
Citation: Xing, W.; Larkin, D.;

Pourteymoor, S.; Tambunan, W.;

Gomez, G.A.; Liu, E.K.; Mohan, S.

Lack of Skeletal Effects in Mice with

Targeted Disruptionof Prolyl

Hydroxylase Domain 1 (Phd1) Gene

Expressed in Chondrocytes. Life 2023,

13, 106. https://doi.org/10.3390/

life13010106

Academic Editor: Nicola Smania

Received: 30 November 2022

Revised: 16 December 2022

Accepted: 28 December 2022

Published: 30 December 2022

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

life

Article

Lack of Skeletal Effects in Mice with Targeted Disruptionof
Prolyl Hydroxylase Domain 1 (Phd1) Gene Expressed
in Chondrocytes
Weirong Xing 1,2, Destiney Larkin 1, Sheila Pourteymoor 1, William Tambunan 1, Gustavo A. Gomez 1,
Elaine K. Liu 1 and Subburaman Mohan 1,2,*

1 Musculoskeletal Disease Center, Loma Linda VA Healthcare System, Loma Linda, CA 92357, USA
2 Department of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
* Correspondence: subburaman.mohan@va.gov; Tel.: +1-909-825-7084 (ext. 6180); Fax: +1-909-796-1680

Abstract: The critical importance of hypoxia-inducible factor (HIF)s in the regulation of endochondral
bone formation is now well established. HIF protein levels are closely regulated by the prolyl hydrox-
ylase domain-containing protein (PHD) mediated ubiquitin-proteasomal degradation pathway. Of
the three PHD family members expressed in bone, we previously showed that mice with conditional
disruption of the Phd2 gene in chondrocytes led to a massive increase in the trabecular bone mass
of the long bones. By contrast, loss of Phd3 expression in chondrocytes had no skeletal effects. To
investigate the role of Phd1 expressed in chondrocytes on skeletal development, we conditionally
disrupted the Phd1 gene in chondrocytes by crossing Phd1 floxed mice with Collagen 2α1-Cre mice
for evaluation of a skeletal phenotype. At 12 weeks of age, neither body weight nor body length
was significantly different in the Cre+; Phd1flox/flox conditional knockout (cKO) mice compared to
Cre−; Phd1flox/flox wild-type (WT) control mice. Micro-CT measurements revealed significant gender
differences in the trabecular bone volume adjusted for tissue volume at the secondary spongiosa of
the femur and the tibia for both genotypes, but no genotype differences were found for any of the
trabecular bone measurements of either femur or tibia. Similarly, cortical bone parameters were not
affected in the Phd1 cKO mice compared to control mice. Histomorphometric analyses revealed no
significant differences in bone area, bone formation rate or mineral apposition rate in the secondary
spongiosa of femurs between cKO and WT control mice. Loss of Phd1 expression in chondrocytes
did not affect the expression of markers of chondrocytes (collage 2, collagen 10) or osteoblasts (alkaline
phosphatase, bone sialoprotein) in the bones of cKO mice. Based on these and our published data, we
conclude that of the three PHD family members, only Phd2 expressed in chondrocytes regulates
endochondral bone formation and development of peak bone mass in mice.

Keywords: prolyl hydroxylase domain-containing protein; PHD protein; Phd1 gene; osteoblast;
chondrocyte; knockout mice; phenotype; hypoxia-inducible factor; endochondral bone formation

1. Introduction

Previous studies have uncovered that the prolyl hydroxylase domain-containing
proteins (PHDs) are negative regulators of the hypoxia-inducible transcription factor
(HIF)1α [1,2]. The hydroxylation of specific proline residues (Pro-402 and Pro-564) in
the C-terminal oxygen-dependent degradation domains of the HIF1α by PHDs, primarily
the PHD2 isoform, leads to the targeting of HIF1α for ubiquitination through an E3 ligase
complex initiated by the binding of the Von Hippel Lindau protein (pVHL) and subsequent
proteasomal degradation [1,2]. When the oxygen level is low in the cells, the Phd gene
expression is suppressed, and the HIF1α degradation is reduced and the protein is accu-
mulated in the cytoplasm from where it traffics to nucleus and binds to HIF regulatory
elements in the promoter regions of the hypoxia-responsive genes including VEGF, Runx2
and osterix to regulate the target gene expression and subsequently bone formation [3,4].
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In mammals, PHD enzymes include PHD1, PHD2, and PHD3 [5]. Both PHD1 and PHD2
contain more than 400 amino acid residues while PHD3 has less than 250. All three mem-
bers contain the highly conserved hydroxylase domain in the catalytic carboxy-terminal
region and are expressed in bones. However, PHD1 and PHD2 preferably hydroxylate
the N-terminal oxygen-dependent degradation domains (NODD) but are less active for
the C-terminal oxygen-dependent degradation domains (CODD) whereas PHD3 almost
exclusively hydroxylates the CODD [6,7]. Mice with deletion of Phd1 and Phd3 genes
grow normal, but Phd2 gene knockout (KO) in mice causes embryonic lethality because the
placenta is underdeveloped [8]. The structural difference among the PHD proteins and the
data from mouse genetic studies suggest they may have tissue specific functions.

We previously unveiled that PHD2 was highly expressed in bone cells and contributed
to an indispensable role in regulating bone homeostasis by upregulating the transcription
of genes critical for osteoblast differentiation and function [9]. Mice with targeted deletion
of Phd2 in osteoblasts were smaller and died 12 to 14 weeks after birth. Bone mineral
density (BMD) in femurs and the ratio of trabecular bone volume to the tissue volume
(BV/TV) in the secondary spongiosa regions of the long bones of the osteoblast-specific
conditional knockout (cKO) mice were dramatically low [9]. Mice lacking PHD2 protein in
chondrocytes born normally, but the growth after birth were retarded because of elevated
mineralization of the cartilage matrix. The chondrocyte-specific cKO mice manifested
an increased endochondral bone formation in the femur, tibia and spine, resulting from
increased HIF signaling in chondrocytes [10]. While the expression level of Phd3 in the
bones in chondrocyte specific Phd2 KO mice was dramatically elevated, loss of Phd3 in
chondrocytes did not affect endochondral bone formation and skeletal phenotypes [11].
To investigate the role of Phd1 expressed in chondrocytes on skeletal development, we
conditionally disrupted the Phd1 gene in chondrocytes by crossing Phd1 floxed mice with
Col2α1-Cre mice for evaluation of skeletal phenotypes.

2. Materials and Methods
2.1. Breeding Strategy of cKO Mice

Phd1 floxed mice were bred with mice overexpressing Cre under the control of the
Collagen 2α1 (Col2α1) promoter to produce Cre positive, Phd1 floxed heterozygous mice
(Phd1flox/+; Col2α1-Cre+) according to the breeding strategy described previously [11–13].
The Phd1flox/+; Col2α1-Cre+ mice were then backcrossed with Phd1flox/flox mice to gener-
ate Cre-positive, loxP-homozygous (Phd1flox/flox; Col2α1-Cre+) cKO and Cre-negative, Phd1
loxP-homozygous or heterozygous (Phd1flox/flox; Phd1flox/+) wild-type (WT) littermates
(Figure 1A). The genetic background of these mice is C57BL/6. Both sex mice were
used in this study. Mice were housed at the Loma Linda VA Healthcare System (Loma
Linda, CA, USA) at 22 ◦C and with 14 h light and 10 h dark, as well as free access to
food and water. Experiments were carried out according to the protocol approved by the
Institutional Animal Care and Use Committee (IACUC) of the Loma Linda VA Healthcare
System (CA, USA). Mice were anesthetized using isoflurane before tail clipping. Mice were
euthanized by exposing to CO2 gas proceeded by cervical dislocation.

2.2. Evaluation of Bone Phenotypes

Areal BMD of the total body, long and lumbar bones (L4–6) of 12-week-old mice were
quantified by the FAXITRON UltraFocusDXA 1000 as reported [11,14,15]. Trabecular and
cortical bones of the femur and the tibia were scanned and quantified by microcomputed
tomography (µCT) in 12-week old mice described previously [16]. The formalin-fixed
bones in PBS were scanned by µCT with 55 kVp volts and a voxel size of 10.5 µm. A
1.05 mm cortical bone in the mid-diaphysis of the femur and the tibia were analyzed for
cortical bone parameters. A 2.1 mm of the secondary spongiosa of the distal femur and the
proximal tibia beginning 0.3675 mm from the growth plates were assessed for TV(mm3),
BV(mm3), and BV/TV, as described [17–19].
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Figure 1. Breeding strategy of Phd1 conditional knockout (cKO) mice. (A) A breeding strategy of 
Phd1 cKO mice, heterozygous (Het) and wild-type (WT) mice. (B) Phd1 expression was partially 
disrupted in chondrocyte cultures derived from the cKO mice. Total RNA was extracted from pri-
mary chondrocytes derived from the femur growth plates and the ribs of 10-day old mice for quan-
titative PCR (n = 3). Star (*): p < 0.01. 
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right femurs were fixed in 10% formalin for 3 days, washed 3 times with PBS, dehydrated, 
and embedded in methyl methacrylate resin for sectioning. The sampling sites and histo-
morphometric analyses were performed as described [19]. The first and the second calcein 
labeling of the trabecular bone in the secondary spongiosa region of the distal femurs were 
blindly quantified with OsteoMeasure V3.1.0.2 computer software (OsteoMetrics, Deca-
tur, GA, USA) [20,21]. The mineral apposition rate (MAR) and bone formation rate/bone 
surface (BFR/BS) were calculated as described previously [22]. 

  

Figure 1. Breeding strategy of Phd1 conditional knockout (cKO) mice. (A) A breeding strategy of
Phd1 cKO mice, heterozygous (Het) and wild-type (WT) mice. (B) Phd1 expression was partially
disrupted in chondrocyte cultures derived from the cKO mice. Total RNA was extracted from primary
chondrocytes derived from the femur growth plates and the ribs of 10-day old mice for quantitative
PCR (n = 3). Star (*): p < 0.01.

2.3. Double Labeling and Histomorphometric Analyses

Twelve-week-old mice were injected intraperitoneally with calcein (20 mg/kg) eight
and two days before euthanization by CO2 to label mineralizing bone surfaces. Mouse
right femurs were fixed in 10% formalin for 3 days, washed 3 times with PBS, dehydrated,
and embedded in methyl methacrylate resin for sectioning. The sampling sites and histo-
morphometric analyses were performed as described [19]. The first and the second calcein
labeling of the trabecular bone in the secondary spongiosa region of the distal femurs were
blindly quantified with OsteoMeasure V3.1.0.2 computer software (OsteoMetrics, Decatur,
GA, USA) [20,21]. The mineral apposition rate (MAR) and bone formation rate/bone
surface (BFR/BS) were calculated as described previously [22].

2.4. Primary Chondrocyte Culture

Primary chondrocytes isolated from the rib cartilage and the growth plates of the
femurs and the tibias of 10-day old WT and cKO mice (3 female and 3 male littermate mice)
were cultured as previously described [23]. Cells were grown in DMEM/F12 medium con-
taining 10% fetal bovine serum (FBS), penicillin (100 U/mL), and streptomycin (100 µg/mL)
to approximately 90% confluence before harvesting for RNA extraction.

2.5. RNA Extraction and Real-Time PCR

Total RNA was extracted from the femurs and the tibias of the WT and cKO mice
or primary chondrocyte cultures derived from WT and cKO mice with the Trizol as de-
scribed [24,25]. An aliquot of RNA (300 ng) was reverse-transcribed into cDNA in 20 µL
volume of reaction by oligo(dT)12–18 primer. A real-time PCR contained 0.5 µL template
cDNA, 1x SYBR GREEN master mix (Qiagen), and 100 nM of specific forward and reverse
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primers in a 25 µL volume of reaction. Primers used for real-time PCR are listed in Table 1.
Relative gene expression was calculated by using the ∆∆CT method [26].

Table 1. Primer Sequence for Real-Time PCR.

Gene Forward Primer Reverse Primer

Ppia 5′-CCATGGCAAATGCTGGACCA 5′-TCCTGGACCCAAAACGCTCC
Phd1 5′-GGAACCCACATGAGGTGAAG 5′-AACACCTTTCTGTCCCGATG
Phd3 5′-GGGACGCCAAGTTACACGGA 5′-GGGCTCCACGTCTGCTACAA
Phd2 5′-GAAGCTGGGCAACTACAGGA 5′-CATGTCACGCATCTTCCATC
Alp 5′-ATGGTAACGGGCCTGGCTACA 5′-AGTTCTGCTCATGGACGCCGT
Bsp 5′-AACGGGTTTCAGCAGACAACC 5′-TAAGCTCGGTAAGTGTCGCCA
Col2 5′-TGGCTTCCACTTCAGCTATG 5′-AGGTAGGCGATGCTGTTCTT
Col10 5′-ACGGCACGCCTACGATGT 5′-CCATGATTGCACTCCCTGAA

Note: Ppia, peptidylprolyl isomerase A; Phd, prolyl hydroxylase domain-containing protein; Alp, alkaline phosphatase; Bsp,
bone sialoprotein; Col2, collagen 2; Col10, collagen 10.

2.6. Statistical Analysis

Student’s t-test was used for data analyses. Data are Mean ± SEM (n = 6–10).

3. Results
3.1. Expression of Phd1 Was Partially Disrupted in Chondrocytes in cKO Mice

To test if loss of Phd1 expression in chondrocytes impairs endochondral bone formation,
we produced chondrocyte-specific Phd1 cKO mice by breeding the Phd1 floxed mice with
the Col2α-Cre mice, in which the Cre recombinase is overexpressed in Col2α-expressing
chondrocytes [13,27]. After 2 generations of breeding, the Phd1 floxed, Cre+ cKO mice
(Phd1flox/flox; Col2α-Cre+) were produced and compared to Cre negative WT littermates
(Phd1flox/flox or Phd1lox/+; Cre−). The cKO mice born and developed normally. To investigate
if PHD1 protein exists in bone cells of cKO mice, RNA was isolated from chondrocytes
derived from the growth plates of the femurs and the tibias, and the ribs of 10-day old
WT and cKO mice for real-time PCR with specific primers to Phd1, 2 and 3. As shown in
Figure 1B, the expression levels of Phd1 transcript were reduced by 66% and 45% in the
growth plate and rib chondrocytes, respectively, in the cKO mice compared to WT mice. By
comparison, Phd2 was increased in chondrocytes of both growth plates and ribs of Phd1
cKO mice by 79% and 41%, respectively. While the expression levels of Phd3 were 56% and
33% higher, respectively, in the growth plate and rib chondrocytes of Phd1 cKO mice, only
Phd3 expression level in growth plate chondrocytes was significantly higher compared to
WT mice.

3.2. Deletion of Phd1 in Col2α-Expressing Chondrocytes Does Not Affect Skeletal Growth in Mice
at 12 Weeks of Age

To analyze the bone phenotypes, we performed DXA screening and µCT scanning.
At 12 weeks after birth, neither body weight nor body length was significantly different
in the cKO mice compared to gender-matched control mice for either gender (Figure 2A).
DXA measurements revealed no significant changes in total body, femur, tibia, and lumbar
BMDs between the two genotypes for either gender (Figure 2B,C). Concurred with DXA
data, µCT scanning of the femoral trabecular bone uncovered no significant changes in
either BV/TV or any of the trabecular bone parameters including BMD, trabecular number
(Tb. N), trabecular thickness (Tb. Th) and trabecular spacing (Tb. Sp) in Phd1 cKO from
the gender-matched WT mice for either gender (Figure 3A–C). The tibial BMD, BV/TV,
Tb. N, Tb. Th, and Tb. Sp in cKO mice were also comparable to WT mice in either gender
mice (Figure 4A–C). Deletion of the Phd1 gene in chondrocytes had no impact on either
cortical BV/TV ratio or BMD (Figure 5A). The deficiency of PHD1 expression had no effect
on cortical BV/TV and BMD in the tibia either (Figure 5B).
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Figure 5. No changes were found in cortical bone parameters of the femur and the tibia in the Phd1
cKO mice at 12 weeks after birth. (A) Representative µCT images of the cortical bone of the femurs
and the quantitative data of the cortical bones of the femurs (BV/TV, BMD). (B) Images of the cortical
bone of the tibias and the cortical bone data of the tibias (BV, BMD) (n = 6–10).
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3.3. Knockout of Phd1 in Chondrocytes Neither Influences Bone Formation Nor Expression of
Marker Genes of Osteoblast/Chondrocyte Differentiation

To determine if the deletion of Phd1 in Col2α1 expressing cells impacts osteoblast
formation, and trabecular bone formation in the femur, we performed histomorphometry
analyses and examined the bone marker genes expression in long bones of the cKO mice.
We uncovered that knockdown of Phd1 expression in chondrocytes neither affected the
MAR) nor the BFR/BS in cKO mice as compared to the WT control littermates (Figure 6A).
Consistent with the histomorphometric data, lack of Phd1 in chondrocytes had no impact
on the differentiation of both osteoblasts and chondrocytes as evidenced by comparable
expression levels of marker genes, alkaline phosphatase (Alp), bone sialoprotein (Bsp), collagen 2
(Col2), and collagen 10 (Col10) in long bones in the cKO mice compared with the WT mice
(Figure 6B).
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Figure 6. Knockout of Phd1 in chondrocytes neither influences bone formation nor expression of
markers of osteoblast/chondrocyte differentiation. (A) Representative images of the calcein-labeled
trabecular bone of the distal femurs and the quantitative data of mineral apposition rate (MAR) and
bone formation rate/bone surface (BFR/BS), respectively. The bone indicated by two red arrows is
the double-labeled, newly formed bone (n = 6). (B) Expression levels of the marker genes of osteoblast
and chondrocyte differentiation in long bones measured by RT-real-time PCR. Alp, alkaline phosphatase;
Bsp, bone sialoprotein; Col2, collagen 2; Col10: collagen 10.

4. Discussion

Of three family members, the PHD2 protein is the most abundant in bones [28].
PHD2 is believed to be the critical oxygen sensor during hypoxia, which is emphasized
by the fact that mice with global deletion of the Phd2 gene are embryonically lethal [8]. By
contrast, mice with global disruption of either the Phd1 or Phd3 gene develop normally.
Consistent with an important role for PHD2 in bones, we and others have shown that
disruption of the Phd2 gene in osteoblasts and chondrocytes influenced bone formation and
development of peak bone mass [9,27,29]. Mice with deletion of Phd2 in osteoblasts were
smaller and died twelve to fourteen weeks after birth. Femoral BMD and trabecular BV/TV
of osteoblast-specific cKO mice were notably diminished. By contrast, mice lacking Phd2
were born normally, but the development was retarded after birth resulted from abnormal
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mineralization of the cartilage matrix. Endochondral bone formation was enhanced in the
femur, tibia, and spine of the Phd2 chondrocyte-specific cKO mice [10]. While the expression
level of Phd3 elevated 7-fold in chondrocytes of Phd2-cKO mice, targeted disruption of Phd3
gene in mice had no impact on bone cell differentiation, endochondral bone formation, and
bone development [11]. Our previous studies indicate that Phd3, unlike Phd2, does not play
an important role in regulating chondrocyte differentiation and bone growth.

PHD enzymes function through hydroxylation of the specific proline and asparagine
residues of HIF-α and negatively regulate HIF-α protein stability [30]. Both HIF1α and
HIF2α contain two prolyl hydroxylation sites in a central degradation domain of HIF1α.
Hydroxylation of these sites promotes HIF1α interaction with the ubiquitin ligase for ubiq-
uitination and subsequent degradation [5,31]. Hydroxylation of an asparagine residue in
the C-terminals prevents HIFα transcription factor from cooperation with the co-activator,
p300/CBP, leading to HIF1α inactivation [32]. Recent studies suggest that the PHD1/2
proteins specifically and preferentially hydroxylate their substrates. Although both PHD1
and PHD2 are active on CODD and NODD, PHD1 appears to act more effectively on
substrate HIF2α, whereas PHD2 more actively hydroxylates on substrate HIF1α [7]. These
studies indicate the PHD1 vs. PHD2 hydroxylate HIFα in a CODD sequence-dependent
manner. Congruent with these studies, Phd2 deletion mice had an increased level of HIF1α
in the liver and the kidneys but no increase in the HIF2α protein was noted. In contrast,
PHD1/3 double deficient mice had elevated level of HIF2α protein only in the liver [28,33].
On the other hand, loss of Hif1α in osteoblasts impaired skeletal growth [34,35]. Mice
without HIF1α protein in the condensing mesenchymal stem cells had shorter bones, im-
paired mineralized skulls and wider sutures because of severe chondrocyte apoptosis and
impaired chondrocyte proliferation in the growth plate [34]. By contrast, loss of HIF2α
protein in mice only resulted in a modest decrease in trabecular BV [36]. However, recent
mouse genetics studies demonstrated that HIF2 is a negative regulator of osteoblasto-
genesis and bone mass accrual by upregulating the transcription factor SOX9 to impair
osteoblast differentiation [37]. Loss of HIF2 in mesenchymal progenitors increases bone
mass by promoting bone formation without affecting bone resorption [37,38]. Since SOX9
is also a master transcription factor in chondrocyte differentiation, we assumed that if
the PHD1/HIF/SOX9 signaling axis in chondrocytes is important in endochondral bone
formation, then loss of the Phd1 gene in chondrocytes should influence trabecular bone
mass because PHD1 hydroxylates target HIF proteins and promotes ubiquitin-mediated
protein degradation. To test the hypothesis, Phd1 was deleted in chondrocytes by breeding
Phd1 floxed mice with Col2α1-Cre mice, and the effects of knocking out the Phd1 gene in
chondrocytes on the development of peak bone mass was evaluated. Surprisingly, no
significant changes in either body weight or body length was observed in the cKO mice
compared to gender- and age-matched WT littermates. Micro-CT measurements unveiled
significant gender differences in the trabecular BV/TV at the metaphysis of either the femur
or the tibia of WT and cKO mice. We did not observe a genotype difference for any of the
trabecular measurements of the long bones. Similarly, cortical bone parameters were not
affected in the Phd1 cKO mice compared to control mice. Histomorphometric analyses
observed no significant differences in bone formation rate or mineral apposition rate in the
secondary spongiosa of femurs between cKO and WT control mice. These data suggest that
Phd1 expressed in chondrocytes exert no major role in regulating the skeletal phenotype.

We found that Phd1 expression was reduced only by 66% and 45%, respectively, in
cultured growth plate and rib chondrocytes derived from the long bones of 10-day old
cKO mice. The magnitude of reduction in Phd1 expression in growth plate chondrocytes of
Phd1 cKO mice was similar to the 60% reduction in Phd2 expression reported previously
in the growth plate chondrocytes of Phd2 cKO mice [27]. One potential explanation for
the partial reduction in Phd1 expression in the cKO mice is the possibility that the cultures
used were not entirely homogeneous for chondrocytes and might contain other cell types
(fibroblasts, osteoblasts) which remains to be examined. In any case, our data show that
66%-45% loss of Phd1 transcript in the growth plate and rib chondrocytes had no impact on
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the transcription of chondrocyte markers, Col2 and Col10, or osteoblast markers, Alp, Bsp2,
in the bones of cKO mice. By contrast, we found that the expression levels of Phd2 and Phd3
were increased in the chondrocytes derived from Phd1 cKO mice which could represent a
compensatory response to the loss of Phd1 expression. In previous studies, we reported
that PHD2 was a negative regulator of chondrocyte differentiation since disruption of
Phd2 gene in chondrocytes, promoted chondrocyte differentiation and increased trabecular
bone formation [27,39]. We, therefore, anticipated an increased Phd2 expression to reduce
chondrocyte differentiation, and trabecular bone volume in the Phd1 cKO mice. However,
that was not the case. Further studies comparing the skeletal phenotypes Phd1, Phd2 and
Phd1/2 cKO mice are needed to verify if the compensatory increase in Phd2 expression
has any role in the Phd1 cKO mice. While expression of Phd3 was elevated by 56% in the
growth plate chondrocytes, this compensatory increase in the expression of Phd3 is unlikely
to play a significant role in regulating bone formation based on our previous findings on
the lack of skeletal phenotype in chondrocyte specific Phd3 cKO mice. Consistent with
our interpretation, Wu et al. found that the trabecular bone phenotype was unaffected in
mice with disruption of both phd1 and Phd3 genes in osterix expressing cells [40]. Our data,
together with our previous reports, imply that Phd2 transcribed in chondrocytes is a major
contributor to endochondral bone formation [27]. PHD2 expressed in chondrocytes can
functionally compensate for the loss of PHD1 in Phd1 cKO mice.

5. Conclusions

Phd1 expressed in chondrocytes does not regulate endochondral bone formation. Of
the Phd1/2/3 genes, only Phd2 transcribed in chondrocytes contributes to the endochondral
bone formation and the peak bone mass in mice.
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