [93] and also to define strategies to increase the production
of amphidinols [24]. Amphidinium spp. can attain high cell densities during the stationary
phase [44] and are widely distributed in almost all temperate and warm marine environ-
ments, as evidenced by the high number of the isolates currently available in the culture
collections (https://ncma.bigelow.org/search?keywords=amphidinium&page=1, accessed
on 2 October 2023; https://www.ccap.ac.uk/catalogue/index.php?route=product/search&
search=amphidinium&mfp=61-archived; accessed on 2 October 2023), in which the collec-
tion site is indicated. Their ubiquity, the great variety of secondary metabolites possessing a
plethora of biological activities, and the relatively high growth rate that ensures a sufficient
amount of biological material for the study of bioactive compounds, make the genus Am-
phidinium an attractive source of natural-derived antifungal, antimicrobial, and anticancer
compounds. The pipeline to detect bioactive compounds in the genus Amphidinium in
shown in Figure 2; this process is similar for most microalgae and other organisms.
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Current data suggest that light-driven oxidative stress and cultivation in nutrient-
replete media can lead to amphidinol accumulation [24]. In addition, the biological activity
from some amphidinols is extremely high and little amounts of biomass might be sufficient
for a reliable extraction process. The high variability of secondary metabolites produced by
this genus suggests that any novel strain could have a particular biological activity, that can
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be due to known or undiscovered compounds. However, deeper analyses of biological ac-
tivities are to be carried out also on strains which have been already investigated, especially
when specific biological activities of the total extract are higher than those of the purified
compounds, suggesting the presence of other unidentified and active compounds [74]. To
date, ca. 45 chemically characterised metabolites have shown a clear biological activity
toward microbes, fungi, and/or specific cancer cell lines, but biological activities were
also found in solvent or aqueous extracts and fatty acids of some species [9,30,69,84]. In
addition, active compounds from Amphidinium spp. such as amphidinol 20, luteophanol
D, and lingushuiol A are regularly excreted by the cells and can be recovered from the
supernatant [94]; this means that aside from the optimisation of culture conditions and
biomass harvesting, technical solutions to concentrate and recover bioactive compounds
from the culture media should be assessed. Tuning culture conditions for a further im-
provement of growth rates and yields of Amphidinium-derived secondary metabolites is
crucial to promote their industrial commercialisation, and, currently, available literature
is still limited. Moreover, the production of polyketides for pharmaceutical purposes re-
quires a very high degree of purity of dinoflagellate cultures, imposing further limits to
large-scale production that rarely ensure sterile conditions. Aside from technical issues for
the large-scale cultivation of these dinoflagellates, the real effectiveness of certain Amphi-
dinium-derived compounds could be better elucidated. Indeed, some activities have been
identified by using methods that do not allow for a precise quantification of the activity
threshold [30,45,48], and the study of antifungal and antibacterial activities is mostly based
on in vitro studies. Moreover, the duration of clinical trials should not be underestimated,
in case of the approval of some compounds as potential drugs. In summary, there are still
several limits that currently hamper the use of Amphidinium-derived metabolites in the
pharmaceutical field, including (i) the diversity and distribution of such metabolites within
different species, and their variability under different culturing conditions; (ii) contami-
nation risks on large-scale cultivations; (iii) the scarce knowledge of their effects tested
in vivo; (iv) the long-term processes once their efficacy has been validated. However, the
increasing interest in NPs as alternative sources of synthetic, unsafe products, and the
high pharmaceutical potential of the genus Amphidinium, are two valid reasons for further
investigations aimed at enabling the commercialisation of novel, potential drugs.

5. Conclusions

The present paper describes the huge variety of metabolites isolated in the last 30 years
by microalgal species belonging to the genus Amphidinium, and highlights the potential of
these dinoflagellates as a source of pharmaceuticals. Amphidinium spp. have been shown
to produce a diverse pool of specialty products possessing antimicrobial, antifungal, and
anticancer properties. Although the long-term process of clinical trials is quite daunting,
the great pharmaceutical potential of Amphidinium compounds with proven biomedical
properties further supports the need for additional efforts in implementing microalgal
mass culturing to produce these compounds on larger scale, in order to improve yields and
decrease costs and operation times of industrial microalgal cultivation.
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