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Abstract: The emergency department of hospitals receives a massive number of patients with wrist
fracture. For the clinical diagnosis of a suspected fracture, X-ray imaging is the major screening tool.
A wrist fracture is a significant global health concern for children, adolescents, and the elderly. A
missed diagnosis of wrist fracture on medical imaging can have significant consequences for patients,
resulting in delayed treatment and poor functional recovery. Therefore, an intelligent method is
needed in the medical department to precisely diagnose wrist fracture via an automated diagnosing
tool by considering it a second option for doctors. In this research, a fused model of the deep learning
method, a convolutional neural network (CNN), and long short-term memory (LSTM) is proposed to
detect wrist fractures from X-ray images. It gives a second option to doctors to diagnose wrist facture
using the computer vision method to lessen the number of missed fractures. The dataset acquired
from Mendeley comprises 192 wrist X-ray images. In this framework, image pre-processing is applied,
then the data augmentation approach is used to solve the class imbalance problem by generating
rotated oversamples of images for minority classes during the training process, and pre-processed
images and augmented normalized images are fed into a 28-layer dilated CNN (DCNN) to extract
deep valuable features. Deep features are then fed to the proposed LSTM network to distinguish
wrist fractures from normal ones. The experimental results of the DCNN-LSTM with and without
augmentation is compared with other deep learning models. The proposed work is also compared to
existing algorithms in terms of accuracy, sensitivity, specificity, precision, the F1-score, and kappa.
The results show that the DCNN-LSTM fusion achieves higher accuracy and has high potential for
medical applications to use as a second option.

Keywords: augmentation; convolution neural network; human wrist fracture; long short-term
memory; lifesaving

1. Introduction

A bone fracture happens when a high force is applied against a bone. Fractures of a
bone can be caused by trauma, osteoporosis, and overuse. According to a recent study by
the World Health Organization (WHO), a fracture affects a significant number of people,
and the consequences of a neglected fracture can lead to severe injury or even death. A
wrist fracture is a quite common injury, and positive cases are increasing on a daily basis [1].
Wrist fracture can be the result of an accident, such as slipping over with an outstretched
palm. Often, extensive injuries occur from intense physical trauma, such as automobile
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accidents or falls from a roof. In osteoporosis, weak bone appears to crack more swiftly.
Countless incidences need healthcare professionals to examine fractures. Both human and
environmental factors, such as inexperienced physicians, physical fatigue, distractions, poor
observation circumstances, and time constraints, promote radiographic analysis errors.

The advent of radiographic technology has significantly improved the early diagnosis
of fractures. Some medical imaging technologies, such as X-ray, magnetic resonance imag-
ing (MRI), computed tomography (CT), and ultrasound, are convenient to capture fractures.
However, with relatively low cost and accessibility, X-rays are most generally implemented
in bone fracture diagnosis. However, in comparison to the enormous incidence of fractural
cases, the lack of skilled radiologists is huge. As a result, many radiologists are fatigued by
the massive amount of medical imaging [2]. To overcome this concern, computer-aided
diagnostic (CAD) technology has been used to assist physicians to analyze medical images.
Recent studies have shown that incorporating machine learning and deep learning methods
into CAD systems enhances the performance of healthcare professionals.

Machine learning is a sub-domain of artificial intelligence (AI) that uses various
algorithms, such as a support vector machine (SVM) [3], decision tree (DT), K-nearest
neighbour (KNN) [4], neural network (NN), and random forest (RF) [5], for automatic
fracture diagnosis, classification, and prediction. However, when the number of features
is significantly beyond the number of observations, these algorithms produce inadequate
outcomes, which cannot fulfil the potential medical need. Nowadays, deep learning has
emerged as the most powerful AI technology in the medical field [6].

Deep learning enables raw data to be seamlessly transferred into simulators and
analyzed with multiple feature extraction and weighting levels [7]. Deep learning is
widely used for its immense potential in intricate feature extraction and predictions in a
variety of medical fields, including pathology [8], pharmacology, radiology, ophthalmology,
and even feature detection, including both ulnar and radial fractures [9,10], pulmonary
tuberculosis classification [11], cancer diagnosis [12], rib fracture [13], hip fracture [14] hand
and wrist fracture [15], ankle fracture [16], and thoracolumbar fracture [17]. Convolutional
neural networks (CNNs) tend to be a more efficient strategic method for feature detection
and have rapidly acquired significance in the computer vision area in the past years. To
modify clinical challenges, CNNs “train” distinguishing patterns using models, such as
Inception V3 [18], ResNet [19], U-Net [20], Xception [21], and DenseNet [22]. Due to limited
annotated data availability, data augmentation and other data generative methods can be
used to increase the size of the dataset. The interpretation of a deep learning algorithm
is still a challenge since its accuracy is highly dependent on the features of the learned
data, including diagnostic precision and fracture extent. In general, specific input data
and modification are frequently needed for pre-existing deep learning techniques before
proposing any clinical development.

To automatically diagnose wrist fracture from X-ray images, this research attempts
to provide a deep learning method that adopts the CNN and LSTM networks together to
enhance the patient’s experience by enhancing performance, minimizing misdiagnosis,
and reducing delayed treatment. Clinicians depend on X-ray images to detect where the
fractures have occurred. The earlier approach could only identify fractures in a specific
bone area, such as the distal radius [10]. However, various forms of bone fractures can be
seen in an X-ray image.

The contributions of this study are mentioned next.

(a) To alleviate clinicians’ cognitive load, the two-method model adopted in this research
detects significant fracture areas in an X-ray image.

(b) A fusion method, DCNN-LSTM, is proposed that can automatically diagnose wrist
fractures to facilitate the radiologist.

(c) The first model, the DCNN, is designed to enhance the CNN’s receptive field by using
a dilation factor in the convolution operation, which lessens the complexity of the
CNN training phase.
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(d) The fused model DCNN-LSTM enhances accuracy with augmented data to recognize
anomalies using wrist X-ray images.

(e) The entire research work is structured as follows: Section 2 presents related works on
fractures. Section 3 provides an overview of the proposed methodology, comprising
dataset acquisition and analysis. Section 4 includes a discussion of the results and an
evaluation of the proposed methodology. Section 5 concludes the research work.

2. Related Works

Machine learning (ML) and deep learning (DL) enable AI systems to take a step
ahead as they allow cognitive learning to take place within a framework dependent on
prior studies or data analysis. As it progresses, the model executes challenging decision
methods and evaluates past activities. Researchers have designed deep learning approaches
to detect fractures, depending on clinical radiographs, CT scans, and X-rays of bone.
Various bone fracture detection and classification methods have been proposed traditionally.
However, they are statistical methods, they cannot detect the fracture location in the
bone, and they need a number of pre-processing stages. This study discusses recently
developed methodologies that use different machine learning and deep learning approaches
to detect fractures.

Various imaging approaches are being developed to identify lower leg bone (tibia)
fracture variants. Myint et al. [23] used the machine learning algorithms K-nearest neigh-
bour (KNN) and decision tree (DT) to detect tibia fracture from X-ray images. The chest CT
images of 1707 patients were used by Yao et al. [24] to classify rib fractures using a three-
step algorithm and achieved an accuracy of 0.869 on 4496 CT images. The most popular
object recognition deep learning model YOLOv3 was used by Choi et al. [25] to diagnose
skull fractures in X-ray images and achieved an accuracy of 91.7% on a limited dataset.
Tomita et al. [26] identified incidental OVFs in chest, abdomen, and pelvic CT scans. The
OVF detection system uses a deep convolutional neural network (CNN) to accumulate radi-
ological features out of each CT slice, and the resulting features are then evaluated using the
long short-term memory (LSTM) network to determine the final decision for a complete CT
scan report. This approach achieved an accuracy of 89.2% and has the potential to minimize
the time and cognitive load on radiologists for OVF monitoring, along with the risk of
adverse outcomes. Kim et al. [27] used transfer learning from deep CNNs to diagnosis wrist
fractures from X-ray images in four stages. The findings showed that the model performs
efficiently on a small dataset. The findings of the system using deep learning techniques
and level-set methods by Kim et al. [28] achieved efficient results on 160 lumbar X-ray
images to identify and segment each lumbar vertebra. Guan et al. [29] used a novel deep
learning model fast R-CNN to diagnose arm bone fractures on X-ray images. The algorithm
fast R-CNN was trained on the MURA dataset comprising 4000 X-ray images with low
quality and achieved a state-of-the-art average precision of 62.04% for diagnosing arm
fractures, which is much faster than existing state-of-the-art deep learning methods. CNN
is used in combination with other modules to recognize, localize, and categorize objects in
images. Thian et al. [30] applied the Inception-ResNet Faster R-CNN model on 7356 wrist
images. Even before conducting classification, they trained their algorithm on the wrist
imaging dataset. For adequate and comprehensive classification and contextual localiza-
tion of radius and ulna fractures in wrist radiographs, an object detection deep learning
approach was optimal and achieved an accuracy of 91.8%. Guan et al. [31] introduced a
novel deep learning technique termed “dilated convolutional feature pyramid network”
(DCFPN) to identify thigh fracture. The algorithms were trained using 3484 X-ray images
from Linyi People’s Hospital, and the learning algorithm was tested using 358 images. The
DCFPN findings outperformed traditional algorithms of deep learning. The overall related
work algorithms regarding fracture detection in different body organs are summarized in a
visual illustration in Figure 1.
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Figure 1. Pictorial representation of related works.

Ebism et al. [32] detected the radius in both posteroanterior PA and lateral wrist images
using a random forest (RF) classifier. Guo et al. [33] collected CT images of orbital blowout
fractures from the Shanghai Ninth People’s Hospital and used the Inception-V3 convolu-
tional neural network (CNN) framework with the XGBoost model to classify the orbital
blowout fractures. Zeelan et al. [34] detected bone fracture from X-ray images using the
machine learning models probabilistic neural network (PNN), backpropagation neural net-
work (BPNN), and support vector machine (SVM) and classified the input images into the
classes skull, head, chest, hand, and spine. A deep convolutional neural network (DCNN)
model developed by Cheng et al. [35] not only detected hip fractures on plain frontal pelvic
radiographs (PXRs) with a good accuracy rate, but it was also good at localizing fracture
areas. In the human body, bone fractures are common. Rathor et al. [36] used a deep neural
network (DNN) to detect fractured bone from X-ray images and achieved a 92.44% accu-
racy, but the model still involves affirmation on a huge dataset. Ebsim et al. [37] trained a
convolutional neural network (CNN) to detect wrist fractures in posterioanterior (PA) and
lateral radiographs. Adigun et al. [38] combined two machine learning models, K-nearest
neighbour (KNN) and support vector machine (SVM), to enhance each other’s findings.
The KNN-SVM attained better classification accuracy than earlier work. Myint et al. [39]
trained support vector machine (SVM) on 40 X-ray images to classify two types of fractures
(non-fracture and fracture or transverse fracture). According to the paper’s conclusions,
good outcomes were not achieved. Mondol et al. [40] built a model using VGG-19 and
ResNet to detect four types of fractures: elbow, wrist, finger, and humerus on the MURA
dataset. Lindsey et al. [41] developed a deep convolutional neural network (DCNN) model
to detect and locate fractures in 135,845 PA or LAT wrist, foot, elbow, shoulder, knee, ankle,
pelvis, hip, humerus, and shoulder radiographs. Chittajallu et al. [42] used a CNN model
that was trained on 200 images of human hands, ribs, legs, and the neck to detect fracture,
and the findings achieved adequate predictions. Vasilakakis et al. [43] proposed a novel
approach using wavelet fuzzy phrases (WFP) for feature extraction and classification. The
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classification performance of the model achieved better results, potentially minimized diag-
nostic errors, and improved the radiologists’ performance. Dimililer et al. [44] designed an
intelligent classification system using a backpropagation neural network (BPNN) that was
capable of detecting and classifying bone fractures from 100 X-ray images. Hržić et al.’s
transfer learning model YOLOv4 was used to detect wrist fractures from X-ray images.
The functional testing on three aspects demonstrated that the YOLOv4-based model sig-
nificantly outperforms the state-of-the-art technique based on the U-Net framework and
achieves better accuracy [45].

The summary of recently applied studies is shown in Table 1. All studies used different
datasets on different organs of the human body to propose an efficient method for fracture
detection. However, the studies did not mainly consider the class imbalance problem and
annotated data availability to fulfil the requirement of deep learning input data. In addition,
many of the studies did not consider multi-model usage to include multi-feature usage for
precise detection of body fractures. Therefore, the proposed study firstly solves the class
imbalance problem and secondly applies the multi-feature extraction approach to precisely
classify wrist fractures.

Table 1. Recent work on automatic fracture detection using machine learning and deep learn-
ing techniques.

Fracture Type Image Type Feature Extraction Model Classifier Used Accuracy Year

Leg bone fracture [23] X-ray Harris algorithm Decision tree (DT)
and KNN 82% 2018

Rib fracture [24] CT scan - 3D DenseNet 86.9% 2021

Skull fracture [25] X-ray YOLOv3 91.7% 2022

Osteoporotic vertebral
fractures [26] CT scan ResNet34 CNN/LSTM) 89.2% 2018

Fracture detection [27] X-ray - CNN 95.4% 2018

Wrist fracture [28] Inception-ResNet version Faster R-CNN 62.04% 2019

Lumbar vertebra compression
fracture [29] X-ray Post-driven Learning

DL techniques and
level-set methods

(Pose-net and M-net)
91.60% 2020

Distal radius fractures [30] Distal Radius
Fractures - Random forest (RF) 91.4% 2017

Arm fracture [31] X-ray - YOLOv4 81.91% 2021

Thigh fracture [32] X-ray -

Dilated
convolutional

feature pyramid
network (DCFPN)

82.1% 2019

Orbital blowout fractures [33] CT scan
Inception-V3

convolutional neural
network (CNN)

Inception V3 CNN
and XGBoost 92% 2019

Fracture detection [34] X-ray - BPNN, SVM, and
PNN 92.3% 2018

Hip fractures [35] PXR -
Grad-CAM

Deep convolutional
neural network

(DCNN)
91% 2019

Bone dracture [36] X-ray -
Deep CNN (Adam

optimizer and
softmax)

92.44% 2020
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Table 1. Cont.

Fracture Type Image Type Feature Extraction Model Classifier Used Accuracy Year

Wrist dractures [37] X-ray -
Convolutional
neural network

(CNN)
96% 2018

Bone fracture [38] X-ray Hough transformation KNN and SVM 90% 2020

Arm fracture [39] X-ray ResNet Fast R-CNN 2020

Elbow fractures [40] X-ray - CNN Xception
(Vision model) 88% 2019

Wrist fraction [41] X-ray VGG-19 and ResNet Deep CNN using
VGG-19, ResNet 87.8% 2019

Fracture detection [42] X-ray - DCNN 91.5% 2018

Wrist fracture [43] X-ray - YOLOV4 96.5% 2022

Binary fracture [44] X-ray Binary entropy function
Convolutional
neural network

(CNN)

Hands
80.45%

Legs 84.75%
Ribs 80.65%

Other 86.75%

2019

Bone fracture [45] X-ray 2D DWT Wavelet fuzzy
phrases (WFP) 84% 2019

3. Proposed Methodology

To detect the presence of fractures from the wrist images of humans, we designed a
combination of a dilated convolutional neural network (DCNN) and an LSTM network.
The proposed network, DCNN-LSTM, has two methods, as illustrated in Figure 2. X-ray
images of patients were acquired from the Mendeley data repository. Firstly, the images
were passed through the pre-processing stage. Image resizing and enhancement were
performed in the pre-processing stage. Secondly, the data augmentation approach was
used to enlarge the dataset. Next, pre-processed images and augmented normalized data
were fed into a 28-layer dilated CNN to extract valuable features and eliminate features
that were not beneficial. Finally, the LSTM network was used to accurately classify the
normal and fractured images.

3.1. Data Normalization and Pre-Processing

Normalization of data has always been an essential aspect of the pre-processing
method, focused on eliminating data redundancy and inconsistency from the database
in order to regulate the complexity of the network and provide accurate findings. The
images captured in real time are of various sizes and destroyed for numerous factors. An
image must be resized to accommodate the size of the model for which it is built. The X-ray
images used in this study were in JPG format with different sizes. All images were resized
to ones with a resolution of 512× 256× 3 pixels using the bi-cubic interpolation method. In
the bi-cubic method, 4× 4 neighbouring pixels were used to evaluate the weighted average.
The pixels that were nearest in both vertical and horizontal directions were weighted in
computations. Assuming that (x, y) are the coordinates of the point from which we aimed
to explore the new pixel, the value was determined using the following equation:

v(x, y) =
3

∑
i=0

3

∑
j=0

aij xi yj (1)
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Figure 2. DCNN-LSTM main parts. (a) X-ray images are resized and enhanced in the pre-processing
stage. (b) The diversity of the dataset increases in the data augmentation stage. (c) The dilated-CNN
model for feature extraction from wrist X-ray images. (d) Extracted features are classified into normal
and fractured images through the LSTM network.

To increase the brightness of the X-ray images, the image contrast enhancement
method is effective to apply. Image enhancement was accomplished by modifying the
image’s histogram attributes, altering the image’s histogram, enhancing the various grey
levels, and increasing the image’s contrast. To reduce data loss and distortion, we used
the adaptive histogram equalization method in this study. It enhances the contrast of the
image and edges to detect the area of interest.

3.2. Data Augmentation

Data augmentation, which estimates the data probability space by modifying input
images, such as rotation, random crop, scaling, and noise disturbance, is an efficient and
effective strategy to reduce the “overfitting” of the deep convolutional neural network due
to inadequate training images. The model’s performance can be enhanced in general by
increasing the volume, quality, and variety of data in the dataset. The method used to
augment images in this study was the affine transformation method. Affine transformation
enhances the alteration of an image’s geometric structure by maintaining line parallelism
but not dimensions and angles. It uses a linear collection of translation, rotation, scaling,
and/or shearing operations to process data into new data. In this study, we applied a
rotation operation of affine transformation on the images to increase the size of the dataset.
Rotation is most often optimized to enhance an image’s visual effect, but it can also be
applied as a modifier in systems that use directional operators. To rotate the image around
a centre or an axis, we simply provide the angle of rotation. The angle of rotation is denoted
by θ, which specifies how many degrees the image is rotating.

R =

 cos(θ) sin(θ) 0
− sin(θ) cos(θ) 0

0 0 1

 (2)

The original image is mapped to a new image by rotation at an angle of 0◦, 90◦, 180◦,
270◦, and 360◦. The rotation operation increases the diversity of the dataset and thus enables



Life 2023, 13, 133 8 of 20

the deep learning model to identify the data intrinsic features quite comprehensively.
Training based on augmented data can potentially enhance the performance of a deep CNN
as compared to training without data augmentation.

3.3. Proposed Dilated CNN

The traditional CNN’s primary function is to execute the convolution operation on
the specific region of an image. The input layer, convolutional layer, batch normalization,
ReLU, pooling layer, fully connected layer, and output layer constitute the CNN, as shown
in Figure 3. When the number of feature channels increases, the number of parameters
of the convolution kernel escalates as well, resulting in an increase in simulation. The
standard convolutional neural network (CNN) was substituted in this study by the dilated
convolution neural network (D-CNN). The D-CNN uses larger two-dimensional filters.
Traditional CNNs often use smaller convolution filters (typically 2 × 2 or 3 × 3). The D-
CNN uses dilated convolution filters, which are enlarged filters. A dilated convolution with
a dilatation rate r comprises r-1 zeros between consecutive filter values, enlarging the size
of a k × k filter to [k + (k− 1)(r− 1)] ∗ [k + (k− 1)(r− 1)] [46]. The dilated convolution
filters expand the CNN’s receptive field without integrating any additional parameters.
Thus, the D-CNN uses slightly fewer layers than the CNN to attain the same receptive size
of the field, preventing the overfitting problem caused by a deep CNN.

Life 2023, 13, x FOR PEER REVIEW 11 of 18 
 

 

 

Figure 3. The dilated convolutional neural network for wrist fracture detection. 

3.4. Feature Extraction 

The pre-trained DCNN model’s output structure consists of a fully connected layer 

and a softmax classifier. Convolving the fully connected layers of the proposed DCNN 

model yields the feature vector. The inclusion of the fully connected layer at the end of 

the DCNN has a number of significant advantages. In the concluding stage of the archi-

tecture, the feature map generated from the DCNN is transferred through transfer learn-

ing to the LSTM layer to retrieve time data. Deep features obtained from the pre-trained 

DCNN are transferred into a new process without any need to train the new process with 

a tremendous number of labelled data values, which is particularly accurate and conven-

ient for image classification. 

3.5. LSTM 

An LSTM network is a recurrent neural network variant that uses memory blocks to 

operate more effectively and learn more efficiently than a traditional RNN. LSTM net-

works provide feasible alternatives to RNNs’ vanishing and exploding gradient concerns. 

An network is composed of a sequence of memory blocks termed “cells,” each of which 

contains three gates: input, output, and forget. Therefore, the LSTM network can remem-

ber the prior data and relate it to the current data. It also handles complex tasks for which 

prior RNNs were inadequate to discover a solution [49]. These gates enable information 

to flow through selectively. In other words, using the three gates (input, output, and for-

get), the LSTM can regulate which information is maintained, which information is re-

jected, and which information is delivered. The LSTM represents unidirectional input 

data; therefore, it cannot preserve structural localization and is more vulnerable to over-

fitting. It has a hidden layer h in the forward direction that processes the input from left 

to right by acquiring the left context of the current input. At each input sequence, an input 

vector is given into the LSTM, and the output is generated based on: 

𝒉𝒕 = 𝒇( 𝒉(𝒕−𝟏), 𝒙𝒕) (10) 

Figure 3. The dilated convolutional neural network for wrist fracture detection.

The proposed dilated convolution neural network (D-CNN) was based on a 28-layer
architecture and had six blocks. The size of the input images was set to 512 × 256. The
pre-processed images were fed into D-CNN1, and augmented images were fed into D-
CNN2, where (convolution, batch normalization, rectified linear unit, and max pooling)
were performed with different parameters, as shown in Table 2. The input layer is the
initial layer and feeds images to the system. The next layer is the convolution layer, which
executes the convolution process on the obtained images by simply shifting a window
across it with a stride. For our initial convolution layer, we constructed a 5× 5 window and
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used kernels to convolve the images; the number of filters was set to 16, and the amount of
filtering increased as further convolutional layers were included. The receptive field size
was enlarged by a dilation factor in the C2, C3, C4, C5, and C6 layers. Batch normalization
was applied to normalize the previous layers’ outcome and to avoid overfitting. Batch
normalization facilitates each layer of the system to perform learning autonomously. After
the convolution process is completed, the subsequent feature maps are used as input to the
batch normalization layer, which is preceded by the rectified linear unit, which uses the
function f (x) = max(0, x). The basic concept to use this function f (x) is to set the values
of neurons that are above a certain point to zero. This minimizes data redundancy and
preserves essential features. A feature layer’s size can be lessened by using max pooling on
each feature map with stride 2 × 2. All neurons in the fully connected layer are considered
and associated with the neurons in the preceding max-pooling layer. The number of output
classes is determined by the output from the fully connected layer, which is preceded by
the softmax layer.

Input Layer:

Layers follow the tensor to modify and then rebuild the tensor in this layer. The
input layer is the entire DCNN’s input. It widely represents an image’s pixel matrix in
the deep learning of image processing, and the image’s pixel values are kept in this layer.
An image input layer feeds images to the system. A DCNN uses tensors of the shape
image height, image width, and colour channels as input. In our proposed system, this was
512 × 256 × 3, where the height of an image is 512, the width of an image is 256, and the
number of colour channels is 3.

Convolution Layer:

The convolutional layer’s primary function is to identify local conjunctions of features
from the preceding layer and transfer their structure to a feature map. The input image
is processed by a filter in this layer. By changing the dilated rate, the dilated convolution
enlarges the receptive field of the convolution kernel. As a consequence, dilated convolution
achieves multi-scale information by enlarging the receptive field of the convolution kernel.
Whenever the dilation rate is 1, the receptive size of dilated convolution remains equivalent
to that of conventional convolution. In our study, we applied six convolution layers with a
dilation rate r that increased the size of the filter k × k to extract the features from the input
images. The formula stated next is applied to compute the receptive field size of a dilated
convolution [47,48]:

S = Fc + (Fc − 1)(R− 1) (3)

S denotes the receptive field size, and R denotes the size of the dilation factor. When the
dilation value is far more than 1, dilated convolution can acquire a relatively large receptive
field size and accumulate more diverse visual information compared to conventional
convolution. When numerous dilated convolutional layers are deployed in the framework,
the receptive field size of the convolution kernel is determined layer by layer according
to the conceptual framework, with the assumption that the dilation factor is specified
appropriately.

Our first layer was a convolution layer comprising 16 feature maps and a 5 × 5 kernel
size. Secondly, the convolution layer comprised 32 feature maps with a 5 × 5 kernel size
with a dilation rate r = 2. Third was a convolution layer comprising 64 feature maps with a
5 × 5 kernel size with a dilation rate r = 4. Fourth was a convolution layer of 128 feature
map with a 5 × 5 kernel size with a dilation rate r = 8. Fifth was a Convolution layer of
128 feature maps with a 5× 5 kernel size with a dilation rate r = 16. Sixth was a convolution
layer of 256 feature maps with a 5 × 5 kernel size with a dilation rate r = 32.
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Table 2. The detailed information about the proposed dilated CNN.

Number Layer Name Activations Kernel Size Stride Parameters Feature Maps

1 Input layer 512 × 256 × 3 / / / /

2 Convolutional layer (C1) 512 × 256 × 16 5 × 5 1 Weights = 5 × 5 × 3 × 16
Bias = 1 × 1 × 16 16

3 Batch normalization (B1) 512 × 256 × 16 / / Offset = 1 × 1 × 16
Scale = 1 × 1 × 16 16

4 ReLU (R1) 512 × 256 × 16 / / / /

5 Max-pooling layer (MP1) 256 × 128 × 16 2 × 2 2 / /

6 Convolutional layer (C2) 256 × 128 × 32 5 × 5 1
Dilation factor = 2

Weights = 5 × 5 × 16 × 32
Bias = 1 × 1 × 32 32

7 Batch normalization (B2) 256 × 128 × 32 / / Offset = 1 × 1 × 32
Scale = 1 × 1 × 32 32

8 ReLU (R2) 256 × 128 × 32 / / / /

9 Max-pooling layer (MP2) 128 × 64 × 32 2 × 2 2 / /

10 Convolutional layer (C3) 128 × 64 × 64 5 × 5 1
Dilation factor = 4

Weights = 5 × 5 × 32 × 64
Bias = 1 × 1 × 64 64

11 Batch normalization (B3) 128 × 64 × 64 / / Offset = 1 × 1 × 64
Scale = 1 × 1 × 64 64

12 ReLU (R3) 128 × 64 × 64 / / / /

13 Max-pooling layer (MP3) 64 × 32 × 64 2× 2 2 / /

14 Convolutional layer (C4) 64 × 32 × 128 5 × 5 1
Dilation factor = 8

Weights = 5 × 5 × 64 × 128
Bias = 1 × 1 × 128 128

15 Batch normalization (B4) 64 × 32 × 128 / / Offset = 1 × 1 × 128
Scale = 1 × 1 × 128 128

16 ReLU (R4) 64 × 32 × 128 / / / /

17 Max-pooling layer (MP4) 32 × 16 × 128 2 × 2 2 / /

18 Convolutional layer (C5) 32 × 16 × 128 5 × 5 1
Dilation factor = 16

Weights = 5 × 5 × 128 × 128
Bias = 1 × 1 × 128 128
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Table 2. Cont.

Number Layer Name Activations Kernel Size Stride Parameters Feature Maps

19 Batch normalization (B5) 32 × 16 × 128 / / Offset = 1 × 1 × 128
Scale = 1 × 1 × 128 128

20 ReLU (R5) 32 × 16 × 128 / / / /

21 Max-pooling layer (MP5) 16 × 8 × 128 2 × 2 2 / /

22 Convolutional layer (C6) 16 × 8 × 256 5 × 5 1
Dilation factor = 32

Weights = 5 × 5 × 128 × 256
Bias = 1 × 1 × 256 256

23 Batch normalization (B6) 16 × 8 × 256 / / Offset = 1 × 1 × 256
Scale = 1 × 1 × 256 256

24 ReLU (R6) 16 × 8 × 256 / / / /

25 Max-pooling layer (MP6) 8 × 4 × 256 2 × 2 2 / /

26 Fully connected layer
(FC) 1 × 1 × 2 / / Weights = 2 × 8192

Bias = 2 × 1 2

27 Softmax 1 × 1 × 2 / / / /

28 Classification layer / / / / /



Life 2023, 13, 133 12 of 20

Batch Normalization Layer:

When the convolution process is completed, the cumulative feature maps are obtained
and used as input to the batch normalization layer. Batch normalization facilitates each
layer of the system to perform learning autonomously. The batch normalization method
normalizes the input value xi by first estimating µB and σ2

B, along with a small batch size
to boost CNN training, while significantly reducing the network initialization accuracy.
The normalized activations are then calculated using the following equation:

x̂i =
xi − µB√
σ2

B + e
(4)

The batch normalization layer’s normalized outcome is maintained in x̂i. The outcome
of the batch normalization layer is then used by the ReLU activation function.

Rectified Linear Unit (ReLU):

The ReLU function was used as the activation function in each convolutional layer to
increase non-linearity in the yield, and it is represented as:

f(x) = max(0, x) (5)

It is a non-linear operation that transmits zero outcomes when handed a negative
input and one outcome when handed a positive input. The ReLU has no finite possibilities
for positive input values, and the gradients are either zeros or ones. This permits the ReLU
to evaluate efficiently and yield relatively high accuracy.

Pooling Layer:

By conducting dimension reduction, the pooling layer strives to decrease the number
of parameters in the convolutional yield. In our study, we applied max pooling with a
2 × 2 kernel size and with a stride of 2. The layer in max pooling typically works with the
most significant feature in the feature map obtained from the convolutional layer.

The pooling layer accepts the input size of W1 × H1 ×D1 from the convolutional layer,
where W1 is the width, H1 is the height, and D1 is the depth. The pooling layer’s window
size in each block remains the same at a 2× 2 kernel size and a stride of 2. The pooling layer
needs two hyperparameters: the spatial extent (F) and the stride (S). The MAX operation
resizes each slice of the input spatially.

The output size of the pooling layer is W2 × H2 × D2, where:

W2 = (W1 − F)/S + 1 (6)

H2 =
(H1 − F)
S + 1− F

(7)

D2 = D1 (8)

Fully Connected Layer:

The fully connected layer connects each neuron from the preceding layer to each
neuron from the succeeding layer. The output acquired from the preceding convolutional
layer and pooling layer is generally flattened, which is transformed into a 1− D array
and associated with two fully connected layers. We attached the outcome extracted by the
max-pooling layer to a fully connected network comprising two layers to complete the
DCNN-BiLSTM model.
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Softmax Layer:

The softmax layer is used to categorize the feature map outcome of fully connected
layers, and the outcome is a vector indicating probability classification, with values varying
from 0 to 1. The softmax activation function is mathematically represented as:

σ(xi) =
exi

∑n
i=0 exi (9)

where xi represents the i-th element in array x and i represents the total number of elements
in array i.

3.4. Feature Extraction

The pre-trained DCNN model’s output structure consists of a fully connected layer
and a softmax classifier. Convolving the fully connected layers of the proposed DCNN
model yields the feature vector. The inclusion of the fully connected layer at the end of the
DCNN has a number of significant advantages. In the concluding stage of the architecture,
the feature map generated from the DCNN is transferred through transfer learning to the
LSTM layer to retrieve time data. Deep features obtained from the pre-trained DCNN
are transferred into a new process without any need to train the new process with a
tremendous number of labelled data values, which is particularly accurate and convenient
for image classification.

3.5. LSTM

An LSTM network is a recurrent neural network variant that uses memory blocks to
operate more effectively and learn more efficiently than a traditional RNN. LSTM networks
provide feasible alternatives to RNNs’ vanishing and exploding gradient concerns. An
network is composed of a sequence of memory blocks termed “cells,” each of which
contains three gates: input, output, and forget. Therefore, the LSTM network can remember
the prior data and relate it to the current data. It also handles complex tasks for which prior
RNNs were inadequate to discover a solution [49]. These gates enable information to flow
through selectively. In other words, using the three gates (input, output, and forget), the
LSTM can regulate which information is maintained, which information is rejected, and
which information is delivered. The LSTM represents unidirectional input data; therefore, it
cannot preserve structural localization and is more vulnerable to overfitting. It has a hidden
layer h in the forward direction that processes the input from left to right by acquiring the
left context of the current input. At each input sequence, an input vector is given into the
LSTM, and the output is generated based on:

ht = f
(

h(t−1), xt

)
(10)

where xt represents the input state, ht represents the present state, and h(t−1) represents
the prior state.

3.6. Bidirectional LSTM

Although the LSTM is unidirectional, it only acquires a small number of the context,
which significantly reduces the classification performance. To improve the classification
performance of the long-term dependencies of time series data without affecting latency
is to handle the information bidirectionally [50]. A BiLSTM uses various layers to handle
contextual information in both directions, forward and backward. It has a hidden layer

with the forward sequence
→
h and the backward sequence

←
h for the left and right contexts,

respectively [51]. It must be ensured that each subsequent layer is taken from both the
forward and backward layers. In the proposed network, the output of the CNN was fed
into the BiLSTM layer to accurately the normal and fractured images. Let’s look more
deeply at BiLSTM layers and thus at how they operate independently.
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Sequence Input Layer

The BiLSTM network begins with a sequence input layer, and it is the primary feature
of a BiLSTM network. A sequence input layer is responsible for transmitting sequential
data to a network. The input size of a sequence input layer is 2.

BiLSTM Layer

DCNN findings are transferred to the BiLSTM layer for further feature extraction.
Figure 3 illustrates two LSTM layers. The BiLSTM is structured with a forward and a
backward LSTM layer. The forward LSTM may acquire preceding information from the
input sequence, while the backward LSTM can acquire forthcoming information from the
input sequence, and the results from both hidden layers are then integrated.

ht =
→
h ⊕

←
h (11)

where ⊕ symbolizes the feature computation used to add the forward and backward
output features. The first BiLSTM layer contains 2000 hidden units, whereas the subsequent
BiLSTM layer contains 1000 hidden units. Although it can use both prior and subsequent
knowledge, a BiLSTM is more suitable than the LSTM and RNN.

Dropout Layer

A dropout layer is integrated after both BiLSTM layers to avoid the overfitting problem;
the dropout rate is 0.5, signifying that 50% of the information is discarded. The decrease of
1000 hidden units after the first layer of the BiLSTM and the decrease of 1000 hidden units
after the second layer of the BiLSTM are done to avoid overfitting.

Fully connected layer

We attached the outcome extracted by the BiLSTM layer to a fully connected network
comprising two layers to complete the DCNN-BiLSTM model.

Softmax Layer

The entire DCNN-BiLSTM architecture is shown in Figure 4. At the end of the archi-
tecture, the softmax activation function was used to classify the output from the preceding
layer. The softmax layer predicted the class of the images as fractured or non-fractured.
Table 3 represents the parameter setting for proposed bidirectional LSTM.

Table 3. The detailed information about the proposed bidirectional LSTM.

Number Layer Name Activations Parameters

1 Sequence input layer 2 /

2 BiLSTM 2000
Input weights = 8000 × 1

Recurrent weights = 8000 × 2000
Bias = 8000 × 2

3 Dropout layer 2000 /

4 BiLSTM 1000
Input weights = 4000 × 2000

Recurrent weights = 4000 × 1000
Bias = 4000 × 1

5 Dropout layer 1000 /

6 Fully connected layer 2 Input weights = 2 × 1000
Bias = 2 × 1

7 Softmax 2 /
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4. Results and Discussion

The proposed framework used a dataset with its original images at first in experiment
1 and then applied data augmentation to solve the class imbalance and data overfitting
problem for deep learning in experiment 2. Both experiments used a different number of
images but the same methods of classification. In each experiment, the DCNN method
was applied to extract deep features and then fed to the BiLSTM network for classifica-
tion. In total, two experiments and four methods were applied, with two methods in
each experiment.

4.1. Dataset Description

The wrist fracture X-ray images of patients used in our research were acquired from
the Mendeley dataset, which is openly available. Mendeley collects X-ray images from the
Al-huda Digital X-ray Laboratory at Nishtar Road in Multan, Pakistan. The dataset consists
of 111 fractured and 82 normal wrist X-ray images. The images captured in real time are
of various sizes and in JPG format. All images were resized to ones with a resolution of
512 × 256 pixels to use in the system, and the dataset before and after pre-processing and
augmentation is shown in Table 4.

Table 4. Dataset before and after pre-processing and augmentation.

Variables Actual Data Pre-Processed Data Augmented Data

Wrist X-ray images 192 192 192

Fractured images 111 111 555

Normal images 82 82 410

Dimension
Different sizes, such as
344 × 596, 252 × 650,

328 × 624, and 264 × 622
512 × 256 512 × 256

Format JPG file JPG file JPG file

Total images 192 192 965
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4.2. Performance Evaluation

In this work, after applying pre-processing, data augmentation, feature extraction and
classification were performed on the dataset. The last stage was to determine the model’s
performance. There are four potential outputs when using a classifier on any case. These
outputs are:

• True-positive (TP) outputs include positive images (fractured) that are accurately
classified as fractured.

• True-negative (TN) outputs include normal images that are accurately classified as
non-fractured.

• False-positive (FP) outputs include normal images that are inaccurately classified
as fractured.

• False-negative (FN) outputs include positive images (fractured) that are inaccurately
classified as non-fractured (normal).

The main purposes of measuring a classification model’s prediction outcomes are (1)
to evaluate the overall performance and (2) to improve the classifier’s predictive potential
by modifying the input variables of the model. In the mentioned description, the perfor-
mance of the presented approach was analyzed in terms of accuracy, precision, sensitivity,
specificity, the F-score, and kappa. Sensitivity indicates the percentage of all positive cases
detected and evaluates the classifier’s potential to detect positive cases, whereas recall
is similar to sensitivity. Specificity reflects the percentage of all normal cases detected
and indicates the classifier’s capacity to comprehend normal cases. Precision shows the
percentage of positive classes that are divided into positive cases. The F1-score is a compre-
hensive evaluation metric, and a significant value shows that the classifier is much more
accurate. The Cohen kappa metric improves assurance in the outcomes. The formulas are
mentioned next.

Accuracy =
TP + TN

TP + TN + FP + FN
(12)

Precision =
TP

TP + FP
(13)

Sensitivity =
TP

FP + TN
(14)

Specficity =
TN

FP + TN
(15)

F1− Score =
2× (TP)

(2× TP + FN + FP)
(16)

Kappa =
2× (TP× TN − FN × FP)

(TP + FP)× (FP + TN) + (TP + FN)× (FN + TN)
(17)

4.3. Experiment 1 (Non-Augmented Data)

To enhance the efficiency and results of the designed model, pre-processing was used
in the first method in this study. As it is a major part of the classification model, the
quality and significant knowledge gathered in the pre-processing process have a significant
influence on the model’s training. The experimental results obtained after applying the
dilated CNN to the pre-processed data achieved an 84.48% accuracy, 87.50% precision,
84.85% sensitivity, 84% specificity, 86.15% F1-score, and 68.52% Cohen kappa. If we look
at the different scores of the results achieved, we can analyze the true-positive over the
false-positive score, which is precision, which was more than the accuracy score. However,
the sensitivity and specificity were nearer to the accuracy score, which are rates of true
positives and true negatives, respectively. The F1-score was higher at 86.15% compared to
accuracy, which is good as it covers the class-imbalance-addressing measure too.

To enhance the outcomes of the dilated CNN, we transferred the findings into the
LSTM model and achieved an accuracy of 86.21%, which increased as compared to the
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DCNN method, although the purpose of the implemented LSTM is shown here as increased
results by just feeding already trained features using the DCNN method. The sensitivity,
F1-score, and Cohen kappa rates significantly improved in this method, whereas other
measures remained the same. The results are shown in Table 5.

Table 5. Non-Augmented Data before and after LSTM.

Methods Accuracy Precision Sensitivity Specificity F1-Score Kappa

DCNN 1 84.48% 87.50% 84.85% 84% 86.15% 68.52%

DCNN-LSTM 1 86.21% 87.88% 87.88% 84% 87.88% 71.88%

4.4. Experiment 2 (Augmented Data)

In experiment 2, to increase the diversity of the dataset and to resolve the concerns
of overfitting, the data augmentation method was applied in this study. The rotation
operation of affine transformation was applied on the X-ray images’ dataset. Both methods,
dilated CNN and LSTM, were again applied to enhance the model’s accuracy by increasing
the volume, quality, and variety of data in the dataset and thus enable the proposed
model to identify the data’s intrinsic features quite comprehensively. The experimental
results obtained after applying the dilated CNN on the augmented data achieved an
accuracy of 86%, which is better than that of DCNN1 applied in experiment 1 on the
non-augmented dataset. Similarly, other scores, such as sensitivity, F1-score, and Cohen
kappa, also increased significantly. To improve the DCNN2 results, we transferred the
observations into the BiLSTM. By using the BiLSTM, the model obtained an accuracy of
88.24%, which is better than that of the DCNN-LSTM1 methods applied in experiment 2.
The other scores of the DCNN-LSTM 2 also improved and achieved up-to-the-mark results
for wrist fracture detection. Training based on augmented data enhanced the computational
performance of the model as compared to training without data augmentation.

The tabular description of experiment 2 results is shown in Table 6. The improvement
of results showed that the model performance in terms of precise results improved by
implementing a 2-step approach of classification by integrating CNN and LSTM methods.

Table 6. Experiment 2 results of augmented data before and after using the LSTM.

Methods Accuracy Precision Sensitivity Specificity F1-Score Kappa

DCNN-2 86.54% 86.93% 92.17% 81.30% 89.47% 74.25%

DCNN-LSTM 2 88.24% 87.93% 92.17% 82.93% 90% 75.7%

5. Conclusions

Many countries are experiencing resource limitations as fracture cases are increasing
on a regular basis. It is essential to detect every individual positive case. The increasing rates
of accidental cases have increased the need for medical staff in the emergency department,
which is badly needed in many lower-income countries. The existing staff is less in
number, and due to a shortage of doctors, the overload could lead them to less accurately
detect fractures. Therefore, there is a need to develop a computer-assisted method for
detection of body organ fractures in order to facilitate the second-option diagnosis for
doctors. This study proposed a CAD system based on a DCNN-LSTM network approach
to detect wrist fractures from X-ray images. For the proposed research, a dataset of
111 fractured and 82 normal wrist X-ray images from Mendeley was used. Image data pre-
processing operations were applied; for example, image enhancement was used to enhance
the brightness of the X-ray images and to reduce the distortion. To prevent overfitting
and to increase the diversity of the dataset, the data augmentation technique was used.
We attempted to maintain the class balance by generating an equal number of images for
both classes during the training process. Two experiments were conducted in this study
to prove the improvement in results using data augmentation, in which a deep learning
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method named “dilated CNN” was used to enhance the receptive field of the CNN with a
dilated factor to extract valuable features from X-ray images. Secondly, an LSTM network
was used as a classifier for the detection of wrist fracture. Furthermore, the capabilities
of the proposed DCNN-LSTM models with and without augmentation were compared
with those of other deep learning models. The overall accuracy of the proposed model
with augmentation was 88.24%, and it was almost more than that without augmentation
(86.21%). As the incidence of fracture cases continues to increase, we believe that our
model will be useful for medical evaluation. An automated detection system will improve
detection and classification and will contribute to the solution of the incident load issue
faced by medical experts.

However, the limitations of data could be a limitation for the proposed method, as with
increasing data, the applied approach may need to be fine-tuned in terms of architecture
and parameter differences in order to achieve higher results. For the future, big data and
big network architectures could be applied to different body organ fracture images to
provide CAD systems for them.
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