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Abstract: The investigation of monoterpenes as natural products has gained significant attention in
the search for new pharmacological agents due to their ability to exhibit a wide range in biological
activities, including antifungal, antibacterial, antioxidant, anticancer, antispasmodic, hypotensive,
and vasodilating properties. In vitro and in vivo studies reveal their antidepressant, anxiolytic, and
memory-enhancing effects in experimental dementia and Parkinson’s disease. Chemical modification
of natural substances by conjugation with various synthetic components is a modern method of
obtaining new biologically active compounds. The discovery of new potential drugs among monoter-
pene derivatives is a progressive avenue within experimental pharmacology, offering a promising
approach for the therapy of diverse pathological conditions. Biologically active substances such as
monoterpenes, for example, borneol, camphor, geraniol, pinene, and thymol, are used to synthesize
compounds with analgesic, anti-inflammatory, anticonvulsive, antidepressant, anti-Alzheimer’s,
antiparkinsonian, antiviral and antibacterial (antituberculosis) properties. Myrtenal is a perspective
monoterpenoid with therapeutic potential in various fields of medicine. Its chemical modifications
often lead to new or more pronounced biological effects. As an example, the conjugation of myrtenal
with the established pharmacophore adamantane enables the augmentation of several of its pivotal
properties. Myrtenal–adamantane derivatives exhibited a variety of beneficial characteristics, such as
antimicrobial, antifungal, antiviral, anticancer, anxiolytic, and neuroprotective properties, which are
worth examining in more detail and at length.

Keywords: monoterpene; pharmacophore; chemical modification; antiviral; anticancer; anxiolytic;
neuroprotective activity

1. Introduction

Essential oils have been used in traditional medicine to treat various diseases. Before
research into their health benefits had begun, they were also used for perfumes and
fragrances for many years. Some of their components possess rich biological activity [1–7]
and are used as pharmacological agents such as the taxanes for their antitumor activity
and artemisinin for its antimalarial properties [8,9]. Natural products and their derivatives
dominate among drugs used to treat CNS diseases [10–13].

Terpenes constitute the largest cluster of secondary plant metabolites, encompassing a
plethora of over 50,000 distinct substances, each characterized by a diverse array of bio-
logical attributes [14]. The most widespread terpenes are monoterpenes consisting of two
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isoprene fragments [15]. Monoterpenes that incorporate heteroatoms, such as oxygen, are
categorized as monoterpenoids. As natural products, monoterpenes and monoterpenoids
are the subject of increased attention from the world scientific community in the search for
new pharmacological agents in various branches of medicine and pharmacy [16–26]. They
have many biological properties, including antifungal, antibacterial, antioxidant, anticancer,
antispasmodic, hypotensive, vasodilating effects, etc. The review by Yang et al. (2020) on
the biological properties of terpenoids addresses the topic of their therapeutic potential
and confirms the interest of researchers in developing terpenoid derivatives with different
pharmacological properties [27]. A recent study from 2022 (Kumar et al.) summarizes the
current data about the therapeutic potential of terpenes and terpenoids, confirming that
these natural substances are widely distributed in various plant and marine sources and
possess a wide range in biological properties [28].

In vitro and in vivo studies reveal their potential therapeutic effects on diabetes, in-
sulin resistance, and obesity, as described by Habtemariam (2017) [29] and Al Kury et al.
(2021) [30]. Genipin and geniposide (Figure 1), along with iridoids and their glycosides,
exhibit in vitro antidiabetic properties. Geniposide stimulates insulin secretion by acti-
vating the glucagon-like-1 (GLP-1) receptor [31]. Limonene showed a promising in vivo
antidiabetic effect, established by Ramakrishnan and Ramalingam in 2012 [32]. Borneol,
citronellol, and myrtenal increased liver glycogen levels. Carvacrol, carvone, citronellol,
genposide, myrtenal, and paeoniflorin modulated key liver enzymes of glucose metabolism,
reducing the activity of glucokinase and glucose-6-phosphate dehydrogenase.
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In a clinical study from 2013, Luft et al. proved the role of chronic inflammation in
the pathogenesis of diabetes and obesity [33]. Many of the monoterpenes exhibit positive
effects on inflammatory conditions [34], also associated with diabetes. The in vitro study
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by Kong et al. (2013) reported that monoterpenes directly improve the lipid profile by
affecting key enzymes for fatty acid synthesis (acetyl-CoA carboxylase and synthase) [35].
De Sousa (2011) summarized the available data about the analgesic potential of many
plant essential oils that are rich in monoterpenes [36]. Numerous research works have
been carried out in this important field in the last decade. High analgesic activity was
demonstrated for (−)-linalool [37] and its acetate [38], citronellal [39], p-cymene [40,41],
camphor [42], α-terpineol [43–46], menthol [47], myrcene [48], limonene [49,50], pule-
gone [51], citronellol [52], cuminic alcohol [53], and 1,8-cineole [54]. The anti-inflammatory
activity of monoterpenes was reviewed by Araruna et al. (2020) [55].

In certain instances, positive outcomes have been observed as an adjunct to radiation
therapy in the context of cancer treatment. They have the potential to be “radiosensitizers”,
increasing the in vitro sensitivity of cancer cells (head and neck tumors) to radiation therapy
with subsequent induction of apoptosis [56]. In addition to the studies on their cytotoxic
properties as potential antitumor agents, research on their toxicity and potential risk of
use is also of interest. Wojtunik-Kulesza (2022) revealed the toxic potential of α-terpinene,
camphor, citral, limonene, pulegone, thujone (Figure 1), and the essential oils that contain
them [57]. Genotoxicity, embryotoxicity, neurotoxicity, and allergenicity were indicated.

Memory-enhancing properties have also been reported for some of the studied
monoterpenes [58]. For example, thymol’s positive effect on cognitive deficits, associ-
ated with a high-fat diet in mice, was found by Fang et al. (2017) [59]. According to Deng,
Lu, and Teng (2013), carvacrol counteracted memory impairments in rats associated with
experimental diabetes by affecting different mechanisms [60]. Some of the bicyclic monoter-
penoids inhibit acetylcholinesterase activity, which is elevated in Alzheimer’s disease
patients. In the Miyazawa and Yamafuji’s (2005) study of 17 representatives from this group
of substances, (+)- and (−)-α-pinene and (+)-3-carene (Figure 1) appeared as moderate
inhibitors of the enzyme, while bicyclic ketones and alcohols are weak anticholinesterase
agents [61]. Their oxygenated derivatives and paramenthane monoterpenoids were found
to be even less active.

Several monoterpenoid alcohols, including geraniol [62,63], diol 1 derived
from verbenol [64], and a conjugate 2 obtained by reaction of (+)-2-carene with vanillin [65],
demonstrated promising antiparkinsonian activity in vivo in an MPTP (1-methyl-4-phenyl-
1,2,3,6-tetrahydropyridine) mouse model. Derivatives of diol 1, compounds 3 and 4,
showed neuroprotective effects in vitro and in several experimental mice models (MPTP-,
rotenone-, and haloperidol-induced) of Parkinson’s disease [66,67] (Figure 2). Neuroprotec-
tive potential was demonstrated also for carvacrol [68–70], limonene [71–73],
geraniol [74,75], citronellol [76], carveol [77], 1,8-cineole [78], paeoniflorin [79], α-pinene [80],
and linalool [81].
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Guzmán-Gutiérrez et al. (2012) reported an antidepressant effect of β-pinene and
linalool [82], and Deng et al. (2015) found that thymol demonstrated this property in a
model of chronic mild stress in mice [83]. Several monoterpenoids have demonstrated
anxiolytic effects in rodents [84]. In 2015, de Sousa et al. published a systematic review of
the anxiolytic-like effect of essential oils and their components, mainly monoterpenoids [85].

The advancement of novel prospective medications within the domain of monoterpene
derivatives represents a promising approach to the treatment of various diseases, signifying
a progressive trajectory in the field of experimental pharmacology.
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2. Therapeutic Potential of Monoterpenoid Derivatives

A scarcity of substantiated data exists regarding the positive effects of monoterpene
derivatives. Shi et al. (2016) reported on the antiallergic properties of some peony monoter-
penes derivatives [86]. The review by Salakhutdinov, Volcho, and Yarovaya (2017) sum-
marized the currently available data on the presence of various types of biological activity
exhibited by monoterpenes and their derivatives. Their analgesic, anti-inflammatory, anti-
convulsant, antidepressant, anti-Alzheimer’s, antiparkinsonian, antiviral, and antibacterial
(antituberculosis) properties were described [87]. In addition to these data, a compound
synthesized by the interaction of (−)-myrtenal and 2-aminoadamatane was found to have
anxiolytic activity in Elevated plus maze test in mice [88]. In 2020, Zielińska-Błajet and
Feder-Kubis provided a comprehensive summary of recent advancements in using deriva-
tives of borneol, camphor, geraniol, myrtenal, pinene, and thymol as biologically active
substances [89]. In 2021, Silva et al. reviewed the potential of 16 monoterpenes and their
derivatives to affect various models of cardiovascular disease [90]. According to Bergman,
Franks, and Philips (2023), certain acyclic monoterpenes and their derivatives have demon-
strated notable anti-inflammatory potential [91]. Several monoterpene–coumarin con-
jugates showed good antiviral activity [92,93], while others demonstrated the capacity
to inhibit the enzyme TDP1, which serves as a pivotal target in the realm of anticancer
therapy [94,95]. The same inhibitory activity was demonstrated for some monoterpenes
conjugated with various heterocyclic fragments [96,97]. Cardoso et al. (2021) explored
some monoterpene derivatives as P-glycoprotein inhibitory activity agents in cancer cell
resistance [98]. Tree monoterpene alkaloid hydrazone derivatives studied by Paterna et al.
(2015) showed apoptosis-inducing properties in human colon and liver carcinoma cells [99].

Therefore, chemical modification of natural substances by conjugation with various
synthetic components is a modern method for obtaining new biologically active com-
pounds. It had been established that in many cases the medicinal properties of the obtained
derivatives are more pronounced than those of the parent substances, and may even exceed
the effects of the standards used in various therapeutic areas. It is necessary to carry out
more in-depth and extended studies of such compounds. In view of their sufficient safety
profiles, these compounds could subsequently be included in a range of clinical studies.

3. Therapeutic Potential of Myrtenal

(−)-Myrtenal, (1R)-2-pinen-10-al, (1R)-6,6-dimethylbicyclo[3.1.1]hept-2-en-2-carboxaldehyde
(Figure 3), is a bicyclic monoterpenoid of natural origin.
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Myrtenal is considered practically insoluble in water and relatively neutral. Data on
its mammalian metabolism are limited. In plants, myrtenal is metabolically related to α-
pinene [100] because α-pinene is metabolized to myrtenol with subsequent transformation
to myrtenal [101]. The major metabolite of the monoterpenoid in rabbits is myrtenic
acid [102]. Furthermore, according to Scheline (1991), the structural similarity between
alpha-pinene and myrtenal and the formation of common metabolites is the reason to
assume that M is a transition compound in pinene metabolism [103].

The toxicological characterization of myrtenal is incomplete and provides information
only on the lack of genotoxicity (EFSA FAF Panel, 2019) [104].
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The substance is a component in the essential oils of many plant species [105]
(Dragomanova et al., 2018). It is naturally present in mandarin peel oil, raspberry, black-
berry, strawberry, ginger, hop oil, black tea, peppermint oil, pepper, myrtle leaf or berry,
and summer savory, along with other spices or foodstuffs including hyssops, rosemary,
spearmint, and many more. Table 1 presents the sources with the highest myrtenal content
in their essential oils.

Table 1. Myrtenal-containing medicinal plants and other natural sources.

Natural Source Plant Part Reference

Artemisia spp. leaves, stems, and flowers/fruits [106]
Coriandrum sativum seed oil [107]
Cuminum cyminum essential oil [108,109]
Curcuma amada, Curcuma aromatica essential oil [110]
Glycyrrhiza glabra root essential oil [111]
Helianthus annuus flower heads [112]
Hyssopus officinalis essential oil [113]
Juglans regia leaf essential oil [114]
Laurus nobilis leaves [111]
Lavandula spp. essential oil [115]
Ledum palustre essential oil [116]
Myrtus communis essential oil [117]
Origanum majorana, Origanum vulgare essential oil [118]
Peumus boldus flower [111]
Piper nigrum fruit [111]
Propolis - [119]
Rosmarinus officinalis essential oil [120]
Thymus spp. essential oil [121]

Medicinal plants containing myrtenal in their essential oils possess a wide range of
biological properties. In the 20th century, bronchodilator, anti-inflammatory, antiaggrega-
tive, antihemolytic (in vitro), and antibacterial (against G (+) pathogens) effects of myrtenal
were discovered in experimental animals [122]. This explains the use of plant essential oils
containing myrtenal in aromatherapy for infections of the upper respiratory tract. They
have the potential to favorably affect various systems and organs, including CNS functions,
which is discussed in the review by Dragomanova et al. (2018) [105].

According to Saito et al. (1996) [123] and Santos et al. (2011) [124], the compound
induced vasodilation, decreased heart rate, and improved hypotension in doses 1 and
5 mg/kg b.wt. after i.v. application in laboratory rats. Many other biological properties of
myrtenal have been established.

3.1. Antidiabetic Potential

Myrtenal exhibited an antihyperglycemic effect in rats with an experimental streptozotocin-
induced diabetes mellitus model. The compound lowered plasma glucose levels, improved
plasma insulin levels, upregulated various glucose transporters, and subsequently im-
proved glucose uptake in the liver and skeletal muscle. In the study by Rathinam and
Pari (2016) [125], oral administration of myrtenal (80 mg/kg b.wt.) for 28 days produced
a number of effects in rats with induced diabetes. It reduced plasma glucose and gly-
cated hemoglobin A1c (HbA1c); increased levels of insulin and hemoglobin; regained
body weight; and normalized activity of hexokinase, glucose-6-phosphatase, fructose-1,6-
bisphosphatase, glucose-6-phosphate dehydrogenase and liver enzymes AST, ALT, and
ALP. Myrtenal also increased glycogen content in the liver and muscles; recovered the
hepatocytes; and improved pancreatic insulin levels and lipid profile values (total choles-
terol, triglycerides, phospholipids, low-density lipoprotein, very-low-density lipoprotein,
atherogenic index) (Figure 4).
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3.2. Antitumor Potential

Myrtenal has been shown to have antioxidant and antitumor activity in peroral ad-
ministration at a dose of 230 mg/kg b.wt. in corn oil for 28 days. These effects were
achieved through a variety of mechanisms of action, including stabilizing endogenous an-
tioxidant protection, influencing apoptotic and proapoptotic signaling pathways, inhibiting
the expression of TNF- and reducing tumor growth, and regulating the activity of several
lysosomal and mitochondrial enzymes [126–129]. The monoterpenoid was administered
for 28 days in the experimental protocols of Babu et al., and Venkatachalam’s research
group applied it for 15 weeks. Myrtenal was found to inhibit V-type ATPase on the surface
of tumor cells in an in vitro study in melanoma cell lines, leading to their death and also
to the suppression of melanoma metastasis in experimental mice at a dose of 15 mg/kg
b.wt. (i.p. application for 21 days) [130]. The monoterpenoid demonstrated the ability to
inactivate free radicals, resulting in inhibition of colon carcinogenesis and suppression of
tumor progression after 30 weeks of intragastric administration at a dose of 230 mg/kg
b.wt. [131,132]. Trytek et al. (2018) investigated the antitumor potential of (−)-myrtenol,
(−)-myrtanol, and (−)-myrtenal (Figure 1) on human colon carcinoma cells in vitro and
found that myrtenal had the highest activity [133]. The proposed mechanism of antitumor
characteristics was that these substances affect the mitochondrial enzymes’ activity and
membrane stability (Figure 5).

Our results confirmed the antioxidant mechanisms in the CNS effect of myrtenal
(40 mg/kg b.wt. applied intraperitoneally for 11 days) in intact rats, in the brain of which
myrtenal caused SOD (superoxide dismutase) activity and malondialdehyde (MDA) levels
to decrease, and total glutathione (tGSH) content to increase, compared to controls [134].
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3.3. Analgesic Potential

Pinene, whose derivative is M, showed analgesic potential in various models of
induced pain [135]. On the other hand, the hydroxyl derivative myrtenol suppressed
nociceptive and inflammatory responses in experimental conditions by inhibiting cell
migration and neuromediation in pain pathways [136]. Intraperitoneal administration of
this alcohol in experimental mice reduced the number of spasms in the acetic acid writhing
test. For the first time, a recent investigation demonstrated myrtenal’s analgesic potential
in laboratory mice. After a single, 7-day, and 14-day i.p. administration (30 mg/kg), the
analgesic effect of M was established in two pain models: the acetic acid writhing test
(antipyretic type analgesia) and the hot plate test (narcotic-type analgesia) [134].

3.4. Anti-Inflammatory Potential

The anti-inflammatory activity of Myrtus communis, L. extracts was established in
two chronic inflammation mice models: a xylene-induced ear edema and a cotton pellet
test [137]. In rats with induced rheumatoid arthritis, myrtenal isolated from Liquidambra
formosana L. exhibited anti-inflammatory properties [138]. They were manifested by low-
ering the plasma levels of interleukin-1β (IL-1β) and tumor necrosis factor α (TNF-α),
and also by suppressing the activation of the nucleotide-binding, oligomerization domain
(NOD)-like receptor family, pyrin domain containing 3 (NLRP3) inflammasome, which was
confirmed in vitro.

3.5. CNS-Affecting Potential

Subsequent research into the myrtenal effects on the CNS in our experiments on
laboratory rodents showed potentiation of the classical sedative–hypnotic action of the
drugs. In our opinion, these results are due to the interaction of myrtenal (20 and 30 mg/kg
i.p. in a single dose) with the GABA receptor, since the introduction of the benzodiazepine
antagonist Flumazenil (0.5 mg/kg) is followed by a sharp recovery in the condition of the
experimental animals [134]. The central mechanism for action of myrtenal and its influence
on GABA-ergic neurotransmission is related to the established anxiolytic properties of the
substance. Hailu et al. (2011) reported substantial anxiolytic effects of myrtle essential oil,
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which were found to be comparable to those of diazepam [139]. Our studies in mice also
confirmed the anxiolytic property of myrtenal according to the marble-burying test after
single and repeated 7- and 14-day i.p. administration at 30 mg/kg dose, comparable to that
of diazepam (1 mg/kg) as a reference [134].

3.6. Neuroprotective Potential

The neuroprotective potential of myrtenal was investigated in an injury model in
which experimental mice were exposed to radiofrequency electromagnetic radiation during
the gestational and neonatal periods. Akefe et al. (2023) administered myrtenal orally at
doses of 100 and 200 mg/kg for 28 days, observing improvement in memory processes and
in some biochemical parameters [140]. The substance improved short-term memory and
spatial orientation. Additionally, it restored the activity of antioxidant enzymes, thereby
rectifying the oxidative–inflammatory status within the brains of the experimental mice.
The restoration of cholinergic neurotransmission and the levels of dopamine, noradrenaline,
and serotonin manifested myrtenal’s neuromodulatory properties.

The ability of natural myrtenal to affect neurodegenerative diseases was demonstrated
for the first time by our team. In two experimental models of neurodegeneration—6-
OHDA-induced parkinsonism [141] and chemically induced dementia [142] in rats—we
established the antioxidant potential of the compound (30 mg/kg i.p. for 5 days), as
an element of its neuroprotective activity. There are limited data in the literature on
myrtenal’s effects on the levels of major brain neurotransmitters. In the report by Kaufmann,
Dogra, and Wink (2011) [143], in vitro anticholinesterase effects were not confirmed by
the presence of direct inhibition of enzyme activity in our in vivo experiments in mice
(20 mg/kg, i.p. for 11 days) [134] and rats (40 mg/kg, i.p. for 9 days) with experimental
neurodegeneration [143]. We established a significant protective effect of myrtenal on
neurodegenerative processes in experimental rodent models [140]. Under the conditions
of our studies in a scopolamine injury model of dementia, the monoterpenoid exhibited
neuromodulatory properties through a slight nonsignificant decrease in brain AChE activity,
a significant decrease in hippocampal noradrenaline content, and increased hippocampal
and cortical serotonin levels in experimental rats. Examining the myrtenal (50 mg/kg
i.p. for 5 days) neuroprotective effects on an experimental 6-OHDA model of Parkinson’s
disease further revealed the multitarget mechanism of its action. It demonstrated positive
effects on the memory and learning abilities and on the coordination and exploratory
behavior of experimental rats, via reducing the main parameters of brain oxidative stress,
and increasing the dopamine content in the damaged cerebral hemisphere [141]. According
to these first studies, we demonstrated at least two mechanisms of action that are involved
in the protective effects of myrtenal on neurodegenerative processes: neuromodulatory
and antioxidant (Figure 6).

Although many biological properties of myrtenal have been established, no therapeutic
agents have yet been developed. Currently, only one pharmaceutical product based on
natural myrtenal is available, Myrtecaine, and it has a local anesthetic effect. Its combination
with diethyl amine and salicylic acid is used for muscle and joint pain topical treatment. On
the other hand, there is increasing interest in its derivatives and their therapeutic potential
in various fields of the medical practice.
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4. Therapeutic Potential of Myrtenal Derivatives

Monoterpenes and their derivatives serve as pivotal starting components in the design
and synthesis of novel biologically active compounds.

4.1. Antitumor Potential

Concepción et al. (2020) described several basic structures of myrtenal conjugates
such as compound 5 (Figure 7) with high cytotoxicity against cancer cells with EC50 in
the nanomolar range [144]. These novel myrtenal-conjugated pseudo-peptides have been
synthesized and investigated as prospective antitumor agents. They represent potential
candidates for anticancer therapy due to their selective cytotoxic activity. Some of these
compounds exhibited notable in vitro cytotoxicity against human gastric, breast, and colon
adenocarcinoma cell lines, while demonstrating no such effect against human dermal
fibroblast cell lines. One derivative exhibited acceptable EC50 and Emax values in cancer
cell lines and in inducing cytotoxicity in actively proliferating CD4+—T cells without
affecting nonproliferating T cells.

Zielińska-Błajet and Feder-Kubis (2020) provided an overview of diverse therapeutic
effects on selected aliphatic, monocyclic, and bicyclic monoterpenes such as geraniol, thy-
mol, myrtenal, pinene, camphor, borneol, and their modified structures [89]. A recent study
with fourteen newly synthesized perillaldehyde and myrtenal-based benzohydrazides
revealed the antiproliferative potential for two of them [145]. Increasingly more literature
data are available regarding new modifications of these natural compounds, including their
biological effects and medical applications. However, information regarding the biological
and pharmacological properties of monoterpene derivatives remains limited to several
review articles, published in the last ten years [91,122,146–152].

In 2011, Wang and Sintim developed compound 6 (Figure 7), a myrtenal analog
of natural antibiotics (platensimycin, platencina, and (−)-myrtamycin) with promising
antibacterial activity at MIC 4 µg/mL [153].

In 2015, Suslov et al. published that amino adamantane derivatives of myrtenal 7
and 8 possess potent cytotoxic effects against the tumor lines used (CTD50 = 12 ÷ 21 µM),
along with low toxicity with respect to MDCK cells [154]. Compound 7, which was
synthesized from 1-amino adamantane and (–)-myrtenal, showed cytotoxic activity against
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CEM-13, MT-4, and U-937 human cancer cells. Adamantylamine derivative demonstrated
high activity against all tumor lines used, along with low cellular toxicity, while the 1-
amino adamantane and (+)-myrtenal-derived compound 9 exhibited antitumor potential
by inhibiting tyrosyl-DNA phosphodiesterase 1 (TDP1) activity (IC50 6 µM), an important
target for antitumor therapy, according to research by Ponomarev et al. (2018) [155]. These
myrtenal derivatives do not exert genotoxic properties. An even more active TDP1 inhibitor
with IC50 45 nM was developed by combining myrtenal and usnic acid fragments [156].

Gonda and Szakonyi (2018) reported the synthesis of 1,2,4- and 1,3,4-oxadiazole deriva-
tives of (–)-myrtenal [157]. All compounds were tested in vitro for antiproliferative activity
against four human malignant cell lines using the MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-
diphenyltetrazolium bromide] assay [158]. One of them inhibited tumor growth, with IC50
values comparable to those of the reference cisplatin, but showed lower antiproliferative
activity against the triple-negative breast cancer cell line (MDA-MB-231) compared to other
cell lines used in gynecology. The remaining compounds exhibited a relatively diminished
level of activity against ovarian cancer (cell line A2780).
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4.2. Anxiolytic Potential

Kapitsa et al. (2012) described new nitrogen-containing compounds with an adamantane–
myrtenal structure and then investigated the anxiolytic activity of the resulting products
in male Balb/C mice by using the elevated plus maze test [88]. The results showed that
compound 8 exhibited anxiolytic potential upon single administration.

4.3. Antiviral Potential

Teplov et al. (2013) tested in vitro the same conjugate of 2-amino adamantane and (–)-
myrtenal for antiviral activity against influenza virus A/California/07/09 (H1N1)pdm09
and found that the introduction of a myrtenal fragment led to an increase in the an-
tiviral activity of the adamantylamine derivatives against the adamantylamine-resistant
virus [159]. The selectivity for most of the synthesized amines surpassed that for Rimanta-
dine and Amantadine.
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4.4. Antifungal Potential

Compound 10, which is a myrtenol-containing analogue of azole antifungals, demon-
strated promising antifungal activity against both fluconazole-susceptible and fluconazole-
resistant strains, including fluconazole-resistant clinical isolates of Candida parapsilosis and
Candida glabrata, with excellent minimum inhibitory concentration in submicrogram and
nanogram range. The compound was up to 100 times more active than fluconazole [160].

4.5. Analgesic Potential

A high analgesic effect with an active dose of 20 mg/kg was shown for myrtenal-
derived diazaadamantanone 11 [161]. The compound has a low acute oral toxicity with
LD50 of more than 1000 mg/kg and does not cause damage to the gastric mucosa. Similar
analgesic activity was demonstrated for diazaadamantane–myrtenal conjugate 12 [162].
Having in mind evidences for analgesic potential of myrtenal established in our previous
studies, it can be concluded that this analgesic potential can be improved and extended via
synthesis of some diazaadamantanone analogues of myrtenal.

4.6. Memory-Improving Potential

The conjugates of amino adamantane with myrtenal 7 and 8, in the form of hydrochlo-
rides, studied by Kapitsa (2012) [88] and Teplov (2013) [159], showed the potential to
influence memory processes in intact rats after 11 days of repeated intraperitoneal ad-
ministration at a dose of 1 mg/kg [163]. The two compounds of amino adamantane with
myrtenal investigated in this study exhibited antiacetylcholinesterase activity. Additionally,
they demonstrated the capability to influence the levels of norepinephrine and serotonin in
the cerebral cortex and hippocampus of the experimental animals. Notably, one of these
substances also displayed antidepressant potential, which can be attributed to the induced
increase in brain monoamines concentrations, the reduced levels of which are associated
with depressive conditions.

Our pilot study of these two amino adamantane compounds with myrtenal was ex-
tended by examining their effects on scopolamine-induced neurodegeneration in rats [164].
The derivatives again caused AChE activity inhibition in the cerebral cortex of dement rats,
accompanied by some antioxidant capacity expressed by increased glutathione content.
They also affected the levels of norepinephrine and serotonin in the cortex and hippocam-
pus of laboratory rodents in an induced model of dementia, as was observed in intact rats
in the previous study. These studies, for the first time, reveal the capacity of two amino
adamantine conjugates with myrtenal to influence neurodegenerative processes through
different mechanisms of action: antiacetylcholinesterase and neuromodulatory.

5. Future Perspectives

Myrtenal derivatives showed a broad spectrum of activities, which reveal myrtenal’s
potential as a basis for the design of new pharmacological agents (Figure 8).

Some of the compounds showed new activities different from those of myrtenal,
while others showed an enhancement of the effects of the natural substance. Different
combinations of myrtenal and adamantane moieties have gained interest in various fields,
including medical chemistry and drug discovery. Some research focuses on the design,
synthesis, and evaluation of myrtenal–adamantane conjugates as potential pharmacological
agents. Moreover, other analogs of these conjugates with modification of monoterpene,
adamantine, and linker structures could be considered in the future. This group of com-
pounds showcased a spectrum of beneficial properties that warrant comprehensive and
in-depth examination. They have the potential to be introduced in the future into various
areas of the pharmacotherapeutic practice. Several possible areas of applications of these
derivatives include antimicrobial (antifungal and antiviral), anticancer, anxiolytic, and
neuroprotective activity.
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