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Abstract: Conventional radiography remains the most widely available imaging modality in clinical
practice in knee osteoarthritis. Recent research has been carried out to develop novel radiographic
biomarkers to establish the diagnosis and to monitor the progression of the disease. The growing
number of publications on this topic over time highlights the necessity of a renewed review. Herein,
we propose a narrative review of a selection of original full-text articles describing human studies on
radiographic imaging biomarkers used for the prediction of knee osteoarthritis-related outcomes.
To achieve this, a PubMed database search was used. A total of 24 studies were obtained and then
classified based on three outcomes: (1) prediction of radiographic knee osteoarthritis incidence,
(2) knee osteoarthritis progression and (3) knee arthroplasty risk. Results showed that numerous
studies have reported the relevance of joint space narrowing score, Kellgren–Lawrence score and
trabecular bone texture features as potential bioimaging markers in the prediction of the three
outcomes. Performance results of reviewed prediction models were presented in terms of the area
under the receiver operating characteristic curves. However, fair and valid comparisons of the models’
performance were not possible due to the lack of a unique definition of each of the three outcomes.

Keywords: knee osteoarthritis; biomarker; radiography; prediction; incidence; progression; total
knee replacement

1. Introduction

Although there is a great body of evidence that research has progressed in developing
novel therapeutic approaches [1], there are still no efficacious disease modifying treatments
for osteoarthritis (DMOADs) [2]. Joint space narrowing (JSN) or measurement of loss of
tibiofemoral joint space width (JSW), in spite of efforts to improve radiographic techniques,
are considered to have several methodological shortcomings [3,4], such as poor sensitivity
to change [5]. However, radiographic JSN remains the measure of choice for DMOAD
registration studies [6]. The current gold standard for diagnosing OA is the plain radiograph
and it is possible to make a clinical diagnosis of knee OA (KOA) in the absence of definite
radiographic disease as recommended by EULAR; imaging is not required to make the
diagnosis in patients with typical presentation of OA [7].

For KOA, a variety of moderate to strong risk factors have been reported to influ-
ence the incidence of KOA, including age, gender, obesity and being overweight [8–10].
However, as concluded in a systematic review on evidence on risk factors for KOA in
older adults, obesity has a slightly larger effect on incidence of KOA pain than being
overweight [11].

Other factors play a role in the development of KOA including, but not limited to,
muscle weakness, previous knee trauma and Knee malalignment [8,12]. Including such clin-
ical parameters in KOA risk assessment models has produced only moderate success [13].
However, adding imaging or biological biomarkers provided better results [14–16].
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Recent research has focused mainly on magnetic resonance imaging (MRI) as this
imaging technique can directly evaluate not only cartilage tissue, albeit sometimes imper-
fectly [17], but also the intra and periarticular tissue involved in the global failure of the
joint [18–20]. However, operator expertise and scanner time result in a high cost, limiting
its availability for routine management in KOA. Plain radiography is readily accessible,
easily acquired and relatively inexpensive. Thus, keeping in mind the need to improve the
quantitative and qualitative assessment of JSN, research has been carried out to develop in
parallel novel imaging biomarkers of interest in the field of KOA.

Beyond cartilage and synovial tissue, the subchondral bone tissue is recognized to
play a central role in the pathophysiology of KOA [20,21].

Much research interest has focused on cartilage tissue imaging but reliable imaging
biomarkers of other tissues involved in the global failure of the entire joint such as the
infrapatellar fat pad [22,23] or the subchondral trabecular bone could be relevant to help in
understanding the pathophysiology of KOA [24,25].

Trabecular bone texture (TBT) analysis of subchondral bone on knee plain radiographs
has been described as a potential new and relevant imaging biomarker in the field of
osteoarthritis [26,27]. There is a growing body of literature showing its usefulness in the
early detection of radiograph KOA, the prediction of KOA progression and the prediction
of KOA course until total knee arthroplasty (TKA).

A challenge for researchers is to identify biomarkers among OA patients that can
predict progressors and non-progressors long in advance. In the cohorts selected in this
review, for example, only 13–48% of the OA patients experienced radiographic progression
within 4 years [28,29].

This narrative review aimed to summarize publications with original data on radio-
graphic imaging markers to permit early diagnosis, prediction of KOA progression and
prediction of TKA risk.

The improvement in medical imaging technologies has helped the scientific osteoarthri-
tis community to potentially provide clinicians with prognostic data from conventional
knee X-ray datasets. Due to the role of the subchondral bone and its remodeling status in
KOA progression, texture analysis of the tibial subchondral bone and knee joint severity
assessments have been widely studied for their association with KOA progression.

2. Methods

This review highlights original research articles published on the radiographic biomark-
ers used for the prediction of knee osteoarthritis-related disease.

Literature searches were conducted in the PubMed electronic database for research
publications describing human studies on radiographic imaging biomarkers used for the
prediction of knee osteoarthritis-related disease, in the period between 1 January 1991
and 31 October 2022. The search keywords and Medical Subject Headings are detailed in
Appendix A.

The PubMed database search was limited to English language full-text. Exclusion
criteria included studies related to other than human knee osteoarthritis imaging tech-
niques without radiography, and studies without prognosis/prediction/risk assessment for
KOA. Exclusion criteria also included non-peer-reviewed articles, dissertations, abstracts,
conference proceedings, commentaries, reviews and letters to the editor.

The selection process was performed independently by two authors (A.A.-I., E.L.).
Agreement was achieved by discussion.

In this review, the following elements were obtained from each study:

1. Name of the study;
2. Number of subjects (and images) included;
3. Definition of radiographic progression;
4. Inclusion criteria;
5. Radiographic biomarkers investigated;
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6. Performance results (if possible, the area under the receiver operating characteristic
(ROC) curve (AUC) score, because AUC is usually used to indicate the overall accuracy
of a test according to its sensitivity and its specificity).

3. Results

The PubMed database search resulted in 545 papers. After scanning the titles and
abstracts in Zotero, 32 studies were found eligible for the comprehensive review. The
reference lists of these studies were further screened to identify any relevant missing studies.
Consequently, an additional six studies were included in the present review. After reading
the full text, 14 of the studies were found not to meet the eligibility criteria, see Figure 1, and
hence were excluded. The lower number of studies on TKA risk prediction can be explained
by the complexity of defining TKA as an endpoint due to the subjectivity of doctors’ and
patients’ opinions in the final decision of TKA [30–32]. None of the resulting studies used
radiographic markers based on quantitative computerized tomography imaging.
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Figure 1. Flow diagram of the article selection.

Two authors (A.A.-I., E.L.) independently classified the selected studies. Any disagree-
ments between the reviewers were resolved by a consensus meeting with the third author
(H.T.). The three criteria used in the classification process were:

1. Prediction of radiographic KOA incidence;
2. Prediction of KOA progression;
3. Prediction of total knee arthroplasty risk.

As illustrated in Table 1, the number of studies included in the prediction of KOA
incidence, KOA progression and TKA risk was 10, 12 and 5 studies, respectively. It should
be noted that three studies included results on both KOA incidence and progression [33–35].



Life 2023, 13, 237 4 of 17

Table 1. List of studies included in the three categories considered.

Objective Included Studies Nubmer of Studies

Prediction of KOA incidence [14,15,33–40] 10
Prediction of KOA 1 progression [27–29,33–35,41–46] 12

Prediction of TKA 2 risk [47–51] 5
1 Knee OsteoArthritis. 2 Total Knee Arthroplasty.

3.1. Prediction of KOA Incidence

Several studies have investigated the ability to predict the onset (incidence) of knee OA
based on observation of the subchondral bone of the tibial plateau. The main specifications
of the 10 studies detected for this category are summarized in Table 2. Among these
10 studies, three were based on TBT analysis [33,37,39]. TBT analysis has been identified as
an imaging biomarker that provides information on trabecular bone changes due to Knee
Osteoarthritis (KOA) [26,29]. The other seven studies were based mainly on geometrical
parameters [14,35,36,40], on the presence of patellofemoral joint osteoarthritis (PFJOA) [34],
on JSW measurement [38] and on KL grade [15].

Table 2. Summary of the major studies related to the prediction of knee osteoarthritis radiographic incidence.

Authors
(Publication Year,

Reference)

Cohort Name (number
of Subjects, % of Cases)

Period
(Months)

Inclusion
Criterion

Incidence
Definition

Main
Radiographic
Biomarkers

Best AUC

Garriga et al.
(2020) [36] Chingford (649) 48 KL 8 ≤ 1, JSN < 1 KL ≥ 2 Hip α-angle 0.80

Joseph et al.
(2018) [40] OAI 1 (641, 13%) 72 KL ≤ 2 KL > 2 KL & KA 13 0.67

Janvier et al.
(2017) [37] OAI (319, 13%) 48 KL = 0 ∆JSN 10 ≥ 1 TBT 14 0.73

Janvier et al.
(2017) [37] OAI (319, 13%) 48 KL = 0 ∆KL ≥ 1 TBT 0.69

Lazzarini et al.
(2017) [14] PROOF 2 (352,11%) 30 KL = 0 mJSN 11 ≥ 1 mm NJSASM 15 0.74

Lazzarini et al.
(2017) [14] PROOF (352,12%) 30 KL = 0 lJSN 12 ≥ 1 mm NJSASM 0.73

Kerkhof et al.
(2014) [15] Rotterdam (2628,18%) KL ≤ 1 KL ≥ 2 KL 0.79

Kinds et al.
(2012) [38] CHECK 3 (653, 20%) 60 KL ≤ 1 KL ≥ 2 JSW 16 & OSTA 17 0.69

Woloszynski et al.
(2012) [33] LU 4 (105, 34%) 48 KL ≤ 1 ∆JSN ≥ 1 TBT 0.75

Duncan et al.
(2011) [34] CAS-K 5 (253, 22%) 36 KL = 0 or 1,

PO 9 = 0 KL ≥ 2 or PO > 0 TFJOA 18 -

Golightly et al.
(2010) [35] JCO 6 (2734 *, 15%) 36–156 KL ≤ 1 KL ≥ 2 LLI 19 -

Shamir et al.
(2009) [39] BLSA 7 (123, 32%) 240 KL = 0 KL ≥ 2 TBT -

Acronyms refer to the following: 1 OAI—Osteoarthritis Initiative Study. 2 PROOF—The PRevention of knee Os-
teoarthritis in Overweight Females. 3 CHECK—Cohort Hip and Cohort Knee study. 4 LU—Lund University study.
5 CAS-K—Knee Clinical Assessment study. 6 JCO—Johnston County Osteoarthritis Study. 7 BLSA—Baltimore
Longitudinal Study of Aging. 8 KL—Kellgren–Lawrence grade. 9 PO—posterior osteophytes. 10 JSN—OARSI medial
or lateral joint space narrowing score. 11 mJSN—OARSI medial joint space narrowing score. 12 lJSN—OARSI lat-
eral joint space narrowing score. 13 KA—Knee alignment. 14 TBT—trabecular bone texture. 15 NJSASM—knee
joint shape using active shape modelling. 16 JSW—minimum joint space width. 17 OSTA—osteophyte area.
18 TFJOA—tibiofemoral joint osteoarthritis. 19 LLI—limb length inequality. * Number of knees.

The studies in [33,34,37,39] included patients with a Kellgren–Lawrence (KL) grade = 0
at baseline, whereas the studies in [25,35,36] included, in addition, patients with KL = 1.

The definition of the KOA incidence was based either on the increase in JSN or KL, or
on the decrease in JSW.
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3.1.1. Increase in Medial Joint Space Narrowing

The performance of baseline TBT-based biomarkers was examined for predicting
incident radiographic KOA in terms of the increase in OARSI medial JSN (mJSN) score
(∆mJSN > 1) [14,25,33,37].

In a set of 203 X-ray knee images (from 105 subjects from Lund University study), a
method was proposed for the analysis of TBT using the Signature Dissimilarity Measure
(SDM) [33] generating a set of three descriptors: roughness, degree of anisotropy and
direction of anisotropy. In this 4-year follow-up study, results illustrated the ability of the
SDM-based model to predict incident mJSN in knees without radiographically visible KOA
at baseline, with an AUC of 0.75 (0.69–0.83) in the medial compartment and 0.72 (0.65–0.80)
in the lateral compartment. These results were adjusted according to age, sex and BMI [33].
One limitation of this study includes its study size, which was too small for the training
and validation process of its model.

In a set of 344 X-ray knee images (from 319 subjects of the well-phenotyped population
of the OAI cohort), the TBT parameters were computed using fractal dimensions [37], and
the fractal parameters were computed using the quadratic variations estimator (VAR) [52].
Exploiting the whole tibial proximal trabecular bone, results of this 4-year follow-up study
confirmed the benefit of using TBT parameters as predictive biomarkers for the incidence
of radiographic KOA with an AUC of 0.73 [0.66–0.80]. In addition, results from diagnostic
odds ratios indicated that TBT-based models were able to identify a subset of true KOA
initiators with a very low number of false positives [37]. The training and validation of the
prediction model proposed in this study, however, was limited to using only computed
radiographs. A more comprehensive study would include another acquisition modality
such as the digitized X-ray films, available in the OAI cohort.

The knee joint shape using active shape modelling (NJSASM) [53] was used to assist
the prediction of KOA incidence as an increase of at least 0.1 mm in mJSN or lateral JSN
(lJSN) within 30 months from baseline [14]. In this study, in a set of 352 women from the
PRevention of knee Osteoarthritis in Overweight Females (PROOF) study, the NJSASM-
based selected descriptors, associated with other markers from clinical covariates, food
questionnaires and biochemical information, were able to predict KOA mJSN and lJSN
incidence with an AUC of 0.737 (0.659–0.814) and 0.731 (0.654–0.808), respectively. It should
be noted that the radiological biomarkers were not among the best biomarkers for the
prediction of KOA incidence in terms of an increase in KL grade, for which clinical, pain
and food markers provided the best performance [14]. The use of other markers detected
from radiographs would help in improving its prediction performance.

3.1.2. Increase in Kellgren–Lawrence Grade

The performance of baseline TBT-based biomarkers was also examined for predicting
incident radiographic KOA in terms of Kellgren–Lawrence (KL) grade increase
(∆KL ≥ 2) [14,15,34–39]. In a small set of 123 pairs of X-ray knee images from the Bal-
timore Longitudinal Study of Aging (BLSA) [54], the weighted neighbor distance method
with a compound hierarchy of algorithms representing morphology (WND-CHARM) [39]
was examined for the generation of TBT features. The WND-CHARM-based model was
able to predict changes in KL grades from normal (grade 0) at baseline to minimal OA
(grade 2) and moderate (grade 3) KOA at 20 years later with an accuracy of 62.4% and 72%,
respectively. The most predictive bone regions were identified in locations adjacent to the
tibial spines. Limitations of this study include its small study size and the lack of AUC
scores, usually provided as a benchmark metric of the performance of a prediction model.

Besides TBT, other radiological biomarkers were examined for the prediction of
incident radiographic KOA in terms of KL grade (KL ≥ 2), including the presence of
patellofemoral joint osteoarthritis (PFJOA [34], pelvic landmarkers [35,36] and medial
JSN [37]. In a set of 253 participants from the Knee Clinical Assessment Study (CAS-K)
study [55], the presence of PFJOA at baseline was found to significantly increase the risk of
incident radiographic tibiofemoral joint OA (TFJOA) (KL ≥ 2 and posterior osteophytes > 0
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at 3 years from baseline) (OR 2.2, 95% CI 1.1 to 4.1) [34]. The use of another radiograph-
ical biomarker based on the angle between the acetabular roof and the ilium’s vertical
cortex [hip α-angle] was examined for the prediction of incident radiographic KOA [36].
Examined in a set of 1184 X-ray knee images from 649 participants of the Chingford co-
hort [56], the performance of the prediction model based on the hip α-angle was improved
(AUC = 0.797) compared to a model based only on clinical covariates (AUC = 0.692, the 95%
CI values are not provided). However, the AUC 95% confidence interval values were not
provided. The strength of this study includes its relatively large size cohort. It would have
been interesting to evaluate the association of α-angle measurement with other parameters
directly detected from knee XR images. Another radiographic biomarker based on the
limb length inequality (LLI) measurement (right and left lower extremity lengths between
two defined bony landmarks: the anterior superior iliac spine and the medial malleolus)
was examined for the prediction of incident KOA [35] in a set of 1583 participants (2736
knees) from the Johnston County Osteoarthritis Study [57]. Results showed that the risk
of KOA incidence was 20% higher among participants with LLI, but results were not
statistically significant.

Finally, the VAR method was also used for the prediction of incident KOA in terms of
KL increase at 48 months from baseline [37]. The TBT parameters associated with age, sex,
BMI and JSN scores were found to be predictive of KOA radiographic incidence (AUC = 0.69
(0.63–0.76)) compared to using clinical covariates alone (AUC = 0.57 (0.50–0.64)). In a group
of 2628 participants from the Rotterdam cohort [58], among which 474 had KOA at end-
point, the addition of KL grade to a classical prediction model included age, sex, BMI and
demographic information found to improve the performance of the prediction of KOA
incidence with an AUC of 0.79 (0.77–0.81), compared to the classical model alone which
achieved an AUC of only 0.67 (0.64–0.70) [15]. Tested on another set from the Rotterdam co-
hort or on a totally different cohort, the Chingford study [59], similar results were obtained
by both KL-based and classical models [15]. Strengths of this study include its impressive
study size and the validation of its model on different cohorts. It would be interesting
though to perform sensitivity analysis in order to address the use of compartment-based
radiographic scores such OARSI JSN scores or JSW measurements.

The ability to predict radiographic KOA incidence at 60 months, in a dataset of a
relatively large set of 985 knees from the Cohort Hip and Cohort Knee (CHECK) study,
was reported to be statistically significantly higher when using baseline minimum JSW
and osteophyte area, in addition to demographic and clinical characteristics (AUC = 0.74
(0.69–0.78)) than without using radiographic features (AUC = 0.64 (0.59–0.68)) [38]. The
performance of a model based on the use of knee alignment to predict radiographic KOA
was evaluated in a set of 641 subjects from the OAI cohort. The performance of a model that
used baseline knee alignment (femur–tibia angle), associated with basic clinical covariates
(age, sex and BMI), previous knee injury and radiography-based parameters (KL score)
in predicting KOA incidence, was found to be modest (AUC = 0.67 [0.61–0.73]) [40]. The
association of knee alignment measures with KL scores did not provide a good performance,
compared to using only KL scores, reported earlier for the study of Kerkhof et al. [15].
Consequently, there was no significant association between varus/valgus alignment and
KOA incidence. However, when adding MRI-based WORMS and cartilage T2 scores to the
abovementioned clinical and radiographic parameters, the performance was significantly
better with an AUC = 0.72 [0.66–0.78].

Most of the studies considered in this section achieved a good prediction performance
(AUC > 0.7). However, the assumption of independence was violated, as they did not
restrict their inclusion to one knee per person. Importantly, the coefficients from a final
model based on one knee per person enable independent validation in other cohorts.

3.2. Prediction of KOA Progression

In addition to the usual clinical covariates, such as age, gender and BMI, radiographic-
based measurements, such as JSW, joint space area (JSA), OARSI JSN grade and KL grade,
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are commonly used for the prediction of KOA progression [27,41]. Texture analysis meth-
ods can play an important role in the improvement of the clinical-based prediction models
as they provide numerical measures of KOA-induced bone changes [26]. The main specifi-
cations of the 18 studies detected for the prediction of KOA progression are summarized in
Table 3. Among the 18 studies, six used TBT- based biomarkers.

Table 3. Summary of the major studies related to the prediction of knee osteoarthritis radio-
graphic progression.

Authors
(Publication Year,

Reference)

Cohort name (number of
Subjects, % of cases)

Period
(Months)

Inclusion
Criterion

Progression
Definition

Main
Radiographic
Biomarkers

AUC

Almhdie-
Imjabbar et al.

(2022) [41]
OAI 1 (1888, 16%) 48 1 < KL 10 < 4 ∆mJSN 14 ≥ 0.5 TBT 16, JSN 0.75

Almhdie-
Imjabbar et al.

(2022) [41]
MOST 2 (683, 36%) 60 1 < KL < 4 ∆mJSN ≥ 0.5 TBT, JSN 0.80

Guan et al.
(2020) [28] OAI (1950, 48%) 48 1 < KL < 4 ∆JSW ≥ 0.7 KL, CNNf 17 0.86

Attur et al.
(2020) [42]

OAI (204, 30%)
NYU 3 (243, 30%) 24 1 < KL < 4 ∆mJSN ≥ 0.5 mm MLOS 18 0.67

Tiulpin et al.
(2019) [46]

OAI (2711, 27%)
MOST (3918, 47%) 60 KL ≥ 1 ∆KL ≥ 1 KL, CNNf 0.81

Kraus et al.
(2018) [27] FNIH 4 (579, 32%) 24–48 0 < KL < 4,

JSN 11 < 2 ∆JSW ≥ 0.7 TBT 0.65

Janvier et al.
(2017) [43] OAI (1124, 14%) 48 1 < KL < 4 ∆mJSN ≥ 1 TBT, JSN 0.77

Kraus et al.
(2013) [45] Pfizer (58, 36%) 12–24 1 < KL < 4,

JSW 12 ≥ 2 mm
∆JSW ≥ 5%

∆JSA 15 ≥ 5% TBT 0.85

Woloszynski et al.
(2012) [44] UWA 5 (50, 24%) 48 KL > 1 ∆mJSN ≥ 1 TBT -

Woloszynski et al.
(2012) [33] LU 6 (105, 27%) 48 KL ≥ 2 ∆JSN ≥ 1 TBT 0.77

Duncan et al.
(2011) [34] CAS-K 7 (91, 25%) 36 KL = 2, PO 13 =1

or 2
KL ≥ 3 or PO = 3 PFJOA 19 -

Golightly et al.
(2010) [35] JCO 8 (1282 *, 34%) 36–156 KL ≥ 1 ∆KL ≥ 1 LLI 20 -

Golightly et al.
(2010) [35] JCO (643 *, 27%) 36–156 KL ≥ 2 ∆KL ≥ 1 LLI -

Kraus et al.
(2009) [29] POP 9 (138, 13%) 36 0 < KL < 4 ∆mJSN ≥ 1 TBT, KA 21 0.79

Acronyms refer to the following: 1 OAI—Osteoarthritis Initiative Study. 2 MOST—Multicentre Osteoarthritis Study.
3 NYU—New York University study. 4 FNIH—Foundation for the National Institutes of Health study. 5 UWA—Un-
iversity of Western Australia study. 6 LU—Lund University study. 7 CAS-K—Johnston County Osteoarthritis
Study. 8 JCO—Johnston County Osteoarthritis Study. 9 POP—Prediction of Osteoarthritis Progression Study.
10 KL—Kellgren–Lawrence grades. 11 JSN—joint space narrowing. 12 JSW—joint space width. 13 PO—posterior
osteophytes. 14 JSN—medial or lateral joint space narrowing. 15 JSA—joint space area. 16 TBT—trabecular bone
texture. 17 CNNf—Radiographic features detected by conventional neural networks. 18 MLOS—medial and lateral
osteophyte scores in tibial plateau and femoral condyle regions. 19 PFJOA—patellofemoral joint osteoarthritis.
20 LLI—limb length inequality. 21 KA—Knee alignment. * Number of knees.

3.2.1. Increase in Medial Joint Space Narrowing

The performance of baseline TBT-based biomarkers was investigated for the prediction
of radiographic KOA progression in terms of increase in mJSN [29,33,41–44].

In a cohort of 138 participants (248 X-ray knees) from the Prediction of Osteoarthritis
Progression (POP) study, it was reported that the model based on baseline TBT parameters,
extracted using fractal signal analysis (FSA), outperformed those that included baseline
clinical covariates (age, sex, BMI, knee pain), bone mineral content and JSN [29] for the pre-
diction of 36-month KOA progression, with an AUC of 0.75 [0.65–0.84] and 0.58 [0.46–0.69],
respectively. This study was the first to evaluate a progression prediction model using TBT
analysis of knee radiographs, although the size of radiographs included was too limited.
The combination of FSA-based parameters, knee alignment and clinical covariates was
more predictive of the JSN progression with an AUC of 0.79 [0.72–0.88]. In a relatively large
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population including 1124 patients from the Osteoarthritis Initiative (OAI) cohort [43], TBT
was analyzed using VAR and Whittle, in addition to FSA. The predictive model included
not only TBT parameters, but also clinical covariates (age, gender, BMI), and radiological
JSN scores. Using TBT parameters, it was found that the prediction of KOA radiographic
progression was improved with an AUC of 0.77 [0.73–0.80] compared to using clinical
covariates alone (AUC = 0.6 [0.56–0.64]). Strengths of this study include the evaluation of
three different methods of TBT analysis and the large set of radiographs included. How-
ever, the reproducibility of the regions of interest (ROIs) may not be ensured because the
segmentation procedure involves the identification of the tibial spines and the lateral and
medial extremities of the tibia by a trained radiologist/operator.

The VAR method was also used for the calculation of TBT features of 1888 and 683 X-
ray knee images from the OAI and the Multicentre Osteoarthritis Study (MOST) cohorts,
respectively [41]. The proposed prediction model included TBT features associated with
CNN-based KL descriptors, as well as traditional clinical covariates and radiological JSN
scores. The performance of the models was evaluated not only when training and testing
on the same cohort, but also when training on one cohort (OAI or MOST) and testing on
the other one (MOST or OAI). The combination of CNN-based methods and TBT analysis
showed promising results in predicting radiographic progression with an AUC of 0.75
[0.71–0.79] in OAI and 0.80 [0.75–0.84] in MOST. In addition, the predictive ability of the
TBT-CNN model was found to be invariant with respect to the acquisition modality or
image quality. It was also shown that the prediction of KOA progression was significantly
better using CNN-based KL grades (AUC = 0.67 [0.61–0.72] in OAI and AUC = 0.71
[0.66–0.76] in MOST) than those provided by radiologists (AUC = 0.63 [0.58–0.68] in OAI
and AUC = 0.65 [0.60–0.71] in MOST).

Another radiographic-based method, called a dissimilarity-based multiple classifier
(DMC), was used as an alternative method to calculating TBT features [44]. The DMC
method uses distances between X-ray images and a diverse classifier ensemble. Based
on a sample of 50 subjects, the DMC method was capable of predicting KOA 48-month
radiographic progression with an accuracy of 80%, a specificity of 82% and a sensitivity
of 78%. Although the size of data used in this study is small, one strength of this study
includes the introduction of a fully automatic method of selecting the ROIs, based on an
active-contour segmentation of tibiofemoral joint, making the TBT analysis reproducible.

The SDM method [33], previously discussed for incident JSN prediction, was also
tested for the prediction of JSN progression. Using the 4-year follow-up study of Lund
University, results illustrated the ability of the SDM-based model to predict medial JSN
progression in knees with radiographically visible KOA (KL > 1) at baseline, with an
AUC of 0.77 [0.68–0.86] in the medial compartment and 0.71 [0.63–0.79] in the lateral
compartment [33]. The TBT analysis was performed on two fully-automatic selected ROIs.
However, the size of each ROI was fixed and represented in pixels, which makes the TBT
analysis specific to certain image resolution. It would therefore have been preferable if
the ROI size had been defined according to the tibial borders detected by the active shape
method used.

Another radiographic biomarker, related to the medial and lateral osteophyte scores
(MLOS) in tibial plateau and femoral condyle regions, was evaluated for the prediction of
KOA JSN progression in a set of 447 participants from the New York University study (204
subjects) and the OAI study (204 subjects) [42]. Although this biomarker performed poorly
in predicting KOA progression, the combination of MLOS with peripheral blood leukocyte
(PBL) inflammatory gene signatures showed a better performance with an AUC of 0.67
[0.59–0.74] than using MLOS alone (AUC = 0.57 [0.49–0.65]) or PBL alone (AUC = 0.62
[0.54–0.69]) [42].

3.2.2. Increase in Kellgren–Lawrence (KL) Grade

The performance of baseline radiographic biomarkers was investigated for the predic-
tion of radiographic KOA progression also in terms of increase in KL grades [34,35,46].
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The CAS-K study [34] estimated the radiographic progression in tibiofemoral and
patellofemoral joints. In a subgroup of 91 subjects, the results showed that the presence
of mild TFJOA (posterior osteophytes = 1 or 2) in knees with KL = 2 at baseline increased
the risk of PFJOA progression (KL ≥ 3 and lateral osteophytes = 3 at 3 years from baseline)
(OR = 4.5 [1.8–11.2]) [34].

A radiographic biomarker based on the limb length inequality (LLI) measurement
(right and left lower extremity lengths between two defined bony landmarks: the anterior
superior iliac spine and the medial malleolus) was examined for the prediction of KOA
progression [35] in a set of 1583 participants from the Johnston County Osteoarthritis
Study [57]. The study included a group of participants with KL ≥ 2 (643 knees) at base-
line. Results showed that the risk of KOA progression was significantly greater among
participants with LLI > 2 cm compared to those with LLI < 2 cm (Adjusted hazard ratio
of 1.83 [1.10–3.05]). This study also evaluated the risk of KOA progression in a group
of participants with KL ≥ 1 (1282 knees). Knees with KL = 1 are usually considered for
radiographic KOA incidence and rarely for KOA progression. Results for this group are
therefore not reported in this review.

Deep convolutional neural network (CNN) learning was also used to provide radio-
graphic biomarkers for the prediction of KL increase within the next 7 years after the
baseline. The CNN-based method used a set of 2711 participants (4928 knees) from the
OAI cohort as a training dataset, and 2129 subjects (3918 knees) from the MOST cohort
as a testing dataset [46]. The descriptors calculated from the CNN-based method using
solely knee images were found to improve the prediction performance with an AUC of
0.79 [0.87–0.81] compared to a logistic regression-based method using clinical information
(age, sex, BMI, WOMAC total score, injury history, and knee injury) and radiological data
(KL grades), in which the AUC was 0.75 [0.74–0.77]. The results also showed that the
combination of the CNN-based descriptors with KL grades further statistically significantly
improved the prediction performance with an AUC of 0.81 [0.79–0.82]. One strength of
this study includes the use of a deep learning-based prediction method in which the KL
scores are automatically defined directly from the raw images instead of using scores
defined manually by radiologists, avoiding the subjectivity of KL grading process. This
study requires high-quality graphics processing units (GPUs) to reduce the computing time
during the CNN training and testing process.

Based on these studies, the benefit of the combination of CNN-based methods and
classical radiographic descriptors (i.e., KL grades) was confirmed as promising biomarkers
in predicting radiographic progression.

3.2.3. Increase in Medial Joint Space Width

The performance of baseline TBT-based biomarkers was also investigated for the
prediction of radiographic KOA progression in terms of loss in medial JSW [27,28,45].

In a group of 58 participants from the Pfizer A9001140 observational 24-month lon-
gitudinal study [60], KOA progression, defined as a loss in medial minimum JSW and
medial JSA from baseline to 24 months, was evaluated using FSA of both X-ray and MRI
knee images. It was found that baseline trabecular bone parameters were able to assist in
the prediction of KOA progression [45]. The results showed that the proposed TBT-based
model was predictive of the loss of ≥5% in medial minimum JSW and medial JSA over
24 months with an AUC of 0.85 [0.82–0.95] and 0.81 [0.79–0.85], respectively. One limitation
of this study is the data size too low for the training and testing of the regression models
used. In a larger population including 579 subjects (185 KOA cases with both pain and
radiographic progression) from the Foundation for the National Institutes of Health (FNIH)
Osteoarthritis Biomarkers Consortium, it was concluded that TBT parameters improved
modestly (AUC = 0.649) but statistically significantly the prediction of KOA radiographic
progression, defined as a loss of ≥0.7 mm in medial minimum JSW from baseline to
48 months, compared to using clinical covariates only (AUC = 0.608) [27]. The AUC 95%
confidence interval values were not provided. Although the proposed prediction models



Life 2023, 13, 237 10 of 17

obtained a poor AUC scores [61,62], one strength of this study is the use of well phenotyped
publicly-available KOA cohort, the FNIH, that could be considered as a gold-standard
cohort for comparing different prediction models.

DL-based methods have been evaluated for the prediction of the progression of
radiographic JSW loss [28]. In a study including 1950 baseline X-ray images, convolutional
neural networks (CNNs)-based features associated with traditional (age, sex, BMI and KL
grades) risk factors were capable of predicting radiographic progression, defined as the
decrease of ≥0.7 mm in medial JSW from baseline to 48 months, with an AUC of 0.857
[0.798–0.904] which was significantly higher than the traditional model (0.681 [0.608–0.748]).

Besides the studies of Kraus et al. [27,45] and Duncan et al. [34], where one knee per
person was included, all other studies did not take into consideration the assumption
of knee independence. Several studies have trained and validated their models using
impressive number of radiographs (>1000 XRs) [28,35,41,46], whereas several other studies
were based on a too limited number of radiographs, (<250 XRs) [29,33,42,44,45,63].

3.3. Prediction of Total Knee Replacement Risk

Total knee replacement or arthroplasty (TKA) is often considered an important clinical
outcome due to the lack of disease-modifying osteoarthritis drugs (DMOADs) [63] for KOA.
Besides the prediction of KOA incidence and progression, radiographic biomarkers have
also been investigated for the prediction of TKA risk [47–51]. In this regard, two TBT-based
methods were detected in this review [47,51].

The association of TBT and TKA was firstly studied using the VOT method in a limited
dataset of 114 participants (28 TKA cases in 6 years after baseline). Increasing mean fractal
dimension (the mean value of horizontal and vertical fractal dimension values) adjusted
for age, sex, BMI, JSN grade and WOMAC score was found to reduce the odds of TKA [47],
independent of radiographic KOA disease. The medial tibiofemoral osteophyte score was
also found to be a significant predictor of TKA (OR = 2.0, 95% CI [1.27, 3.13], p = 0.003). A
limitation of this study is the small sample size.

Very recently, the ability of radiographic TBT features measured using the VAR method
was evaluated, for the first time, for the prediction of TKA risk [51]. Associated with
radiographic severity descriptors in a set of 4382 participants (375 cases) from the OAI
cohort, the TBT-based prediction model achieved an AUC of 0.92 (0.90–0.93) while a
reference model based on standard clinical covariates and radiological KL grades achieved
an AUC of 0.86 (0.84–0.86). The results also showed that the TBT-based model was able
to identify at-risk patients with a 60% increase in TKA case prediction compared to the
reference model, as reflected by the recall values.

The use of 2-year changes in medial JSW at minimum (mJSW) and fixed (fJSW) knee
joint positions has also been evaluated for the prediction of TKA risk within a subsequent
7-year follow-up period [48], in a set of 627 participants (107 cases) from the OAI cohort.
The performance of the prediction models based on JSW measures (AUC = 0.57 [0.50–0.64]
for mJSW and 0.61 [0.55–0.68] for fJSW) was similar to that based on quantitative MRI
femorotibial cartilage thickness (AUC = 0.62 [0.55–0.68]). The performance of this study,
represented by AUC, is the lowest among the published studies in TKA risk prediction, as
seen in Table 4.

DL-based methods have also been evaluated for the prediction of TKA risk [50], in a
set of 728 participants from the OAI cohort. In this study, one-to-one case-control matching,
based on clinical variables of age, sex, BMI and ethnicity, was used and 364 cases were
consequently included. The prediction model based on DL achieved an AUC of 0.87
(0.85–0.90), outperforming a reference model based on KL grades alone which achieved an
AUC of 0.74 [0.71–0.77].

The use of KL grade, combined with clinical covariates (age, sex, BMI, urinary cross-
linked C-terminal telopeptide of type II collagen (uCTX-II)), was evaluated for the predic-
tion of TKA risk at 24 months [49]. In a set of 935 knees, the performance of the combined
model was statistically significantly improved (AUC = 0.75 [0.72–0.77]), compared to the
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model without KL grade (AUC = 0.69 [0.67–0.72]). Due to the short period of followup (24
months), the incidence of TKA was very low (2%).

Table 4. Summary of the main studies related to the prediction of total knee replacement risk.

Authors (Publication
Year, Reference)

Cohort Name (Number of
Subjects, % of Cases)

Period
(Months)

Inclusion
Criterion

Main Radiographic
Biomarkers AUC

Almhdie-Imjabbar et al.
(2022) [51] OAI 1 (4382, 9%), 108 0 ≤ KL 4 ≤ 4, TBT 7 & KL & JSN 8 0.92

Almhdie-Imjabbar et al.
(2022) [51] OAI (4296, 7%) 108 0 ≤ KL ≤ 3 TBT 7 & KL & JSN 0.86

Leung et al.
(2020) [50] OAI (728, 50%) 108 0 ≤ KL ≤ 4 KL, RNetF 9 0.87

Kwoh et al.
(2020) [48] OAI (627, 17%) 82 2 ≤ KL ≤ 3 JSW 0.61

Bihlet et al.
(2020) [49] NCT 2 (935, 2%) 24 2 ≤ KL ≤ 3

JSW 5 ≥ 2.0 mm KL 0.75

Podsiadlo et al.
(2014) [47] ACHMA 3 (114, 25%) 72 0 ≤ KL ≤ 3

OST 6 ≥ 1 TBT -

Acronyms refer to the following: 1 OAI—Osteoarthritis Initiative Study. 2 Nordic Bioscience A/S two randomized,
double-blind, multi-center, placebo-controlled phase III trials (NCT00486434 & NCT00704847). 3 ACHMA—Alfred
and Caulfield Hospitals in Melbourne, Australia. 4 KL—Kellgren–Lawrence grades. 6 OST—OARSI osteophyte score.
5 JSW—joint space width. 7 TBT—trabecular bone texture. 8 JSN—joint space narrowing. 9 RNetF—Radiographic
features detected by Residual neural network (an artificial neural network).

4. Discussion

This review shows that the three most important endpoints (incidence, progression
and TKA) related to KOA have already been widely investigated and validated using
radiographic biomarkers. These are summarized and discussed in terms of KOA endpoints
and are further discussed in connection with JSN or KL changes several years from baseline.
Results showed that prediction models are more effective in progression than in incidence
in terms of AUC scores. This is understandable because when the disease exists, it is easier
to predict its progression than when there are only prodromes of the disease, as observed
in Parkinson’s [64] and stroke [65] diseases.

Radiographic biomarkers were used not only in prognostic multivariable modeling
studies, where their longitudinal relationship (prediction) with an outcome is searched,
but also in diagnostic multivariable modeling studies [25,66–68], where a cross-sectional
relationship (detection) with an outcome is searched for. However, in this review, the
focus was only on studies involving the longitudinal relationship between radiographic
biomarkers and either KOA incidence, progression or TKA incidence.

KOA incidence is usually defined as knees with no radiographic KOA at baseline and
moderate or severe KOA at followup, whereas KOA progression is defined as knees with
moderate radiographic KOA at baseline and higher radiographic scoring at followup [69,70].

For the prediction of KOA incidence, the majority of the studies reviewed included
knees with KL ≤ 1 at baseline, except for a few studies where knees with no radiographic
(KL = 0) KOA were included [14,37,39]. However, for the prediction of KOA progression,
although knees with moderate KOA at baseline were intentionally targeted, there was no
specific inclusion criterion that was mostly employed. As reported in Table 3, the criterion
for knee inclusion was knees with KL = 1, 2 or 3 in three studies [27,29], with KL = 2 or 3
in five studies [28,41–43,45], or with KL ≥ 1 in three studies [44,46], and with KL ≥ 2 in
two studies [33,35]. In order to have fair and valid comparisons of the performance of the
proposed KOA prediction models, the KOA community should identify a unique definition
of both KOA incidence and progression as well as standardize a specific inclusion criterion.

The (AUC) has been recommended and preferred for overall accuracy for the evalua-
tion of machine learning algorithms [71]. Consequently, in Tables 2–4 the AUC values were
provided in order to inform readers as completely as possible of this predictive performance
criterion. However, it should be pointed out that it was not possible to strictly compare
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these values from one study to another because the databases studied differ; the inclusion
criteria and the definition of the endpoints are also different.

Theoretically, an AUC of 0.5 means no discrimination (i.e., inability to diagnose pa-
tients with and without the disease or condition based on the test), 0.7 to 0.8 is considered
acceptable, 0.8 to 0.9 is considered excellent, and more than 0.9 is considered outstand-
ing [61,62].

Among the studies reviewed, 5 out of 11 provided acceptable AUC scores (≥0.7)
for the prediction of radiographic KOA incidence and 7 out of 12 for the prediction of
radiographic KOA progression. Three out of five studies provided acceptable AUC scores
for the prediction of TKA risk. Theoretically, the prediction performance related to TKA
should be lower than that related to KOA progression because there are more parameters
to be considered to simulate the complexity of TKA as an outcome of KOA, including, for
example the opinion of doctors and patients in the final decision of TKA [51]. Surprisingly,
the overall AUC scores were better for the prediction of TKA than KOA progression.
However, including knees with KL = 4 was found to be highly associated with TKA
risk [50,51].

The regions of interest in the knee tibial or femoral compartments also play an im-
portant role in the performance of the KOA prediction models, especially when using
TBT analysis. For instance, the medial subchondral tibial region was found to be the most
predictive of KOA incidence [33] and progression [27,29]. Conversely, the regions adjacent
to the tibial spines were found to be predictive of KOA progression [39]. In addition, and
as demonstrated previously for the prediction of both KOA progression and TKA risk,
the most predictive TBT features were provided not only by the medial subchondral bone
region, but also by lateral regions [43,51]. In later studies, the most predictive TBT features
were found in both subchondral cortical bone and subchondral trabecular bone located
in distal regions. This observation might be explained by the complex interactions and
cross-talk between cartilage and bone tissue, but also by the role of bone biomechanics
properties in the model of knee OA progression [37].

A greater baseline WOMAC pain score was found to be associated with KOA inci-
dence and progression in a diagnostic multivariable modeling study [72]. However, in a
prognostic multivariable modeling study, knee pain or WOMAC pain showed only a mod-
erate performance for predicting KOA progression [73]. Furthermore, the performance of a
model including TBT parameters, age, sex, BMI, KL and JSNM to predict KOA progression
remained unchanged when adding WOMAC pain [41].

As shown in Tables 2–4, the capability of radiographic biomarkers to predict changes
in KL or JSN grade has been evaluated in different well-known KOA cohorts (OAI, MOST,
FNIH, CHECK, . . . ) and found acceptable. However, researchers have recently been
interested in evaluating the capability of radiographic biomarkers to predict changes in
articular cartilage degeneration assessed by MRI [74,75]. For example, the relation between
Xray-based TBT features and cartilage composition assessed by MRI was evaluated [74]
and a weak relationship between radiographic TBT features extracted from the medial
subchondral bone and MRI-based T2 relaxation time values of the medial tibial cartilage
was found [74]. In addition, the combination of baseline TBT parameters and 18-month
variations in MRI subchondral bone texture score was found to be significantly associated
with radiographic progression at 36 months [76]. Furthermore, the 3D MRI bone texture was
recently evaluated for its association to TKA [77]. The MRI-based femoral bone shape was
also found to help predict incident TKA [78] or KOA progression [79]. The combination of
radiographic biomarkers and MRI-based biomarkers, such as cartilage WORKS score, were
also evaluated for the prediction of radiographic KOA progression [40,42,80]. However,
radiographic biomarkers may have a stronger role in TKA risk screening compared to MRI-
based biomarkers, considering the lower cost and easier implementation of radiography in
primary care practice [26].
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Several studies evaluated their proposed prediction models on a relatively limited
sample size (<150 subjects) cohort [29,33,34,39,45,47]. It would therefore be interesting to
validate their results on a larger set of KOA cohorts.

A new challenge in the field of KOA management has been identified which consists
in defining phenotypes of OA such as subchondral bone, metabolic syndrome, synovitis,
mechanical injury, aging and cartilage driven KOA [81]. Thus, it should be relevant to
evaluate the capacity of imaging prediction models in assessing the risk of progression of
KOA for specific identified phenotypes.

Except for two studies, all the other studies reviewed proposed prediction models that
were trained and tested in the same cohort. One study proposed a model based on the use
of KL grades for the prediction of radiographic KOA incidence [15]. This model was first
trained in a set from the Rotterdam cohort and then tested in another set of the Rotterdam
cohort and in a totally different cohort, the Chingford cohort. The other study proposed
a model based mainly on the use of TBT features for the prediction of radiographic KOA
progression [41]. This model was not only trained and tested in the same cohort, but also
trained in one cohort and tested on a totally different cohort. On one part, the TBT-based
model was trained in the OAI cohort and tested in the MOST cohort, and on the other part,
the TBT-based model was trained in the MOST cohort and tested in the OAI cohort.

As a perspective for future work by the KOA research community, it would be of great
interest to define a longitudinal dataset, from several cohorts (e.g., OAI, MOST, CHECK,
PROOF, etc.). This would make it possible to examine and fairly compare the impact
of the different imaging biomarkers proposed, separately or in a composite way, on the
performance of the models for predicting radiographic KOA incidence and progression,
as well as the TKA risk. The KOA research community is also encouraged to work on the
identification of a unique definition of both radiographic KOA incidence and progression.
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Appendix A

The keywords and Medical Subject Headings (MeSH) used for filtering records in the
PubMed electronic database were: (“Osteoarthritis, Knee”[Mesh] OR “knee osteoarthri-
tis”[Title/Abstract] OR “osteoarthritis of knee”[Title/Abstract] OR “osteoarthritis of the
knee”[Title/Abstract] OR ((“Osteoarthritis”[Mesh] OR osteoarthritis [Title/Abstract]) AND
(“Knee Joint”[Mesh] OR “Knee”[Mesh] OR knee[Title/Abstract]))) AND (“Biomarkers”[Mesh]
OR biomarker * [Title/Abstract] OR marker * [Title/Abstract] OR texture[Title/ Abstract] OR
descriptor * [Title/Abstract]) AND (“Diagnostic Imaging”[Mesh] OR “X-Rays”[Mesh] OR
“Osteoarthritis, Knee/diagnostic imaging”[Mesh] OR radiograph * [Title/Abstract] OR tomog-
raphy[Title/Abstract] OR X-Ray * [Title/Abstract]) AND (“Predictive Value of Tests”[Mesh]
OR “Early Diagnosis”[Mesh] OR “Disease Progression”[Mesh] OR “Risk Assessment”[Mesh]
OR “Prognosis”[Mesh] OR “Severity of Illness Index”[Mesh] OR “Incidence”[Mesh] OR pre-
dicti * [Title/Abstract] OR prognos * [Title/Abstract] OR “early diagnosis”[Title/Abstract])
AND (“Humans”[Mesh] OR human * [Title/Abstract]) AND (“Osteoarthritis, Knee”[Mesh]
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OR “knee osteoarthritis”[Title/Abstract] OR “osteoarthritis of knee”[Title/Abstract] OR
“osteoarthritis of the knee”[Title/Abstract] OR ((“Osteoarthritis”[Mesh] OR osteoarthritis
[Title/Abstract]) AND (“Knee Joint”[Mesh] OR “Knee”[Mesh] OR knee[Title/Abstract])))
AND (“Biomarkers”[Mesh] OR biomarker * [Title/Abstract] OR marker * [Title/Abstract] OR
texture[Title/Abstract] OR descriptor * [Title/Abstract]) AND (“Diagnostic Imaging”[Mesh]
OR “X-Rays”[Mesh] OR “Osteoarthritis, Knee/diagnostic imaging”[Mesh] OR radiograph *
[Title/Abstract] OR tomography[Title/Abstract] OR X-Ray * [Title/Abstract]) AND (“Predic-
tive Value of Tests”[Mesh] OR “Early Diagnosis”[Mesh] OR “Disease Progression”[Mesh] OR
“Risk Assessment”[Mesh] OR “Prognosis”[Mesh] OR “Severity of Illness Index”[Mesh] OR
“Incidence”[Mesh] OR predicti * [Title/Abstract] OR prognos * [Title/Abstract] OR “early
diagnosis”[Title/Abstract]) AND (“Humans”[Mesh] OR human * [Title/Abstract]) AND
(English[lang]).
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