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Abstract: Infectious keratitis (IK), which is one of the most common and catastrophic ophthalmic
emergencies, accounts for the leading cause of corneal blindness worldwide. Different pathogens,
including bacteria, viruses, fungi, and parasites, can cause IK. The diagnosis and etiology detection
of IK pose specific challenges, and delayed or incorrect diagnosis can significantly worsen the
outcome. Currently, this process is mainly performed based on slit–lamp findings, corneal smear and
culture, tissue biopsy, PCR, and confocal microscopy. However, these diagnostic methods have their
drawbacks, including experience dependency, tissue damage, cost, and time consumption. Diagnosis
and etiology detection of IK can be especially challenging in rural areas or in countries with limited
resources. In recent years, artificial intelligence (AI) has opened new windows in medical fields such
as ophthalmology. An increasing number of studies have utilized AI in the diagnosis of anterior
segment diseases such as IK. Several studies have demonstrated that AI algorithms can diagnose and
detect the etiology of IK accurately and fast, which can be valuable, especially in remote areas and in
countries with limited resources. Herein, we provided a comprehensive update on the utility of AI
in IK.

Keywords: keratitis; infectious keratitis; microbial keratitis; artificial intelligence; AI; algorithm;
diagnosis

1. Introduction

Infectious keratitis (IK) refers to a corneal infection. These infections can culminate
in severe visual impairment or even permanent loss if not identified and treated in a
timely manner. IK is the predominant etiology of corneal opacification and ranks fifth
among the causes of blindness in developed and developing countries. It is responsible for
1.5–2.0 million new cases of monocular blindness annually worldwide [1]. The estimated
incidence of infectious corneal blindness ranges from 2.5 to 799 per 100,000 population-
years. In detail, 2.5–27.6, 2.6–40.3, and 6.6 per 100,000 population-years have been reported
for the US, UK, and Australia, respectively, while undeveloped areas such as South India
and Nepal experience rates of 113 and 799 per 100,000 population-years, respectively [2].
Contributing risk factors for IK include contact lens usage, ocular trauma, corneal diseases,
lid abnormalities, and previous ocular surgeries [3]. In countries with advanced healthcare
systems, there has been a recent increase in reported cases of IK due to the growing
popularity of contact lenses. In the United States, the reported incidence rate is 2.5 per
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100,000 individuals for non-contact lens wearers compared to 130.4 cases per 100,000 for
contact lens wearers [4]. In contrast, underdeveloped countries have experienced persistent
levels of IK nearly ten times as high as advanced nations such as the United States [4].

IK can be caused by a multitude of agents, including bacteria, viruses, fungi, and
parasites (Figure 1). The primary characteristic of IK is the presence of a corneal infiltrate,
an area of white/yellow corneal haze or opacity with a layer of damaged epithelium [5].
However, these characteristics may vary between different etiologies and, notably, different
microorganisms may occasionally manifest with specific presentations. Currently, the diag-
nosis of IK and subsequent identification of etiology are mainly made based on slit–lamp
findings, corneal smear and culture, tissue biopsy, PCR, and confocal microscopy. However,
these diagnostic methods have their drawbacks, including experience dependency, tissue
damage, cost, and time consumption. This process can be especially challenging in rural
areas or in countries with limited resources.
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Figure 1. Different subtypes of infectious keratitis.

A subfield of computer science known as artificial intelligence (AI) consists of research
and development of new technical fields that simulate and advance human intelligence
theory, methods, and application systems [6]. AI subclassifications include machine learn-
ing (ML), deep learning (DL), artificial neural networks (ANNs), deep neural networks
(DNNs), convolution neural networks (CNNs), and transfer learning [7]. The utilization
of AI can significantly benefit society and the healthcare system, given that the diagnosis
of ocular conditions heavily relies on the experience of highly trained ophthalmologists
whose distribution varies significantly across geographic areas [8,9]. Additionally, given
the widespread use of imaging tools in clinical practice and the consequent availability
of codified data from imaging to numeric clinical parameters, the ophthalmic commu-
nity is positioned well to develop AI strategies [10]. The first ophthalmic AI device to
automatically diagnose and grade diabetic retinopathy, IDx-DR, was approved by the U.S.
Food and Drug Administration in 2018 [11]. Previously, ocular AI research was mainly
focused on diseases of the posterior segment, such as diabetic retinopathy, retinopathy
of prematurity, age-related macular degeneration, retinal vein occlusion, and glaucoma
optic neuropathy [11–15]. However, an increasing number of studies have utilized AI in
the diagnosis of anterior segment diseases such as IK [16–18]. Incorporating AI into the
diagnosis, etiology detection, and management of IK can provide a cutting-edge solution
to the shortage of ophthalmologists and improve patient care and outcomes. AI algorithms
can be trained to recognize patterns in images of the eye that are invisible to the naked
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eye, which allows AI algorithms to diagnose IK and determine etiology with a high degree
of accuracy. Several studies have demonstrated that AI algorithms can diagnose IK from
slit–lamp images with similar accuracy as human experts [19]. AI algorithms have also
been trained to diagnose fungal keratitis from confocal microscopy images with satisfactory
diagnostic performance [20]. These studies suggest that AI has the potential to be a valu-
able tool for the diagnosis of IK and etiology detection, especially in remote areas and in
countries with limited resources. Herein, we provide a comprehensive update on the utility
of AI in IK. Since this technology can be utilized in numerous ways, we have classified
the models into diagnostic and discriminative models, which target primary healthcare
practitioners and specialists such as ophthalmologists, respectively.

2. Methodology

The English-language literature published from January 2002 to June 2023 on PubMed/
Medline, ISI Web of Knowledge, ScienceDirect, Scopus, and Google Scholar databases was
searched using the following keywords: “keratitis” OR “infectious keratitis” OR “corneal
infection” OR “corneal ulcer” AND “artificial intelligence”, OR “AI” OR “deep learning”,
OR “machine learning”, OR “neural network”. The extracted articles were first reviewed
by title and abstract, followed by the examination of full texts of eligible articles and
their corresponding reference list. Non-English articles, preprints, and computational
simulations were excluded.

3. Historical Point of View

Historically, the first attempted application of AI in the diagnosis of IK utilized an
artificial neural network (ANN), which incorporated three categories of information as
inputs: (1) ocular predisposing factors (such as trauma, contact lens wear, lid and lacrimal
diseases, and steroid usage), (2) systemic risk factors (such as diabetes, alcoholism, and
immune deficiency disorders), and (3) ulcer features (such as size, depth, and location) [21].
In this study by Saini et al. in 2003, the trained model could correctly classify all sixty-three
corneal ulcers in the training set. In the test set, their model correctly classified 39 out of
43 corneal ulcers. Specificity for bacterial and fungal categories was 76.47% and 100%,
respectively. Additionally, the accuracy of classification was 90.7%, which was significantly
better than the clinicians’ average accuracy of 62.8%. Although imaging was not used in
this study, the trained model demonstrated significant potential in accurately classifying of
corneal ulcers based on forty input variables from each case. In later studies, AI was used to
process and classify images. Initially, slit–lamp or other imaging modalities were used, and
AI could only confirm or rule out keratitis. However, this was still a valuable tool for quick
diagnosis with a comparable accuracy to ophthalmologists. Later iterations incorporated
the ability to image corneal layers in 3D using a confocal microscope. Currently, most
projects are using advanced AI models to not only diagnose but even discriminate between
types of IK.

4. Slit–Lamp/External Photography-Based Studies
4.1. Diagnostic Models

As technology progressed, AI gradually began interpreting images in detail. Loo
et al. developed a fully automatic algorithm for the segmentation of ocular structures
and biomarkers of IK on slit–lamp photographs under two different illuminations [22].
Their algorithm was able to identify stromal infiltration, hypopyon, WBCs, and edema
on diffuse white-light images and epithelial defects, corneal limbus, and light reflexes on
diffuse blue-light images with fluorescein staining. The Dice similarity coefficient (DSC)
of the algorithm compared to a physician in this study was 0.95, a highly favorable result
for AI. The researchers made their datasets and algorithms freely available as an open-
source software package to promote the future development of automatic algorithms for
determining the diagnosis and prognosis of infectious diseases of the cornea.
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In one study on fungal keratitis, Li et al. assessed the impact of the segmentation
method (e.g., manual or automated) on diagnostic accuracy and speed [23]. They hy-
pothesized that combining manual and automated segmentation methods may yield
greater efficiency. They found that automated segmentation is more accurate than manual
segmentation. However, manual segmentation shows faster performance compared to
automated segmentation.

In an interesting multi-center report, the differentiation between active corneal ulcers
and healed scars was studied [24]. The trained model was tested on two different patient
populations from eye clinics in India (n = 200) and the Byers Eye Institute at Stanford
University (n = 101). The results were promising: 115/123 active ulcers and 65/77 scars
from the Indian population and 43/55 active ulcers and 42/46 scars from the Northern
California population were correctly diagnosed.

Kuo et al. [25] developed a deep learning model to diagnose fungal keratitis cases
from corneal photography. The results were compared with opinions of three experienced
cornea specialists (with at least 7 years of qualification in the specialty) and three non-
cornea specialty ophthalmologists with comparable qualifications in clinical practice. Their
model showed an average of around 70% accuracy, which was higher than the non-cornea
specialty ophthalmologists but lower than the cornea specialists. Hence, such models can
be logically applied in rural areas where highly specialized medical personnel are not
readily available.

Comparing the performance of different deep learning models in the detection of
bacterial keratitis from corneal photographs was the subject of another study by Kuo
et al. [26]. EfficientNet and non-EfficientNet models were assessed in this study. The results
showed that all models have a comparable accuracy. However, non-EfficientNet models
showed a higher sensitivity (79–82% and 50–55% of sensitivity and specificity, respectively),
and EfficientNet models had a higher specificity (73–74% and 60–64% of sensitivity and
specificity, respectively). Overall, all deep learning models had a higher sensitivity but
lower specificity in the diagnosis of bacterial keratitis compared to ophthalmologists.

Wei et al. [27] conducted a large study regarding the diagnosis of fungal keratitis.
They mixed manual recognition and machine learning systems in a multi-center study with
promising results.

Natarajan and colleagues [28] conducted one of the limited number of studies regard-
ing viral keratitis. A total of 307 slit–lamp images from 285 eyes were included. Out of these,
177 images were from patients with necrotizing HSV keratitis, and the remaining 130 im-
ages belonged to patients with bacterial and fungal keratitis. A rate of 72%, 69.6%, and
76.5% were reported for the accuracy, sensitivity, and specificity of the model, respectively.

Alongside qualitative analysis, AI seems to have the potential to provide quantitative
analytics. Although diagnosis and classification are the common subjects of AI studies in
the field of IK, assessing the severity of the disease can be another interesting target. In
line with this concept, Alquran et al. [29] used a model to evaluate various parameters,
including ulcer pattern (point-like, point-flaky, flaky), type (no ulcer, micro punctate, macro
punctate, coalescent macro punctate, and patch ≥ 1 mm), and grade (from grade 0 or no
ulcer to grade 4 or central optical zone involvement) in fluorescein staining images.

4.2. Discriminative Models

As AI algorithms and diagnostic efficacy began improving, new studies were per-
formed to identify whether the models could distinguish between the various microbial
etiologies of IK. Fungal keratitis is notoriously difficult to distinguish from bacterial kerati-
tis in clinical practice. In a study by Hung and colleagues [30], a deep learning algorithm
was applied to differentiate between slit–lamp photos of bacterial and fungal keratitis. They
achieved an average accuracy of approximately 80%, surpassing general ophthalmologists
and comparable to cornea specialists. In detail, the accuracy rate for bacterial and fungal
keratitis ranged from 79.6% to 95.9% and 26.3% to 65.8%, respectively.
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Another study by Ghosh et al. [31] aimed to differentiate between fungal and bacterial
keratitis as well, and their algorithm showed an accuracy of 83% in this regard. They found
that image brightness plays a significant role in the correct classification of fungal keratitis.

One study by Won et al. [32] developed a deep learning algorithm that was strength-
ened with two modules in order to discriminate between bacterial and fungal keratitis.
Notably, adding the two mentioned modules could significantly increase the accuracy of
the algorithm from 81.1% to 87.8%.

Combining different types of AI models may improve diagnostic performance. In a
large study by Zhang and colleagues [33], 1490, 1670, 600, and 1070 patients with bacterial,
fungal, herpes simplex virus (HSV), and Acanthamoeba keratitis were enrolled, respec-
tively. Different combinations of models were tested, and the highest accuracy was 77.08%.
Bacterial, fungal, Acanthamoeba, and HSV keratitis were diagnosed with an accuracy of
70.27%, 77.71%, 83.81%, and 79.31%, respectively. Interestingly, AI’s accuracy for each
subtype of keratitis exceeded that of three invited cornea specialists. In contrast, Kuo
et al. [34] stated that although ensemble models can enhance performance, the effect seems
to be limited. They introduced a deep learning model to distinguish Pseudomonas keratitis
from non-Pseudomonas bacterial keratitis. Various algorithms were used as the backbone,
and 71.2% was the highest reported accuracy. However, the best ensemble model showed
an accuracy of 72.1%, which was not a statistically significant difference.

Moreover, in a study by Hu and colleagues [35], six deep learning algorithms were
tested and compared with the performance of two ophthalmologists. Out of these, the
best algorithm showed an accuracy and a specificity of 73.5% and 90.4%, respectively, in
differentiating between different keratitis types.

Koyama et al. [36] developed a hybrid deep learning algorithm to identify the causative
pathogen from slit–lamp images. One of the novel aspects of their work was applying
facial recognition techniques to provide the ability to analyze images from different angles
and with different levels of illumination and degrees of resolution. The overall accuracy
rate of the multiclass diagnosis was 88.0%. In detail, Acanthamoeba, bacteria, fungi, and
HSV were accurately diagnosed with rates of 97.9%, 90.7%, 95.0%, and 92.3%, respectively.
The algorithm showed a significantly higher performance than 35 invited board-certified
ophthalmologists throughout Japan, including 16 cornea specialist faculty members.

In another study, Sajeev et al. [37] developed a deep learning approach to differentiate
between bacterial and viral keratitis, which showed an acceptable performance. Also, Wang
et al. [38] developed a deep learning-based model to differentiate between bacterial, fungal,
and HSV keratitis. Notably, they used photographs acquired by slit–lamp and smartphones.
Promising results were reported for their model.

Redd and colleagues [39] developed models for automated image-based differentiation
of bacterial and fungal ulcers using images from handheld portable cameras. They proposed
that telemedicine applications using less-expensive and more portable imaging methods
may significantly increase the potential public health impact of this technology since low-
income countries may have limited potential for implementation of models that require
slit–lamp mounted cameras. In their multi-center study, different algorithms were used
to discriminate between fungal and bacterial ulcers, and the results were compared to
human experts. Interestingly, their models achieved superhuman performance. Similarly,
Xu et al. [40] designed a model that could greatly exceed the average level of professionals
and reach the level of performance of top ophthalmologists.

Table 1 provides a summary of different slit–lamp photography-based studies.
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Table 1. A brief summary of slit–lamp/external photography-based studies.

Publication
Year

First Author Study Model
Sample Size

(Image)
Image Acquisition

Keratitis
Type

AI Algorithm AUC (%) Acc. (%) Sen. (%) Spe. (%)

2020 Kuo [25] Diagnostic 288
Nikon (Tokyo, Japan) D100 camera/Canon (Tokyo,

Japan) EOS 7D camera
FK DenseNet 65.00 69.40 71.10 68.40

2021 Kuo [26] Diagnostic 1512 Resolution of 224 × 224 pixels BK ResNet, DenseNet, EfcientNet 80.00 70.30 74.10 64.30

2021 Tiwari [24] Diagnostic 2445

Handheld Nikon D-series digital SLR camera with a
105 mm f/2.8D AF Micro Nikkor Autofocus Lens and
a modified Nikon SB29s electronic flash or Nikon R1

Wireless Close-up Speedlight system/Canon 7D
digital camera, Haag-Streit BX900

FK, BK VGG-16 97.31 - 93.50 84.42

2021 Li [41] Diagnostic 13,557 Resolution of 224 × 224 pixels FK, BK, VK
DenseNet121, inception-v3,

ResNet50
99.80 98.00 97.70 98.20

2022 Alquran [29] Diagnostic 712 Resolution of 256 × 256 pixels Ulcer ResNet101 - 93.90 93.32 -

2023 Li [23] Diagnostic 423
Slit photography/super macro mode of HUAWEI

(Shenzhen, China) P30 FK

DL, LASSO, MLP 83.90 77.65 86.05 76.19

DL, LASSO, MLP + automatic
segmentation program

92.50 84.52 90.48 85.71

2023 Wei [27] Diagnostic 420 - FK
Binary logistic regression,

Randomforest classification,
Decision tree classification

90.30 90.50 90.70 89.90

2023
Natarajan

[28]
Diagnostic 307

8.1 MP digital camera via a DC-3 digital
camera/resolution of 224 × 224 pixels

VK DenseNet 73.00 72.00 69.60 76.50

2021 Xu [40] Discriminative 2284 SL Cam/digital camera Unit DC-1 BK, FK, HK VGG-16, GoogLeNet-v3, DenseNet 80.00 - - -

2021 Wang [38] Discriminative 6073
Nikon DSC D5200 camera/SANYO VPC-MZ3GX

camera/smartphone/resolution of 299 × 299 pixels
BK, FK, HK

InceptionV3, ResNet50,
DenseNet121

95.07 - - -

2021 Koyama [36] Discriminative 4036
EOS kiss × 7 (Canon)/α6000 (Sony, Tokyo,

Japan)/D90 (Nikon)

FK

ResNet-50, InceptionResNetV2

97.50 95.00 - -

BK 96.30 90.70 - -

AK 99.50 97.90 - -

HK 94.60 92.30 - -

2021 Hung [30] Discriminative 1330
Canon EOS 7D camera/Nikon D100 camera/Canon

EOS 7D camera
FK, BK CNN 85.00 78.60 65.80 87.30

2021 Sajeev [37] Discriminative 446 Resolution of 256 × 256 pixels BK, VK CNN 85.60 81.20 71.50 88.00
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Table 1. Cont.

Publication
Year

First Author Study Model
Sample Size

(Image)
Image Acquisition

Keratitis
Type

AI Algorithm AUC (%) Acc. (%) Sen. (%) Spe. (%)

2022 Zhang [33] Discriminative 4830 Resolution of 224 × 224 pixels

AK

ResNext101_32x16d +
DenseNet169

96.00 83.81 78.00 -

HK 98.00 79.31 80.00 -

BK 86.00 70.27 70.00 -

FK 91.00 77.71 78.00 -

2022 Ghosh [31] Discriminative 2167 Canon EOS 7D camera/resolution of 256 × 256 pixels FK, BK VGG19, ResNet-50, DenseNet-121 90.40 83.00 77.00 -

2022 Kuo [34] Discriminative 929 Resolution of 224 × 224 pixels BK
ResNet50, DenseNet121,
ResNeXt50, SE-ResNet50

82.00 72.10 79.60 57.2

2022 Redd [39] Discriminative 980
Handheld Nikon D-series digital single-lens reflex

camera
FK, BK

MobileNetV2, DenseNet201,
ResNet152V2, VGG19, Xception

86.00 - - -

2023 Kogachi [42] Discriminative 1970
Handheld Nikon D7100 camera with a 105 mm macro

lens/resolution of 224 × 224 pixels
FK, BK DenseNet, MobileNet 56.00 NR NR NR

2023 Hu [35] Discriminative 2757 DC-4 digital cameras FK, BK, VK EffecientNetV2-M 85.00 73.50 68.00 90.40

2023 Won [32] Discriminative 684 Resolution of 500 pixels × 750 pixels FK, BK ResNet-50 + LGM & MAM 89.00 87.80 86.40 88.70

AI, artificial intelligence; AK, Acanthamoeba keratitis; BK, bacterial keratitis; CNN, convolutional neural networks; DL, deep learning; FK, fungal keratitis; HK, herpes simplex keratitis;
LASSO, least absolute shrinkage and selection operator; LGM, lesion guiding module; MAM, mask-adjusting module; MLP, multilayer perception; VGG, visual geometry group;
VK, viral keratitis; AUC, area under the curve; Acc, accuracy; Sen, sensitivity; Spe, specificity.
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5. Confocal Microscopy-Based Studies

One of the most useful imaging modalities in the diagnosis of infectious keratitis,
particularly for fungi and Acanthamoeba, is in vivo confocal microscopy (IVCM). IVCM is
considered a non-invasive technique that can provide high-resolution images at cellular
and sub-cellular levels. Its utility is especially prominent in microbiological negative cases
or deep infiltration, which blocks access from obtaining tissue for smear and culture [43].

5.1. Diagnostic Models

AI systems gradually became more complex and were trained to diagnose subtypes of
keratitis utilizing confocal imaging. For example, in the diagnosis of fungal keratitis, distin-
guishing between nerves of a normal cornea and fungal hyphae on confocal microscopy
images is a remarkable challenge, especially with a complicated background. To solve this
issue, Wu et al. [44] introduced a novel automatic hyphae detection method to classify
the normal and abnormal images. Hyphal density was then calculated using the ratio of
hyphae length to the area as a marker for the infection severity. This method resulted in an
accuracy of nearly 100% in distinguishing between normal and abnormal images.

In another successful application of AI to confocal imaging [20], a total of 535 im-
ages were tested, which showed a satisfactory performance of 515 correct diagnoses and
20 misdiagnoses (6 with fungal hyphae and 14 without).

In a hallmark study for the accurate diagnosis of fungal keratitis by Liu and col-
leagues [45], a novel convolutional neural network framework for the diagnosis of fungal
keratitis from confocal microscopy images was introduced. They compared the accuracy of
two traditional models with similar models based on mean fusion and histogram-matching
fusion. Their results showed that using data augmentation and image fusion has a diagnos-
tic accuracy of 99.95%.

Hou et al. [46] proposed a web-based medical image management and analysis system.
Then, they integrated their model with a system designed to diagnose confocal microscopy
images of fungal keratitis online.

5.2. Discriminative Models

In a study by Zhang and colleagues [47], they classified bacterial, fungal, and viral
keratitis based on confocal microscopy images. Their results showed 75% and 70.13% of
average accuracy and sensitivity, respectively. However, the sensitivity for diagnosing viral
keratitis was comparatively lacking at only 16.8%.

In another study by Tang et al. [48], confocal microscopy images were used to identify
pathogenic fungal genera. The results were satisfactory regarding the identification of
Fusarium and Aspergillus, with an accuracy rate of 81.7% and 75.7% for the detection of
the two fungi, respectively.

In another study, Essalat et al. [49] enrolled confocal microscopy images of fungal,
Acanthamoeba, non-specific keratitis, and normal corneas. Their study reported sensitivity
and specificity of 91.4% and 98.3% for Acanthamoeba and 97.0% and 96.4% for fungal
keratitis, respectively. Notably, the authors have presented their confocal microscopy-
keratitis dataset openly available for future research. Table 2 provides a summary of
different confocal microscopy-based studies.
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Table 2. A brief summary of confocal microscopy-based studies.

Year First Author
Study
Model

Sample Size
(Image)

Keratitis
AI Algorithm AUC (%) Acc. (%) Sen. (%) Spe. (%)

Type

2018 Wu [44] Diagnostic 378 FK ARBP + SVM 99.01 99.74 100 99.45

2019 Liu [45] Diagnostic 1213 FK DCNN/HMF - 99.95 99.9 100

2020 Lv [20] Diagnostic 2088 FK ResNet 97.69 93.64 82.56 98.89

2021 Hou [46] Diagnostic 1870 FK
AlexNet, ZFNet,

VGG16
99.97 99.29 99.33 99.62

2020 Zhang [47] Discriminative 3321

VK ResNet - 99.09 16.8 -

BK ResNet - 80 89.72 -

FK ResNet - 96.36 71.71 -

2022 Tang [48] Discriminative 3364
Fusarium

DL/ADT
88.7 81.7 79.1 83.1

Aspergillus 82.7 75.7 75.6 75.9

2023 Essalat [49] Discriminative 4001
AK

CNN
- 95.7 91.37 98.25

FK - 96.5 96.98 96.38

ADT, abstract data type; AI, artificial intelligence; AK, Acanthamoeba keratitis; ARBP, adaptive robust binary
pattern; AUC, area under the curve; BK, bacterial keratitis; CNN, convolutional neural networks; DCNN, deep
convolutional neural networks; DL, deep learning; FK, fungal keratitis; HMF, histogram matching fusion; SVM,
support vector machine; VK, viral keratitis; AUC, area under the curve; Acc, accuracy; Sen, sensitivity; Spe,
specificity.

6. What about Culture-Negative Ulcers?

In a study by Kogachi and colleagues [42], different algorithms were trained to deter-
mine whether CNNs are capable of differentiating morphological differences of slit–lamp
photographs between images of culture-positive and -negative corneal ulcers. Notably,
their models could not detect morphological differences between microbiologically positive
and negative corneal ulcers. Hence, the authors concluded that although current models
have used only microbiologically positive cases, the results are potentially generalizable
even to cases with negative microbiological results [42]. However, more studies are required
to address this issue.

7. Challenges and Limitations

Some technical challenges still exist which impede the accurate diagnosis of IK and
should be addressed in future studies. First, the current models are greatly dependent on
image quality. Most studies have used high-quality images, but capturing high-quality
images is not possible in all medical centers, and transferring the images via messaging
platforms may decrease quality as well. However, there are successful models with image
quality around 200 × 200 to 300 × 300 pixels. Other image-related factors which may
impact diagnostic accuracy include brightness, orientation, and focus. A standard range
has not yet been defined for these parameters. Hence, it can be expected that the reported
performances may fluctuate in different settings. Second, pre-existing ocular pathologies
such as pterygium, corneal arcus, conjuctivalization, and surgical scars can severely impact
the results. Third, although mixed infections (e.g., two or more types of pathogens) are not
uncommon in routine practice, none of the previous studies have studied polymicrobial
variants of IK. Moreover, the depth of corneal involvement can act as a differentiating
factor for etiological detection, as well as a prognostic and severity parameter, which
can predict subsequent complications such as endophthalmitis. This factor is routinely
noted during routine practice using slit–beam illumination, but current models mainly use
diffuse-beam photos. Therefore, the depth of involvement remains unconsidered. More
advanced algorithms with larger sample sizes can overcome these challenges.

Collectively, it seems that although the current models have shown promising results,
a long way is still to go in applying these models in routine practice. In fact, in clinical
practice, the scenarios that ophthalmologists face are more complex; patients with pre-
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existing pathologies, previous ocular surgeries, and mixed or negative culture cases are
among these conditions, which the current models are not trained to deal with. However,
as stated earlier, these technologies can be applied at different levels. So, diagnostic
models, especially those enrolled in other ocular surface pathologies in their dataset, can
be helpful in the screening or primary healthcare level. Hence, we should emphasize that
clinical diagnosis remains a critical initial step in managing infectious keratitis, and artificial
intelligence-based models would never substitute for the human brain and decision making,
and their role remains at the level of auxiliary tools.

8. Future Directions

The field of AI is rapidly evolving, and multiple novel applications for AI in IK are
being developed. As AI technology continues to progress, it is likely to play an increasingly
important role in the diagnosis and management of IK. They can help to improve access to
eye care and reduce the risk of blindness. Hence, besides diagnosis alone, future studies
are required to focus on identifying the severity of the disease, prognosis, probability of
recurrence, and treatment approach and regimen. On a related note, AI can be used to
screen databases for new therapeutic treatments for IK as well. We believe that, in the near
future, more advancements can revolutionize this field, such as AI-powered devices like
microscopes to automatically detect and classify microorganisms in corneal smears and
culture, AI-powered telemedicine assistants to provide remote consultations for patients
in rural areas and in countries with limited resources, and AI-powered decision support
systems to help ophthalmologists diagnose and treat IK, improving the quality of care and
reducing the risk of complications from human error.

9. Conclusions

Infectious keratitis is a serious eye infection that can lead to blindness if not treated
promptly. The diagnosis and etiology detection of infectious keratitis pose specific chal-
lenges, and delayed or incorrect diagnosis can significantly worsen outcomes. AI is a
promising new technology that has the potential to revolutionize the diagnosis and treat-
ment of infectious keratitis. AI algorithms can be used to diagnose and identify the etiology
of infectious keratitis with a high degree of accuracy, even in remote areas and in countries
with limited resources. Other potential roles of AI include developing new treatments,
monitoring the progression of the disease, and personalizing the treatment for each patient.
As AI technology continues to develop, it is likely to play an increasingly important role in
the fight to preserve eyesight against infectious keratitis.
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