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Abstract: Percutaneous coronary intervention of chronic total occlusion (CTO PCI) is a challenging
procedure with high complication rates and, as not yet fully understood long-term clinical benefits.
Ischemic symptom relief in patients with high ischemic burden is to date the only established clinical
indication to undergo CTO PCI, supported by randomized controlled trials. In this context, current
guidelines suggest attempting CTO PCI only in non-invasively assessed viable CTO correspondent
myocardial territories, with large ischemic areas. Hence, besides a comprehensive coronary angiog-
raphy lesion evaluation, the information derived from non-invasive cardiac imaging techniques is
crucial to selecting candidates who may benefit from the revascularization of the occluded vessel.
Currently, there are no clear recommendations for a non-invasive myocardial evaluation or choice of
imaging modality pre-CTO PCI. Therefore, selecting among available options is left to the physician’s
discretion. As CTO PCI is strongly recommended to be carried out explicitly in experienced centers,
full access to non-invasive imaging for risk-benefit assessment as well as a systematic institutional
evaluation process has to be encouraged. In this framework, we opted to review the current myocar-
dial imaging tools and their use for indicating a CTO PCI. Furthermore, based on our experience,
we propose a cost-effective systematic approach for myocardial assessment to help guide clinical
decision-making for patients presenting with chronic total occlusions.

Keywords: chronic total occlusion; cardiac magnetic resonance; echocardiography; positron emission
tomography; single photon emission computer tomography; coronary artery disease

1. Introduction to Chronic Total Occlusion and Revascularization Recommendations

Chronic total occlusion (CTO) of coronary arteries represents an advanced form of
atherosclerotic coronary artery disease, which is currently prevalent in circa one-fifth of
patients presenting for diagnostic coronary angiography [1]. CTO is defined as a chronic
occlusion of the artery for longer than 3 months with a TIMI 0 flow and is associated with
the development of collateral conduits from donor vessels that maintain a certain perfusion
level to the CTO-related myocardial segments [2,3]. However, these collaterals are very
often insufficient to provide adequate myocardial perfusion, which often leads to the typical
manifestation of ischemic heart disease [2]. A growing body of evidence suggests that the
revascularization of CTO using coronary artery bypass grafting or percutaneous coronary
intervention (PCI) has several clinical benefits, including ischemic symptom relief and
quality of life improvement. These findings are supported to date by limited randomized
controlled studies assessing the effects of CTO PCI upon clinical indication [4–7] (Table 1).
Yet it is still unclear whether revascularization of CTO provides a survival benefit or
long-term freedom from cardiac events, compared to receiving optimal medical therapy
alone–indeed, the few available randomized controlled trials have reported no benefit in
this context [5,7]. However, large observational studies on CTO patients have concordantly
been reporting positive effects of CTO PCI on long-term survival and freedom from cardiac
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events. Of note, most of these studies compared patients that underwent successful vs.
unsuccessful revascularization attempts on CTO vessels [8–10].

Table 1. Randomized studies comparing CTO PCI with OMT [4–8] CTO PCI—percutaneous coronary
intervention of chronic total occlusion, OMT—optimal medical therapy, MACE—major adverse
cardiac events, QOL—quality of life, LVEF—left ventricular ejection fraction, CMR—cardiac mag-
netic resonance, LVEDV—left ventricular end-diastolic volume, SWT—segmental wall thickening,
(I)—primary endpoint, (II)—secondary endpoint, (subgroup)–results derived from subgroup analy-
sis; **—reporting of viability or ischemia data.

Study Time Number of Patients Success Rate Follow-Up
(Median) Findings

DECISION-CTO 2010–2016 834 (1:1) 90.6% 4 years

- No difference in MACE
occurence (I)

- Better QOL in CTO PCI group (II)
- ** no data on ischemia and

viability detection

EURO-CTO 2012–2015 396 (2:1) 86.6% 1 year

- Better QOL and Angina
reduction in CTO PCI group (I)

- No difference in MACE
occurence (II)

- ** Ischemia PCI arm 65%,
Viability PCI arm 86%

EXPLORE 2007–2015 304 (1:1) 77% 4 months

- No benefit in LVEF (CMR) nor in
LVEDV (I)

- LAD CTO PCI had higher LVEF
(subgroup)

- No benefit in terms of MACE (II)
- ** no data on ischemia and

viability detection

REVASC 2007–2015 205 (1:1) 86% at first attempt
(99% overall) 1 year

- No benefit in terms of SWT,
regional and global LVEF (CMR)
(I)

- CTO PCI had less MACE driven
by repeat PCI (II)

- Single vessel disease CTO
patients benefited from PCI in
terms of SWT (subgroup)

- ** no data in ischemia and
viability detection

IMPACTOR
(RCA CTO) 2010–2014 94 (1:1) 83% 1 year

- CTO PCI group had a significant
MIB decrease compared to OMT

- Better QOL in the CTO PCI group
- No difference in terms of MACE
- ** myocardial ischemic burden

documented, no data on viability

Due to the lack of randomized trials, the hard-outcome benefits of CTO PCI are not
yet fully elaborated. However, the HORIZONS-AMI trial observed that the presence of
a CTO in patients undergoing PCI for ST-elevation myocardial infarction was associated
with worse early and late clinical outcomes [11].

CTO PCI is a challenging procedure with increased technical complexity and a need
for appropriate operator experience. Through recent advancements and the development
of dedicated methods and devices in the last few years, success rates of CTO PCI have
increased significantly. However, they remain lower than non-CTO PCI–#, with success-
ful revascularization of CTO vessels ranging from 60–70% of patients in inexperienced
operating centers and 90–95% in some highly experienced centers [10,12–14]. Moreover,
these patients are characterized by a higher interventional complication risk compared to
non-CTO PCI, suggesting the need for a careful patient selection and benefit-risk evaluation
before attempting CTO PCI, adapted to operator experience and expected symptom and
prognostic benefits [3,15,16].

The European Society of Cardiology (ESC) guidelines on myocardial revascularization
suggest choosing patients for CTO PCI in a similar manner to those who need treatment
for non-CTO lesions, and explain that clinical benefits are analogous among these patient
groups–hence, the rationale and criteria for decision-making in the revascularization of
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stable CAD should apply to the CTO subset [16]. As stated in the guidelines, prognostic
benefits of revascularization may be granted to patients with a significant left main and/or
left anterior descending artery (LAD) stenosis, multi-vessel disease or in patients with
an ischemic territory exceeding 10% of the left ventricle. For this reason, they suggest
an objective quantification of ischemia using non-invasive diagnostic imaging as a first-
line test before revascularization. In left ventricular dysfunction, guidelines recommend
viability testing to be performed appropriately for the detection of stunned or hibernating
myocardium causing heart failure with the potential of functional recovery [16].

Most importantly, CTO PCI is currently recommended by the ESC in selected patients
with angina symptoms resistant to medical therapy (class of recommendation II-a, level of
evidence B) [16] (Table 2). However, the 2017 American College of Cardiology/American
Heart Association guidelines on myocardial revascularization recommend CTO PCI only
upon clinical indication and in the hands of appropriately experienced operators, as a class
II-a of recommendation and level of evidence B [15]. The recent 2021 American guidelines
downgraded the clinical recommendation for CTO PCI to a class II-b level of evidence B
due to equivocal evidence based on randomized trials: “In patients with suitable anatomy
who have refractory angina on medical therapy, after treatment of non-CTO lesions, the
benefit of PCI of a CTO to improve symptoms is uncertain”. They also encourage CTO PCI
after shared-decision and potential benefits [17] (Table 2). Of note, no randomized trials
comparing CTO PCI and CABG are available to date.

Table 2. Guideline recommendations for CTO PCI [16,17].

Gudielines Class of Recommendation Level of Evidence Recommendation

European 2018 II-a B

“Percutaneous revascularization of
CTOs should be considered in
patients with angina resistant to
medical therapy or with a large area
of documented ischaemia in the
territory of the occluded vessel”

American 2021 II-b B

“In patients with suitable anatomy
who have refractory angina on
medical therapy, after treatment of
non-CTO lesions, the benefit of PCI of
a CTO to improve symptoms
is uncertain”

Pre-interventional evaluation of CTO lesions has indeed to be well elaborated as the
main characteristics of this specific lesion subset, such as collateral vessels and complete
antegrade flow impairment, restrict diagnostic availability or alter the interpretations for
clinical indication. For example, the use of the broadly recommended FFR or the novel
CT-FFR measurements is not routinely possible in CTO vessels [16]. Thus, non-invasive
imaging takes on greater significance and the choice of techniques and interpretation of
imaging-derived information require special attention.

In this context, suitable candidates to undergo CTO PCI should be carefully identified
and selected taking into consideration diverse clinical factors and supported by appropriate
cardiac imaging techniques evaluating viability and ischemia.

Guided by current recommendations and clinical practice, we opted to review the
available evidence on benefits of CTO PCI and shed light on pre-interventional require-
ments for the consideration of revascularization. Throughout our review, we used the
term revascularization to reference PCI as our primary focus, if not stated otherwise. Fur-
thermore, we summarised the available non-invasive imaging methods that support the
physician to guide the patient selection process.
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2. Which Patient May Benefit from CTO PCI?
2.1. Viability

In patients with coronary artery disease and normal ventricular function without
regional wall motion abnormalities assessed by echocardiography, intact myocardial via-
bility can be presumed [18]. In these patients, several benefits of revascularization have
been reported. In patients with preserved systolic left ventricular function and one single
vessel disease randomized in the ORBITA trial, revascularization improved the stress wall
motion score index as assessed by cardiac echocardiography after 6 weeks as a secondary
endpoint [19]. Furthermore, a large meta-analysis described better outcomes of revascu-
larization in patients with viable myocardium and normal left ventricular function, as
compared to medical therapy [20].

On the other hand, the clinical benefit of revascularization in patients with left ventric-
ular dysfunction is still ambivalent. A considerable proportion of CTO patients manifest
heart failure with a reduction of left ventricular function [10] but it is unclear still whether
CTO PCI is able to induce recovery. One large randomized controlled trial (n = 205) inves-
tigated the left ventricular recovery in terms of wall thickness and ejection fraction and
found no differences between CTO patients who underwent revascularization and those
who received optimal medical therapy alone. However, the results were limited by the low
rates of ventricular dysfunction at baseline and the revascularization of diseased donor
vessels in the control group [6]. However, previous studies have reported positive results
in the general CAD population. A large meta-analysis of 3088 patients studied the role of
myocardial viability in the revascularization of CAD patients with severe left ventricular
dysfunction (as assessed by the left ventricular ejection fraction) [21]. This study underlined
that viable myocardium benefits immensely from revascularization as compared to medical
therapy and paved the way for further research and clinical applications. Its implications
may have a slightly different meaning nowadays, as, during the few past years, medical
therapy for heart failure has witnessed massive improvements; patients treated medically
in the current era have a better prognosis with the new heart failure therapies, as reported
in large randomized controlled studies [22,23]. However, the interpretation for clinical
practice was limited by the observational nature of the study and the lack of information
on the method of revascularization. Later on, most solid data came from randomized trials
on patients receiving coronary artery bypass grafting (CABG), suggesting that ischemic
but viable myocardium with left ventricular dysfunction has a better long-term prognosis
after CABG [24]. A viability sub-study of the STICH trial on patients with reduced left
ventricular function receiving CABG reported at first less cardiac mortality and cardiac
hospitalization within 5 years when myocardial viability was preserved. However, in the
multivariable analysis, the correlation was lost [25]. On the other hand, in an extended
10-year follow-up, freedom from cardiac death and hospitalization was significantly higher
in the STICH trial patients when myocardial viability was preserved [26].

It seems that revascularization in ventricular dysfunction has prognostic benefits,
but it has been long debated if this implication depends on the revascularization method.
Indeed, in the general CAD population, the recent FAME-3 trial reported a non-inferiority
of functionally-guided PCI vs. CABG in 1-year follow-up. However, patients with left
ventricular dysfunction were underrepresented with ca. 18% in both treatment arms [27].

Recently, one randomized trial recently addressed the evidence gap. The REVIVED
trial investigated patients with viable dysfunctional left ventricles undergoing PCI and
reported no benefit in survival or cardiac events in 3 years compared to the control group
which received optimal medical therapy alone. Moreover, the trial showed no improvement
in left ventricular ejection fraction after PCI [28]. However, the clinical endpoint obser-
vation time might have been too early in the REVIVED trial: As seen in the STICH trial,
prognostic benefits of revascularization may be detected only after a longer observational
period. Another issue might be the non-adequate selection of patients with left ventricular
dysfunction for myocardial revascularization. In the PARR-2 randomized trial, patients
identified using PET before undergoing PCI had better hard outcomes than those selected
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using the standard of care protocol [29]. Despite studying a smaller cohort than REVIVED,
this study emphasizes the need for a more careful clinical indication by highly sensitive
methods of non-invasive cardiac imaging.

On the other hand, non-randomized data suggest PCI survival benefits in left ventric-
ular dysfunction: Gerber et al., reported a higher 3-year survival in patients with severe left
ventricular dysfunction and viable myocardium who received revascularization. Overall,
the study reported similar 3-year mortality as the REVIVED trial [30]. Although emerging
data may lead to discussions in the next guidelines, current practices and indications
for patients with myocardial dysfunction undergoing revascularization (including CTO
patients) will most probably remain unaltered [31].

In patients with ventricular dysfunction, PCI benefits may be found mostly in the
presence of hibernation. An observational study on 648 patients reported that an extent
of hibernating myocardium exceeding 10% was associated with the benefits of revascu-
larization [32]. Physiologically, improvement in left ventricular function may be physi-
ologically explained by reversed myocardial hibernation after restored perfusion, with
enhanced reversibility in those patients who have less fibrotic tissue [33,34]. When left
untreated, hibernation can be a progressive condition with subsequent development of
fibrosis, myocardial thinning and akinesia [35]. A prospective trial found progressive loss
of myocardial viability in patients with ventricular dysfunction receiving neither revascular-
ization nor medical treatment, resulting in scar formation in former hibernating myocardial
segments [36]. Of note, revascularization of hibernating myocardium has been associated
with improved long-term prognosis in viable areas larger than 10% of the left ventricle [32].
As such, quantification of viability has prognostic value, but is only possible non-invasively.

2.2. Ischemia

Revascularization of ischemic but viable myocardium aims to minimize residual
ischemia and subsequently improves symptoms and prognosis. Patients with a large
ischemic burden (more than 10%) are considered to benefit the most from PCI [37]. This
statement is supported mainly by the randomized COURAGE trial, which reported a
survival benefit and reduced myocardial infarction rates in patients with an ischemic
burden of more than 10% at the baseline and less than 5% after revascularization [38]. In
this study, ischemia was evaluated non-invasively using SPECT. On the other hand, a sub-
study of the PARR-2 trial using PET reported fewer cardiac events after revascularization
in CAD patients with an ischemic but viable myocardial area of more than 7% of the left
ventricle [39]. However, the threshold of ischemia in 10% of the myocardium remains
standard of care, as this amount of ischemic burden is associated with prognostic benefits
of revascularization in the general CAD population [16].

Nowadays, invasive functional assessment of coronary artery stenoses can derive
information related to the extent of ischemia in the distal supply region. Treatment of
functionally significant stenoses, as assessed by fractional flow reserve, has been proven
to be superior to revascularization guided by anatomical evaluation alone. The FAME
trial reported better 2-year MACE rates after revascularization of ischemic myocardium, as
assessed invasively with FFR [40]. However, for quantitative measurement of myocardial
ischemia, coronary flow reserve using PET represents the most reliable parameter due to
the detection of ischemia in the whole myocardium, which surpasses the invasive tool of
FFR measuring the pressure drop solely [41]. In fact, invasive functional measurement does
not apply to CTO lesions, as collateral vessels rather than CTO vessels themselves supply
the corresponding myocardial regions.

Indeed, CTO-related myocardium can be an ischemic area even in well-developed
collaterals. Werner et al., reported a sufficient collateral flow in only 5% of CTO patients
with preserved left ventricular function [42]. When patients report typical symptoms,
ischemia is mostly present. A quantitative correlation between ischemic burden and
clinical benefits in CTO patients is not specifically stated. The IMPACTOR-CTO trial aimed
to stratify patients according to their ischemic burden, guided by the belief that large
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ischemic CTO-related areas will benefit most from revascularization [43]. This was the
only randomized study to report a significant myocardial ischemia reduction in patients
undergoing CTO PCI. However, myocardial ischemia reduction remains the primary benefit
of CTO PCI.

3. Non-Invasive Tools for Assessment of Viability and Ischemia

We reviewed the currently available non-invasive diagnostic tools that can help to set
the clinical indication for revascularization in CTO patients and described how they can
help properly characterize this patient group by investigating quantitative and qualitative
parameters (Figure 1). The availability of diagnostic tools facilitates the investigation of
myocardium based on anatomical or functional information and enables a proper patient
evaluation. Due to some setbacks in individual imaging methods, hybrid imaging is
emerging as an effective approach that increases diagnostic accuracy: PET or SPECT
functional information is combined with coronary computed tomography or CMR to
facilitate the interpretation of imaging data [44]. To evaluate viability, TTE, SPECT, PET, or
CMR could be used. On the other hand, stress protocols using these modalities can help
localize and quantify myocardial ischemia.
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3.1. Transthoracic Echocardiography (TTE)

Resting transthoracic echocardiography (TTE) is a widely available diagnostic method
in heart disease and provides an incremental value in characterizing the effects of coronary
artery disease on myocardial anatomy and function. As such, it is a fast and efficient way
to investigate possible myocardial conditions following a suspected or confirmed coronary
artery disease [45,46]. TTE is feasible in patients with an angiographically confirmed CTO,
in order to primarily investigate the presence and extent of viability or left ventricular
dysfunction. The echocardiographic evaluation of viability includes measurements of wall
thickness, characterization of wall shape, and regional wall motion. An end-diastolic wall
thinning with less than 5–6 mm usually indicates non-viable myocardial segments. How-
ever, wall thinning can be present in viable areas and thus be followed by false-negative
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interpretations: Shah et al., observed preserved viability in ca. one-fifth of patients with
an end-diastolic wall thickness of less than 5.5 mm [47]. On the other hand, wall motion
variability may indicate loss of viability: mild hypokinesia mostly indicates a viable region
without transmural defects; severe hypokinesia shows high variability and does not exclude
viability; akinesia or dyskinesia are somehow more sensitive in indicating a transmural
scar, but do not exclude viability [45]. Akinesia is recovered after revascularization, thus
indicating viability in the corresponding region [45]. Novel left ventricular strain assess-
ment by two or three-dimensional speckle tracking can also be useful to detect viability and
may be somewhat more accurate, as it takes into consideration, among others, longitudinal,
radial, and circumferential components of wall motion. The severely reduced strain has
indicated transmural scar and preserved strain, on the other hand, has indicated viable
myocardial regions [35]. Resting TTE has a low sensitivity to detect myocardial viability in
dysfunctional myocardium as it is based on anatomical findings, but it is valuable for the
initial exclusion of left ventricular dysfunction. However, these findings in TTE should be
interpreted carefully, as in areas of akinesia or hypokinesia viability may be underestimated,
as in hibernating myocardium [48].

Dobutamine echocardiography, on the other hand, enables a dynamic assessment of
the improvement in contractile function (contractile reserve) in dysfunctional areas and
indicates preserved viability. A biphasic response in myocardial wall motion alterations
after injection of dobutamine (motion enhancement at low doses and downgrading at
high doses) indicates hibernating myocardium and preserved viability [49]. Dobutamine
TTE has a high sensitivity of up to 90% for the prediction of improvement in regional
or global left ventricular function [50]. Moreover, intravenous contrast injection during
dobutamine TTE can help to improve image quality and to assess myocardial perfusion,
but has limited clinical use [51]. Stress protocols have for a long time been integrated into
standard TTE imaging to assess the impairment of wall motion during pharmacological
or physical stress induction [52]. A retrospective temporal study on stress-TTE described
a continuous reduction in the predictive value of negative stress tests based on wall
motion abnormalities [53].

Echocardiography represents a valuable non-invasive imaging method, but in general
it can be limited by reduced image quality in patients with difficult acoustic windows, high
interpreter variability, as well as low sensitivity to quantify persistent and stress-induced
defects using wall motion assessment.

3.2. Single Photon Emission Computer Tomography (SPECT)

Single Photon Emission Computer Tomography (SPECT) detects myocardial perfusion
defects by deriving myocardial radiotracer uptake distribution (Figure 2). Diverse protocols
include stress, resting and redistribution perfusion assessment. Radionuclides such as
thallium-201 and technetium-99 m are used for SPECT imaging. Thallium-201 is flow-
dependently allocated in the heart tissue and transported through the intact cell membrane
of cardiomyocytes. Resting thallium defects that later reverse in redistribution images
(mainly after 4 h) indicate cell integrity and preserved viability. However, redistribution
may be delayed and consequently viability may be underestimated [54,55]. Technetium-99
m-labeled radiotracers, sestamibi, and tetrofosmin test the integrity of the mitochondrial
membrane. These tracers are less redistributed in the myocardium, which makes them less
suitable for viability assessments [56]. On the other hand, they remain feasible for stress-rest
assessments of myocardial perfusion but lack hibernation-detecting capability [57].
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Figure 2. Thallium 201-SPECT study in a patient with a CTO CX as described in the coronary
angiography. Short axis views are displayed in row 1–4 and vertical and horizontal long axis views
in row 5–8. No significant tracer uptake in stress (row 1,3,5,7) and rest (row 2,4,6,8) acquisitions can
be interpreted as lack of viability in the lateral and basal part of inferior myocardial segments (a). On
the right, a semi-quantification of tracer uptake from the stress (top) and rest (bottom) acquisitions in
a polar map (b).

A classic stress myocardial perfusion imaging protocol is performed after physical or
pharmacological stress using vasodilators such as dipyridamole, adenosine, or regadeno-
son, followed by radiotracer injection. A resting study precedes or follows (optionally only
in questionable cases) depending on the selected protocol [58]. Reversible and irreversible
stress-rest perfusion defects are quantified using a 17-segment model and a five-point scale,
while higher points indicate lower perfusion [59]. Then, summed stress scores (SSS) and
summed rest scores (SRS) are subtracted to derive the summed difference scores (SDS)
and to subsequently interpret the presence and extent of myocardial scar (SRS) myocardial
ischemia (SDS) [60]. Converting SDS into myocardial area percentage is challenging but
meaningful, because benefits from revascularization are described relative to myocardial
percentages in prior studies [61]. In fact, this semi-quantitative approach is based on a
comparison between myocardial segments and has been proven to lack accuracy and un-
derestimate the real extent of myocardial perfusion defects with a sensitivity of ca. 65% [62].
Mostly in patients with balanced multi-vessel disease, SPECT shows a significantly re-
duced sensitivity [63,64]. Moreover, myocardial perfusion imaging using SPECT can be
limited by attenuation artifacts, reduced resolution due to depth dependence and lack of
quantitative perfusion measurements [65]. The problem with perfusion quantification has
been addressed using new cameras with enhanced resolution and the need for lower tracer
dose administration. Currently, new-generation cadmium-zinc-telluride (CZT) cameras
enable the acquisition of high-quality SPECT images with the opportunity to use much
less radiotracer, thus impressively reducing patient radiation doses. [64] Stress-only SPECT
protocols are adapted to the high sensitivity of the camera, thus impressively reducing
the radiation doses from 10–15 mSv to ca. 5 mSv on average [66,67]. Due to the high
camera sensitivity, short acquisition times with improved image quality in CZT cameras
are feasible. Additionally, dynamic acquisition using list-mode recordings enables dynamic
evaluation of myocardial perfusion of stress and rest studies and, from that, calculation of
myocardial perfusion reserve (MPR) [68–70]. Moreover, ECG-gated SPECT with the new
CZT cameras can derive functional parameters to characterize left ventricular systolic and
diastolic function [71].

3.3. Positron Emission Tomography (PET)

Limitations in SPECT perfusion imaging have been outmatched by the use of more
precise positron emission tomography (PET) imaging modalities. The concept is to assess
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myocardial perfusion (using tracer rubidium- 82, O-15 water, or N-13 ammonia) and
metabolism (using F-18-FDG) (Figure 3).
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Figure 3. Combined perfusion (performed with N-13 ammonia) and metabolism (performed with
F-18 FDG) PET study allows a differentiation between viable and non-viable myocardium. On the
left side (a) is shown a perfusion/metabolism match in the posterior-lateral segments with equally
reduced NH3 (top) and FDG (bottom) uptake reflecting scar in this myocardial region. On the right
side (b) a perfusion/metabolism mismatch: perfusion (short axis views at the top) and metabolism
(short axis views on the bottom) with reduced NH3 uptake and enhanced FDG uptake in the lateral
wall. This reflects preserved viability in the hypo-perfused lateral myocardial segments.

FDG is actively transported into the inside of cells by the glucose transporters [72]. In
areas with reduced myocardial perfusion a reduced, or lack of, metabolic activity reflects
reduced viability. On the other hand, increased glucose metabolism in hypo-perfused areas
indicates ischemia and maintained viability [73]. A perfusion-metabolic mismatch has an
incremental value in correctly interpreting myocardial viability and identifying ischemia.

Dynamic PET myocardial perfusion assessment enables quantitative information on
myocardial blood flow (MBF) and myocardial perfusion reserve (MPR) [62,71,72]. Sup-
ported by the enhanced spatial resolution in PET, a qualitative assessment is more accurate
and the ability of quantitative measurements provide additional prognostic information
in CAD patients [74,75]. By performing similar stress protocols to SPECT imaging, MBF
is calculated using two-compartment models and the coronary flow reserve (CFR) is cal-
culated as the ratio of stress MBF and rest MBF [76,77]. Polar mapping can be used to
visually border, localize and measure areas with perfusion defects [78]. A correspondent
flow status can be then derived from MBF information [41]. In a meta-analysis comparing
the two modalities, PET perfusion imaging showed higher sensitivity and similar specificity
than SPECT [79].

3.4. Cardiac Magnetic Resonance Tomography (CMR)

Functional cardiac magnetic resonance tomography (CMR) with late gadolinium en-
hancement (LGE) is a highly sensitive imaging method for the evaluation of myocardial
viability [80]. Gadolinium is a contrast medium that cannot be transported inside the
cardiomyocytes and enriches in the interstitial space. In the fibrotic areas with a reduced
cardiomyocyte density, delineation of gadolinium-dense spaces can derive spatial informa-
tion about the existence or extent of scar tissue (Figure 4). The method is highly sensitive,
because of the high image resolution and direct measurement of wall thickness, as well as
the scar extent in the percentage of total wall thickness. Transmural scar (>50% of total
wall thickness) is an indicator of non-viability and is not correlated to any benefits of
revascularization. A point scoring system with 0 to 5 points can be used to semi-quantify
the quartiles of relative scar extent and give information to interpret the myocardial via-
bility [81]. Viable myocardium in patients with ischemic cardiomyopathy, as assessed by
CMR, benefited significantly as compared to medical therapy alone, which underlines the
prognostic value and non-inferiority of CMR in viability testing [30]. Furthermore, CMR
provides anatomical and functional information similarly to TTE, but with much higher
spatial resolution.
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Figure 4. Cardiac magnetic resonance stress acquisition on a short axis view (a) with a reduced
contrast uptake in posterior-septal segments. (a) On the right side (b) a late gadolinium enhancement
in subendocardial posterior-lateral myocardial segments shows significant preserved viability (<50%
trans-murality).

While stress-rest SPECT may underestimate viability, the LGE stress and rest CMR
can better assess scar, ischemia and hibernating myocardium [82]. Stress perfusion CMR
uses the same intravenous contrast admission principle under pharmacological stress
with induced hyperemia and rest [83,84]. A 16-segment model on images acquired on
the short-axis is then built and ischemic and non-viable areas can be delineated using
the scoring system scale in stress and resting conditions. Additionally, the regional wall
motion impairment during pharmacological stress and subsequent recovery in resting
conditions may indicate ischemia. The novel 3D myocardial perfusion CMR offers better
myocardial coverage and accuracy [85,86]. Most importantly, CMR represents a highly
accurate diagnostic method with an increased sensitivity of ca. 86% for detection of ischemia
in CAD, as compared to the limited sensitivity of ca. 65% in SPECT myocardial perfusion
imaging [87]. The CE-MARC and INFORM trials have also underlined the diagnostic
accuracy of CMR and equivalence to the gold standard FFR invasive measurement [88].
However, the accuracy of current CMR practice in CTO patients has not been fully validated:
patient-tailored protocols for stress CRM could increase the sensitivity for identification
of suitable candidates for CTO revascularization. The ongoing CARISMA-CTO study
aims to address this issue and finally adapt CMR stress protocols to individual CTO
patient characteristics [89].

4. Concluding Interpretations and Proposed Workflow

CTO patients are often multimorbid patients with coexisting medical conditions that
could alter diagnostics and clinical decisions, which calls for a dedicated patient evaluation
in an outpatient clinical setting [90]. For this reason, the interventional community is
encouraging careful and comprehensive patient evaluation as well as bilateral physician-
patient decision-making before attempting CTO PCI [3]. Patient evaluation for clinical
indication should be conducted by physicians who operate CTO PCI themselves or are
familiar with the complex character of the condition, since angiographic information
should be integrated to non-invasive imaging information in the context of a spatial and
quantitative assessment of myocardial wall motion and function, ischemia and viability.

4.1. Choice and Interpretations of Non-Invasive Imaging Modalities

Supported by robust evidence, viability has a pivotal role in predicting short and
long-term revascularization benefits. In patients with extended scarring in the CTO region,
revascularization benefits are not warranted, while in those with smaller regional defects,
the extent of viability could be interpreted along with angiographic information, to finally
derive the binary labels of significant viability vs. non-viable CTO region. CMR delivers
more accurate information in this context, as it can quantify both the regional extent and
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thickness of LGE enhancement. SPECT imaging for viability and ischemia is widely ac-
cessible and affordable; new CZT cameras and adapted protocols expose patients to less
radiation. Thallium-201 SPECT rest-redistribution imaging provides better viability assess-
ment compared to technetium-99 m stress-rest SPECT; in case of doubt, FDG-PET might
be performed additionally. In the same manner, ischemia can be underestimated in some
cases in the classic segmental semi-quantification (Figure 5). However, given significantly
large ischemia, viability, and no confounders to disintegrate SPECT imaging, the indication
to undergo CTO PCI remains uncomplicated. On the other hand, PET imaging is a newer
method, but less accessible. Due to the possibility of metabolic and perfusion imaging,
as well as being a gold standard for myocardial blood flow quantification, PET is a more
accurate method for the evaluation of ischemia and viability [91].

Ischemia assessment is a more complex process in CTO patients, which requires careful
angiography integration. Due to the development of collaterals, the CTO region and donor
vessel are interconnected, thus influencing hemodynamic parameters and myocardial
perfusion distribution. The collateral circulation and myocardial “steal” have been long
described in the literature and recently tested in FFR studies, implicating two main effects:
firstly, collaterals are rarely sufficient to provide enough flow to CTO regions; blood flow is
further reduced in hyperemia due to coronary steal [92]. Secondly, collateral “leak” may
cause impaired flow in the distal donor vessel area during vasodilator stress induction,
hence reducing remote myocardial perfusion. Indeed, recent studies have reported an
increased remote myocardial perfusion after CTO PCI [93]. This may result in surprising
findings in pre-interventional ischemia testing.

4.2. Proposed Workflow

Symptom improvement is the primary indication for CTO PCI with the strongest
evidence to date. For this reason, ischemic symptoms and the will to accept the peri-
interventional risks for improvement of life quality should stay on the plateau of the
information cluster when conducting the pre-interventional evaluation. Secondly, the
prognostic benefits of CTO PCI can be evaluated and taken into consideration, as stated
in the European guidelines (CTO in left anterior descending or left main coronary artery,
multi-vessel disease, reduced ejection fraction—Figure 5), especially in the case of expert
operators, with high success and low complication rates.

Our proposed systematic workflow is presented in Figure 6. This workflow should
be interpreted as a suggestion and an attempt to partially integrate the limited evidence
in clinical practice. The process of clinical pre-interventional assessment in intervention-
eligible CTO patients can begin with objective symptom assessment and investigation of
other factors causing the symptoms, as well as comorbidities and physical capacity. Angina
or dyspnoea scoring systems as well as physical performance assessment using treadmill
or bicycle ergometry or the more simplified 6-min walking test can be useful to document
the presence of symptoms [94]. Structural abnormalities of the heart, including wall motion
and ventricular function can be assessed using a resting TTE. If ventricular dysfunction is
lacking, viability can be assumed; otherwise, further viability testing may be useful. This
information in combination with cardiac biomarkers can be useful for an eventual initial
optimization of medical therapy. If unsure about the persisting symptom origin or mild
symptoms indicative of the presence of ischemia, ischemia testing could be then performed.
SPECT imaging is a feasible technique in the case of 1-vessel disease and uncomplicated
angiographic anatomy. If viability testing is explicitly needed, SPECT imaging can be
carefully interpreted to conclude if the viability presence is plausible. In more complex
anatomic cases or multivessel disease and no contraindications to CMR, stress-CMR or
PET can be very accurate alternatives with somewhat lower availability. If the severity
and ischemic origin of symptoms is assumed, stress protocols can also be avoided. In
asymptomatic patients with angiographic small CTO vessels not suitable for intervention,
the situation can be explained to the patient and conservative management of CAD can be
followed, to avoid unnecessary testing.
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In conclusion, in the context of the lack of established patient evaluation algorithms
including recommendations of specified cardiac imaging methods, this review has to be
read as a suggestion according to the literature and the experience of the authors. Indeed,
the evaluation process workflow is currently left to the physician’s discretion. However,
patient evaluation should be conducted by physicians who are familiar with imaging
techniques, complex coronary angiography and CTO PCI.
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