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Abstract

:

Background: General pathophysiological mechanisms regarding associations between fluid administration and intra-abdominal hypertension (IAH) are evident, but specific effects of type, amount, and timing of fluids are less clear. Objectives: This review aims to summarize current knowledge on associations between fluid administration and intra-abdominal pressure (IAP) and fluid management in patients at risk of intra-abdominal hypertension and abdominal compartment syndrome (ACS). Methods: We performed a structured literature search from 1950 until May 2021 to identify evidence of associations between fluid management and intra-abdominal pressure not limited to any specific study or patient population. Findings were summarized based on the following information: general concepts of fluid management, physiology of fluid movement in patients with intra-abdominal hypertension, and data on associations between fluid administration and IAH. Results: We identified three randomized controlled trials (RCTs), 38 prospective observational studies, 29 retrospective studies, 18 case reports in adults, two observational studies and 10 case reports in children, and three animal studies that addressed associations between fluid administration and IAH. Associations between fluid resuscitation and IAH were confirmed in most studies. Fluid resuscitation contributes to the development of IAH. However, patients with IAH receive more fluids to manage the effect of IAH on other organ systems, thereby causing a vicious cycle. Timing and approach to de-resuscitation are of utmost importance, but clear indicators to guide this decision-making process are lacking. In selected cases, only surgical decompression of the abdomen can stop deterioration and prevent further morbidity and mortality. Conclusions: Current evidence confirms an association between fluid resuscitation and secondary IAH, but optimal fluid management strategies for patients with IAH remain controversial.
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1. Background


Over the past two decades, the pathophysiological consequences of intra-abdominal hypertension (IAH) and abdominal compartment syndrome (ACS) have received more research and awareness. The Abdominal Compartment Society (WSACS, www.wsacs.org (accessed on: 26 May 2022)) has set out clear definitions for intra-abdominal hypertension (subclassified into primary and secondary) and abdominal compartment syndrome, including the importance of concepts such as abdominal perfusion pressure (APP) [1,2,3,4].



Elevation of IAP leads to compromise in several organ systems, including cardiovascular (decreasing preload, increasing afterload, and decreasing cardiac output), respiratory (elevated diaphragm, decreased compliance, decreased functional residual capacity), central nervous system (intracranial hypertension due to functional obstruction of cerebral venous outflow), renal (compression of both the renal veins and arteries), and the gastrointestinal system (GIT) [5,6,7,8,9,10,11,12,13,14]. The effect on the GIT is multiple and includes mesenteric vein compression, decreased perfusion, intestinal edema, bacterial translocation, and disruption of the gut microbiome and immune system [3].



The pathophysiological impact of elevated IAP on the various organ systems mimics a state like sepsis, with loss of vasomotor tone and dysfunction of the intercellular junctions of the endothelium. Fluid resuscitation is often the first choice to restore hemodynamic stability. However, administration of large volumes of intravenous fluids may paradoxically result in ACS. The increased abdominal pressure stimulates anti-diuretic hormone (ADH) release, further promoting fluid retention [4]. Dabrowski et al., documented a significant correlation between IAP and extravascular water content in critically ill patients and patients undergoing prolonged elective surgery [5]. Reintam et al., showed that mortality among patients with secondary IAH was significantly higher than among patients with primary IAH [6], whereas a meta-analysis looking at various risk factors for IAH identified fluid balance as an independent predictor for IAH [7].



The effect of intravenous fluid administration on IAP has been studied, however, the effects of fluids on IAP in different patient populations and conditions remain largely unexplored.



The effect of pressures on neighboring anatomical compartments highlights the importance of appropriate management of patients with IAH or elevated pressures in adjacent compartments (abdomen, thorax, skull) [10,11,12,13]. In 2007, Thomas Scalea was the first to suggest the complex and constant interplay of elevated pressure between different compartments [8]. The poly-compartment syndrome (PCS) as “terminus technicus” coined by Malbrain has been well described in the medical literature [10,11,12,13]. Genuine PCS is a rare, but life-threatening condition, when two or more compartments have simultaneously elevated pressures. Releasing the pressure of one of the affected compartments usually improves the clinical scenario [15,16].



The goals of treatment for PCS are:




	
To reduce the pressure in the compartment by improving compliance (e.g., muscle relaxation) and, or opening different compartments (e.g., through escharotomy or decompressive surgery).



	
Individualized fluid management strategies and supportive therapy.



	
Apply the concepts of the four stages of fluid resuscitation (ROSE model, Figure 1) [17].



	
Avoid the adverse effects of ischemia-reperfusion after surgical decompression [11,12,13].








As the available data is scarce, this scoping review aims to describe the impact of fluid resuscitation on the development of intra-abdominal hypertension. Firstly, current knowledge on the pathophysiology of fluid administration is summarized, focusing on specific aspects related to increased IAP. Secondly, studies addressing fluid management in subjects with IAH are summarized and discussed.




2. Methods


Methods for inclusion, analysis and reporting of results were according to recommendations from the preferred reporting items for systematic reviews and meta-analyses (PRISMA).



Search Strategy


Two investigators performed a literature search for articles between 1950 and May 2021 using Scopus and PubMed electronic databases. We used the following search terms: (“abdominal hypertension” OR “abdominal compartment syndrome” OR “abdominal pressure”) AND (“fluid therapy” OR “fluid resuscitation” OR “risk factor”). The search was limited to English-language articles. PubMed search formula included (“intra-abdominal hypertension” [All Fields] OR “intra-abdominal pressure” [All Fields]) OR “abdominal compartment syndrome” [All Fields]) AND (“fluid” [All Fields] OR “resuscitation” [All Fields]). Identified citations had their titles and abstracts independently screened for the relationship between fluid therapy and IAH (Figure 2). We used the following inclusion criteria: (1) No age limitation and animal studies included; (2) studies that examined the association between fluid resuscitation and IAH or ACS; (3) IAH diagnosed using trans-bladder pressure measurements; and (4) no limitation to the type of study design. Disagreements between investigators regarding study inclusion were resolved by consensus. Reference lists of these papers, and related articles featured in PubMed, were screened to identify additional studies not identified through the initial literature search.



The same two authors extracted the following data independently (as tabulated in the manuscript): (1) design and setting; (2) study participant diagnosis (for example, trauma, burn, severe acute pancreatitis); (3) type and amount of fluid administered; (4) IAP measurement in mmHg; (5) patient outcomes; (6) management/intervention of IAH or ACS.



All relevant studies underwent a full-text assessment, and data were extracted into tables according to the study type/design. Studies and hypotheses on pathophysiological mechanisms are summarized as narrative text. One hundred and three of the 657 potentially relevant publications identified during the literature search were included (Figure 2).





3. Results


3.1. Data on Associations between Fluid Administration and IAH


3.1.1. Study selection and characteristics


Among 764 unique citations, 103 studies enrolling 12015 critically ill adults, 107 critically ill children, and 104 animals met the inclusion criteria (Figure 2) [5,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119]. Among the 103 included studies, 3 were randomized controlled trials (RCTs) (Table 1), 39 prospective observational studies (Table 1), 29 retrospective studies (Table 2), 17 case reports in adult patients (Table 3), two observational studies and 10 case reports in children (Table 4), and three animal studies (Table 5).



From the analyzed and discussed studies, twenty included burn patients [18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37], seven included severe acute pancreatitis (SAP) patients [40,41,42,43,44,45,46], thirty included trauma patients [38,39,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,73,74,75], fourteen included medical patients [70,72,76,77,78,79,80,81,82,83,84,85,86,87], seventeen included surgical patients [63,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103], fourteen included medical-surgical (and critically ill) patients [5,104,105,106,107,108,109,110,111,112,113,114,115,116].



Pooled analysis was not possible because of the heterogeneity in study populations and data, and the lack of details on IAP measurement techniques.



Several above-cited studies have investigated the relationship between the volume of intravenous fluids administered and their effect on IAP. Most of these trials reported an association between the volume of intravenous fluids administered and the rise in IAP or the development of IAH.




3.1.2. Severe burn patients


There are nine prospective studies in 434 burn patients [18,19,20,21,22,23,24,25,26], six retrospective studies in 3171 burn patients [27,28,29,30,31,32], two case reports in adults [33,34], and three case reports in children [35,36,37] investigating the relationship between fluid resuscitation and ACS (Supplementary Table S1).



Prevalence


The reported prevalence of IAH ranged from 57.8% to 82.6% among patients with ≥20% total body surface area (TBSA) burned. Six of the nine studies reported ACS rates between 5.5 and 28.6% [18,19,20,21,22,23,24,25,26].




Resuscitation Fluids & Risk Factors


A capillary leak is common in critically ill patients and leads to interstitial edema. This can be a particular problem in burn patients who require large volumes of intravenous fluid resuscitation. There is a significant correlation between IAP and resuscitation volume [22,33,34]. A volume administration of > 250 mL/kg in the first 24 h is a risk factor for ACS, and this amount is known as the Ivy index [19]. Hypertonic lactated saline (HLS) resuscitation may reduce the risk of developing secondary ACS and is associated with a lower fluid volume when compared to Ringer’s lactate (LR) solution [21,120]. Compared to colloid resuscitation, crystalloid resuscitation resulted in higher volumes of fluid per kilogram body weight, both in the first 24 h and during resuscitation with a significantly greater increase in IAP [23]. The implementation of 5% albumin in the first 24 h of resuscitation showed a trend towards less intravenous fluid. However, this did not translate into differences in the overall incidence of ACS, but it did improve outcomes [32]. Risk factors identified for acute kidney injury were IAH and the use of glycopeptides, vasopressors, and mechanical ventilation. Acute kidney injury was associated with increased 30-day mortality [25].




Management


Bladder pressure measurements should be performed after infusion of more than 25 mL during the acute resuscitation phase [18]. While IAH usually responds to medical therapy, the presence of ACS warrants escharotomy or surgical decompression of the abdominal cavity [18]. Non-resolution of IAH is related to a worse outcome [26,29,38].




Outcome


Mortality rates in the prospective studies varied from 18% to 82.6% [18,19,20,21,22,23,24,25,26]. The implementation of burn resuscitation guidelines can significantly lower mortality rates [18].





3.1.3. Severe acute pancreatitis


Severe acute pancreatitis (SAP) is a disease with a 30% mortality rate and is characterized by a systemic inflammatory response, pancreatic necrosis, and multiple organ failure [40]. Appropriate early fluid resuscitation is essential to prevent complications. Three RCTs [40,41,43], one observational study [42] (total of 295 patients), one retrospective study [44], and two case reports [45,46], investigated the relationship between intravenous fluids and IAH in SAP (Supplementary Table S2).



Prevalence


The incidence of ACS is lower when controlled fluid resuscitation is applied [40]. This was shown in an RCT where the incidence of ACS was 72.2% in the rapid fluid expansion group versus 32.5% in the controlled fluid expansion group [43].




Resuscitation Fluid and Risk Factors


The type of intravenous fluid used is important in the prevention of IAH. Resuscitation with colloids resulted in less IAH compared with crystalloids [41]. Using a combination of 0.9% saline, colloids, and glutamine is possibly a more efficient resuscitation strategy for SAP (by relieving inflammation and maintaining the intestinal barrier) than 0.9% saline [40]. Significant risk factors for the development of IAH in patients with SAP include the first 24-h fluid balance, number of fluid collections (which is included in the definitive Balthazar’s CT score for severity stratification in acute pancreatitis), and serum calcium level [42].




Management


Early management of patients with SAP includes the initiation of CVVH to facilitate achieving a negative fluid balance and a subsequent reduction in IAH [44]. Abdominal decompression in patients with ACS may lead to a reversal of MOF [45,46].




Outcome


IAH is associated with a poor prognosis and an increased need for surgical interventions with associated morbidity and mortality. The reported mortality rate varied between 7.3% to 31.6% [41].





3.1.4. Trauma patients


Trauma patients frequently pose a fluid resuscitation challenge since they often require rapid intravenous fluid administration to treat hypovolemia. This may include red cell concentrate (RCC) and platelets. Rapid fluid administration, together with reperfusion injury and activation of inflammatory mediators, leads to increased capillary permeability and an increased risk of developing IAH and ACS [120,121]. There are seven prospective studies investigating the relationship between intravenous fluids and IAH in 1329 trauma patients [47,48,49,50,51,52,74], fourteen retrospective studies in 4233 trauma patients [38,39,53,54,55,56,57,58,59,60,61,62,69,75], five case reports [63,64,65,66,73], and five case reports in children [37,67,68,70,71] (Supplementary Table S3).



Prevalence


The reported prevalence of ACS in the prospective studies varied between 8% and 36% (with a mean Injury Severity Score (ISS) range of 13–35) [47,48,49,50,51,52]. In a retrospective study by Zaydfudim et al., the implementation of a trauma exsanguination protocol significantly reduced ACS from 20% to zero [69]. Balogh found that the implementation of a standard resuscitation compared to a supranormal resuscitation reduced the incidence of IAH (20 vs. 42%) and ACS (8 vs. 16%) [53].




Resuscitation Fluid and Risk Factors


Trauma patients that develop ACS, as a complication of massive volume loading, receive significantly more crystalloids and blood products [48]. Aggressive crystalloid resuscitation should be minimized in severely injured patients. Neal et al., found that patients requiring massive transfusions (crystalloid resuscitation in a ratio greater than 1.5:1 per unit of RCC) were associated with a higher risk of MOF, ARDS, and ACS [50]. Although massive transfusion is associated with more complications, when blood products are delivered in a 3:2 ratio of RCC: FFP (red blood cells: fresh frozen plasma) and 5:1 for RCC: platelets, it is associated with a reduction in MOF and infectious complications, as well as an increase in ventilator-free days [63].




Management


Bladder pressures should be checked routinely when resuscitation volumes approach 10 L of crystalloid or ten units of packed red cells [60]. Following the resuscitation phase, fluid removal with diuretics or CVVH may restore euvolemia and may reduce IAP leading to improvement of organ failure [5,72,76].




Outcome


Trauma patients with ACS have more complications, mechanical ventilation, organ failure, and a longer length of stay. Mortality for this group varies between 6% and 54% [47,48,49,50,51,52,120]. Limiting crystalloids during resuscitation in trauma patients was associated with better outcomes and almost eliminated ACS [57,58].





3.1.5. Medical patients


Three prospective studies (188 patients) [85,86,87], two retrospective studies (143 patients) [78,79], three case reports in adult patients [72,76,77], two prospective trials (88 patients) in children [81,84], and four case reports in children [70,80,82,83] discuss fluid resuscitation in patients with sepsis (Supplementary Table S4).



Incidence


The observed incidence of IAH varied between 20 and 85%, and ACS developed in 25–28% of cases [78,85]. The incidence of IAH and ACS in a group of 40 medical ICU patients with a positive fluid balance of more than 5 L/24 h was high, with 85% developing IAH and 25% developing ACS [86].




Resuscitation Fluid and Management


In a prospective trial of 68 children, the replacement of crystalloid fluid resuscitation with albumin for refractory shock resulted in a smaller positive fluid balance, decreased morbidity, and improved outcomes [84]. Treatment (PAL therapy) that combined high levels of positive end-expiratory pressure (PEEP), small volume resuscitation with hyperoncotic 20% albumin (up to serum albumin levels of 30 g/L), and fluid removal using furosemide (a bolus of 1 mg/kg followed by continuous infusion at 10 mg/hour and titrated according to urine output) or renal replacement therapy with net ultrafiltration was associated with a reduction of extravascular lung water index (EVLWI) and IAP, was associated with improved clinical outcomes (better survival and faster weaning from mechanical ventilation) [87].



Decompressive laparotomy (open abdomen with silo bag) has been previously successful in medical patients [5,76]. Fluid removal with diuretics or CVVH may restore fluid balance and may reduce IAP, leading to improvement of organ failure [72].




Outcome


ACS is associated with a high mortality rate (52.8–77.4%) [78]. Moreover, Cordemans et al., concluded that there is a correlation between poor outcomes and a high capillary leak index (CLI), a positive fluid balance, high IAPs, high extravascular lung water indices (EVLWI), and low abdominal perfusion pressures (APP) [78]. The ACS-associated mortality rate in children was 16% [81].





3.1.6. Surgical patients


Six prospective studies (460 surgical patients) [92,93,94,95,96,97], four retrospective studies (189 patients) [88,89,98,99] and seven case reports (see Table 3) in adults [63,90,91,100,101,102,103], describe the association between fluid and ACS (Supplementary Table S4).



Incidence


Dalfino et al., showed how a positive fluid balance comprised one of three independent predictors for developing IAH (31.8%), together with baseline IAP and central venous pressure [104].




Resuscitation Fluid and Risk Factors


There is a significant positive correlation between increased IAP with a positive fluid balance and decreased IAP with a negative fluid balance [97]. A liberal fluid strategy, compared to a restrictive fluid strategy, is associated with a significantly higher rise in IAP after surgery [94]. Furthermore, there was a strong correlation between IAP and extracellular water content in the liberal subgroup, which is in keeping with the hypothesis of fluid extravasation being one of the critical mechanisms in the development of IAH.



Makar et al., conducted an observational study in patients following open and endovascular repair of ruptured abdominal aortic aneurysms (rAAA). The results suggested that endovascular repair is associated with less intra-abdominal hypertension and host inflammatory response, less blood loss, blood transfusion, and total intraoperative intravenous fluid infusion compared to open repair [95]. In 25 patients with rAAA who underwent emergency EVAR [88], hypotension on arrival, transfusion of three or more units of red cell concentrate, and postoperative anemia were all significantly associated with the development of postoperative ACS.




Outcome


Patients with high IAP have more frequent renal failure, delayed postsurgical weaning from mechanical ventilation, and worse outcomes [92]. Reported mortality among patients with IAH was 53% [93]. The development of ACS after the repair of ruptured abdominal aortic aneurysms (rAAAs) results in increased mortality, especially in patients treated by endovascular aortic repair (EVAR) [89]. Intraoperative fluid requirements were significantly higher in EVAR patients who developed ACS than those without ACS. Furthermore, Leclerc et al., showed that in patients who underwent rAAA repair, patients with ACS appeared to have higher mortality [98]. For a positive prediction, they required three of the following eight factors: anemia, prolonged shock, preoperative cardiac arrest, body mass index >30 kg/m2, massive fluid resuscitation and transfusions, severe hypothermia, and acidosis.





3.1.7. Mixed ICU patients


Twelve prospective studies (see Table 1) [5,104,107,108,109,110,111,112,113,114,115,116] (4213 patients) and 2 retrospective studies (71 patients) [105,106] describe fluid resuscitation in medical-surgical patients.



Incidence


The incidence of ACS varied between 2% and 12.9% [105,106]. The incidence of IAH is 25–30% on admission and 50% after the first week of ICU stay [115].




Independent Predictors for IAH


Fluid resuscitation and positive fluid balance are independent predictors for IAH [108]. Body mass index is significantly associated with the development of IAH [109]. Elevated vascular permeability due to a stress-related inflammatory response is associated with a positive fluid balance. It leads to extravascular fluid accumulation, which is likely to result in gastrointestinal tract edema and increased IAP [5].




Outcome


Mortality rates for IAH vary from 3 to 80% [110]. The grade of IAH is inversely related to outcome [111]. Biffl et al., showed that medical patients with ACS have a 100% mortality vs. 38% in trauma patients [104]. Similar results were seen in a retrospective (see Table 2) study that showed no significant differences in fluid resuscitation and bladder pressures between groups. However, there was a significantly higher incidence of MOF and a trend towards higher mortality in medical ACS [106]. Finally, the summary of findings of pediatric studies is presented in Table 4.
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Table 1. Summary of findings of prospective studies on fluid administration and IAH.






Table 1. Summary of findings of prospective studies on fluid administration and IAH.





	
Author

	
Year

	
Type of Study

	
Patients

	
Resuscitation Fluids

	
IAP (mmHg)

	
Results






	
Severe burn patients




	
Ivy et al. [19]

	
2000

	
Prospective

	
n = 10 (7 IAH; 2 ACS)

	
IAH: volume of fluid 9 to 35 L 579

ACS: volume of fluid 33 to 48 L

	
IAP: 9 to 44

	
2 DL; 2 patients died




	
O’Mara et al. [23]

	
2005

	
Observational

	
Crystalloid (n = 15) vs. Plasma (n = 16)

	
561 mL/kg crystalloid

360 mL/kg plasma

	
Crystalloid: 32.5

Plasma: 16.4

	
Crystalloid group:

	-

	
↑ resuscitation volume/kg




	-

	
↑ IAH




	-

	
↑ end-organ damage










	
Oda et al. [21]

	
2006

	
Observational

	
HLS (n = 14)

LR (n = 22)

(≥40% TBSA)

	
Needed to maintain UO:

HLS 3.1 ± 0.9 mL/24 h/kg/% TBSA

vs.

LR 5.2 ± 1.2 mL24 h/kg/% TBSA

	
HLS 14% vs.

LR 50% developed IAH

	
HLS resuscitation can reduce risk of secondary ACS with lower fluid load than LR solution




	
Oda et al. [22]

	
2006

	
Observational

	
n = 48

	
ACS patients received 398.7 ± 105.5 mL/kg fluid the first 24 h after injury

	
IAP (49 ± 12 cm H2O)

ACS: n = 8

	
>300 mL/kg/24 h fluid resuscitation → ACS




	
Ennis et al. [18]

	
2008

	
Prospective

	
n = 56 BRG group

n = 62 control group

	
>250 mL/kg volume in the first 24 h

	
Not reported

	
ACS and mortality significantly lower in BRG group (p = 0.03)




	
Ruiz-Castilla et al. [24]

	
2014

	
Observational

	
n = 25

(>20% TBSA)

	
10473 mL in pts with IAH vs. 4100 mL in no IAH (p = 0.03)

	
13 vs. 10

	
IAH pts:

	-

	
IV fluid




	-

	
organ failure




	-

	
>extension of % TBSA










	
Wise et al. [26]

	
2016

	
Observational

	
n = 56

	
ACS 13.6 ± 16 L

vs.

No ACS 7.6 ± 4.1 L

	
IAH: n = 44

ACS: n = 16

	
Non-survivors:

	-

	
↑ incidence of IAH




	-

	
↑ total fluid intake




	-

	
↑ daily and cumulative fluid balance










	
Mbiine et al. [20]

	
2017

	
Observational

	
n = 64 (adults and children)

	
IAH in fluid overloaded patients:

16 vs. 13

IAH in patients not fluid overloaded:

10 vs. 9

	
Prevalence IAH: 57.8%

3.3 times increased risk of mortality with IAH

Mortality with IAH: 82.6%

	
More IAH among the fluid overloaded patients, but

difference not significant, probably due to small sample size




	
Talizin et al. [25]

	
2018

	
Prospective

	
n = 46 (38 IAH; 8 no IAH)

	
48 h fluid balance:

With IAH: 5370 (3857–8828) mL

Without IAH: 3894 (2411–5946) mL

(p = 0.091)

	
Not applicable

	
IAH was associated with↑ mortality rate: 24 IAH + vs. 1 IAH –

p = 0.016




	
Severe acute pancreatitis




	
Mao et al. [43]

	
2009

	
RCT

	
n = 76

	
Amount of crystalloid and colloid on admission day (mL):

	-

	
Group I (rapid fluid expansion):




	-

	
4028 ± 1980 and 1336 ± 816




	-

	
Group II (controlled fluid expansion):




	-

	
2472 ± 1871 and 970 ± 633






Total amount of fluid sequestration within 4 days (mL):

	-

	
Group I: 5378 ± 2751




	-

	
Group II: 4215 ± 1998







	
Incidence of ACS 72.2% in group I vs. 32.5% in group II

	
Total amount of fluid sequestration, rate of mechanical ventilation, incidence of ACS and mortality were significantly higher in group I




	
Du et al. [41]

	
2011

	
RCT

	
HES = 20

RL = 21

	
Total infusion volumes not significantly different between 2 groups

	
HES: 11.25 ± 2.35

RL: 17.08 ± 4.98



	
HES group (p < 0.05):

IAP lower; more urine production, earlier negative fluid balance and fewer patients received mechanical ventilation




	
Ke et al. [42]

	
2012

	
Observational

	
n = 58

	
24 h fluid balance:

IAH: 503 (373–1431) mL

No IAH 74 (−31–409) mL

	
Median max IAP 13.1 mmHg

36 patients developed IAH

7 patients developed ACS

	
Risk factors for IAH include 24 h positive fluid balance (first day),

number of fluid collections, and serum calcium level




	
Zhao et al. [40]

	
2013

	
RCT

	
n = 120

	
NS: 61.79 ± 7.61 mL/kg/day

SH (NS + HES): 46.93 ± 12.38 mL/kg/day

SHG (SH + glutamine)

44.75 ± 8.53) mL/kg/day (p < 0.05)

	
IAP in NS significant higher

	
Compared to the NS group: patients in the SH and SHG groups:

	-

	
accessed the endpoint more quickly with less fluid volume (67.26 ± 28.53 mL/kg/d, 61.79 ± 27.61 mL/kg per day vs. 85.23 ± 21.27 mL/kg per day, p < 0.05).




	-

	
incidence of renal dysfunction, ARDS, MODS and ACS lower










	
Trauma




	
Raeburn et al. [51]

	
2001

	
Observational

	
n = 77

	
28 patients with ACS vs.

49 patients no ACS

	
Mortality ACS 43% vs. no ACS 22% (p = 0.002)

	

	-

	
24 h IV fluid volume not predictive for development of ACS




	-

	
Patients with ACS: >complication; LOS, MV, OF










	
Balogh et al. [47]

	
2002

	
Prospective

	
n = 128 total

n = 11 ACS

	
26 ± 2 U RCC

38 ± 3 L crystalloid

	
Mortality ACS:

54%

	




	
Balogh et al. [48]

	
2003

	
Observational

	
n = 188

	
Amount of crystalloid (L) received in:

	-

	
Emergency Department: primary 4 ± 1 vs. 7 ± 1 in secondary ACS




	-

	
Pre-ICU: primary 8 ± 1; vs. 12 ± 1 in secondary ACS






Amount of RCC (U) received in:

	-

	
Emergency Department: primary 2 ± 1 vs. 6 ± 1 in secondary ACS







	
ACS:

Primary 11 patients vs.

Secondary 15 patients

Mortality ACS (prim 64% vs. sec 53% vs. no ACS 17%

	

	-

	
ACS patients received > crystalloid and RCC vs. non-ACS pts




	-

	
Higher mortality, MOF, MV in ACS




	-

	
Administration of > 3 L crystalloid in Emergency Department predicts both primary and secondary ACS.




	-

	
Administration of > 7.5 L of crystalloid before ICU predicts secondary ACS










	
Cotton et al. [74]

	
2009

	
Prospective

	
Pre-TEP: n = 141

TEP: n = 125

	
Blood products intraoperative:

	-

	
TEP 14.7 U vs. pre-TEP 11 U, (p = 0.001)






Crystalloid intraoperative:

	-

	
TEP 4.8 vs. pre-TEP 7 L (p < 0.001)






Blood products postoperative:

	-

	
TEP 31 U vs. 39 U (p = 0.05)






ACS: 9.9% in pre-TEP vs. 0% in TEP (p < 0.001)

	
Higher 30-day survival in TEP 56.8% vs. 37.6% pre-TEP (p = 0.001)

	

	-

	
Lower LOS in TEP: 12 days vs. 16 days (p = 0.049)




	-

	
Lower ventilation days in TEP: 5.7 days vs. 8.2 days (p = 0.017)










	
Neal et al. [50]

	
2012

	
Multi-centre, Prospective

	
n = 452

	

	-

	
Median crystalloid in first 24 h post-injury > 17 L




	-

	
Median blood transfusion in the first 24 h post-injury <16 U







	
Overall mortality 22.6%

	
Patients with a ratio > 1.5:1 Crystalloid: RCC have 70% higher risk of MOF and 2-fold higher risk of ARDS and ACS




	
Mahmood et al. [49]

	
2014

	
Observational

	
n = 117

DL = 102

No DL = 15

	
Crystalloid (L):

	-

	
DL 6 ± 3 vs.




	-

	
no DL 8 ± 5 (p = 0.02)






Blood (U):

	-

	
DL 5 ± 3 vs.




	-

	
no DL 6.3 ± 5 (p = 0.02)







	
16.7% developed IAP > 20 mmHg in DL

Mortality: 6% in DL vs. 20% in no DL p = 0.05

	
Blood transfusion and IV fluids significant correlation with IAP >20 mmHg and more metabolic acidosis




	
Vatankhah et al. [52]

	
2018

	
Observational

	
n = 100

28 ACS vs.

72 no ACS

	
Crystalloid:

	-

	
ACS 6107 mL vs. no ACS 4493 mL






RCC:

	-

	
ACS 965 mL vs. no ACS 207.5 mL






FFP:

	-

	
ACS 1390 mL vs. no ACS 700 mL






Platelets:

	-

	
ACS 310 mL vs. no ACS 3.5 mL







	
21% mortality in ACS

	
Mean volume of fluids significantly higher in pts. with ACS




	
Medical




	
Daugherty et al. [86]

	
2007

	
Observational

	
n = 40

	
Positive fluid balance > 5 L/24 h

	
n = 34 IAP > 12 mmHg

n = 13 IAP > 20 mmHg

n = 10 ACS

	
25% of patients with 5 L or > positive fluid balance in 24 h developed ACS




	
Cordemans et al. [87]

	
2012

	
Observational

	
n = 123

	
Cumulative fluid balance:

	-

	
No IAH: 5943 ± 7125 mL




	-

	
IAH: 10176 ± 7523 mL






(p = 0.024)

	
20% IAH

	
Not achieving CLFM & being non-responder: strong independent predictors of mortality




	
Dorigatti et al. [85]

	
2019

	
Observational

	
n = 25

	
Accumulated fluid balance (mL):

n = 13 (death): 15165.4 ± 12719.2 vs.

n = 12 (survival): 6194.5 ± 6517.1

	
IAP

14.1 ± 4.2 vs. 9.4 ± 2.0

	
Higher admission and consecutive SOFA score of > 7 associated with higher ACS incidence and higher mortality rate.




	
Surgical




	
Biancofiore et al. [92]

	
2003

	
Observational

	
n = 34 IAH

n = 74 no IAH

	
IAH:

	-

	
5420 ± 1073 mL/d






NO IAH:

	-

	
2852 ± 905 mL/d






(p < 0.01)

	
Not Reported

	
High IAP pressure:

	-

	
more frequently associated RF




	-

	
delayed postsurgical weaning from MV,




	-

	
worse outcome










	
Šerpytis et al. [97]

	
2008

	
Observational

	
n = 77

	
Not reported

	
POD 1:

45.5% IAH

POD 2:

41.7% IAH

POD 3:

35.6% IAH

	
Positive correlation between 24-h fluid balance and IAP




	
Makar et al. [95]

	
2009

	
Prospective

	
n = 14 eEVR

n = 16 eOR

	
Units RCC: (p ≤ 0.001)

	-

	
eEVR: 3 (2–4)




	-

	
eOR: 9 (5–11)






Intra-op IV fluid: (p = 0.001)

	-

	
eEVR: 2250 (1500–3125) mL




	-

	
eOR: 4250 (3123–7500) mL







	
1 ACS in eEVR, 1 ACS eOR

	
Correlation between IAP and the following:

	-

	
blood loss and transfusion




	-

	
fluid




	-

	
SIRS




	-

	
MOD




	-

	
LOS ICU and hospital










	
Dalfino et al. [93]

	
2013

	
Observational

	
n = 22 IAH

n = 47 no IAH

	
Positive fluid balance: independent risk factor for IAH

	
Not Reported

	
Mortality IAH 53% vs. 27%

(p = 0.02)




	
Muturi et al. [96]

	
2017

	
Observational

	
n = 113

	
IV fluid over 24 h (mL):

IAH: 3946.6 vs.

No IAH: 2931.1

(p = 0.003)

	
n = 76 IAH

n = 37 no IAH

n = 5 ACS

	
Of those who had IAH; age, amount of iv fluids over 24 h, fluid balance & ventilator mode were significant determinants of risk of progression to ACS




	
Kotlińska-Hasiec et al. [94]

	
2017

	
Observational

	
Liberal: n = 32 vs.

Restrictive: n = 31)

	
Liberal = 2822 ± 606 mL

Restrictive = 823 ± 223 mL

(p < 0.001)

	
Significant higher IAP in pts receiving liberal crystalloid therapy

	
Correlation between IAP and ECW




	
Medical-surgical




	
Biffl et al. [104]

	
2001

	
Prospective

	
14 ACS: 8 trauma

6 medical

	
Averages administered:

16.7 ± 3.0 L crystalloid

13.3 ± 2.9 RBC

	
10 patients underwent DL

	

	-

	
38% mortality in trauma




	-

	
100% mortality in medical patients










	
Malbrain et al. [110]

	
2004

	
Observational

	
n = 97

	
Patients with IAH:

	-

	
higher rate of fluid resuscitation; odds ratio 3.3 (95%CI 1.2–9.2)




	-

	
more frequently transfused; odds ratio 7.3 (95%CI 0.9–60.3)







	
IAH 50.5%

ACS 8.2%

	

	-

	
Fluid resuscitation at limit of statistical significance as predictor of IAH




	-

	
BMI significantly associated with IAH










	
Malbrain et al. [109]

	
2005

	
Observational

	
n = 265

	
Not reported

	
IAH: 32.1% on admission

Mortality 27.5%

	
Fluid resuscitation was independent predictor for IAH (OR, 1.88; 95% CI, 1.04– 3.42; p = 0.04)




	
Dalfino et al. [107]

	
2008

	
Observational

	
n = 123

	
Cumulative fluid balance in ml

	-

	
IAH: 3760 ± 4500 mL




	-

	
No IAH: 680 ± 3040 mL






p = 0.001

	
Primary IAH: 27.1%

Secondary IAH: 67.5%

ACS: 5.4%

	
Acute renal failure:

19.7% in IAH vs. 8.1% in no IAH

Age, cumulative fluid balance and shock are all independent predictive factors of IAH




	
Vidal et al. [113]

	
2008

	
Prospective

	
n = 83

	
Intense fluid resuscitation,

was significantly greater in patients with IAH and in non-survivors

	
53 patients with IAH

30 patients with no IAH

	
IAH associated with organ failure and mortality




	
Reintam Blaser et al. [116]

	
2011

	
Observational

	
n = 563

	
>5 L fluid resuscitation/24 h:

	-

	
No IAH: 163 patients




	-

	
IAH: 100 patients






p = 0.009

	
No IAH: 381 patients

IAH: 182 patients

33% mortality in ACS patients

	

	-

	
BMI > 30, PEEP > 10, P/F < 300, vasopressors, inotropes, pancreatitis, hepatic failure/cirrhosis and ascites, GI bleeding, laparotomy on admission are all independent risk factors for IAH










	
Kim et al. [114]

	
2012

	
Observational

	
n = 100

52 medical, 37 surgical, 11 trauma

	
No correlation with 24-h fluid balance

	
42% IAH, 4% ACS

	

	-

	
BMI > 30, high CVP, infection and sepsis associated with IAH




	-

	
There was a 16% mortality










	
Iyer et al. [111]

	
2014

	
Observational

	
n = 403

	
IAH: 4.24 (2.54–5.56) L

No IAH: 2.75 (1.75–4.05) L (p < 0.001)

	
39% IAH

2% ACS

	
IV fluid > 2.3 L is an independent predictor of IAH




	
Malbrain et al. [115]

	
2014

	
Systematic review

	
n = 1669

	
Not reported

	
Overall mean IAP:

	-

	
9.9 ± 5 mmHg




	-

	
27.7% pts






IAH:

	-

	
mean IAP 16.3 ± 3.4 mmHg




	-

	
30.8% died in ICU







	

	-

	
Independent predictors for IAH: SOFA score and fluid balance on admission




	-

	
Independent predictors for ICU mortality: IAH, SAPS II, SOFA










	
Dąbrowski et al. [5]

	
2015

	
Observational

	
n = 120

48 surgical

72 medical

	
Cut-off points for development of IAH:

	-

	
Medical: 22.4 L of ECW; 6.6 L of Volume excess




	-

	
Surgical: 24.9 L of ECW; 9.5 L of Volume excess







	
Not Reported

	
IAP strongly correlates with ECW




	
Murphy et al. [108]

	
2018

	
Observational

	
n = 285

	
No IAH: 1135 (145–2685) mL

IAH: 2019 (716–4.000) mL (p < 0.001)

	
45% IAH, 3% ACS

Mortality: 30% IAH vs. 11% no IAH

	
24-h fluid balance > 3 L is an independent predictor for IAH




	
Reintam Blaser et al. [112]

	
2019

	
Observational

	
n = 491

	
48.9% IAH (46.3% primary vs. 53.7% secondary). IAH vs. no IAH: 5 L fluid resuscitation before ICU (p = 0.036)

	
6.3% ACS

	
Positive fluid balance and BMI and

PEEP ≥ 7 cmH2O associated with development of IAH








DL: damage control laparotomy; UO: urine output; IV: intravenous; HLS: hypertonic lactated saline; TBSA: total body surface area; OF: organ failure; SAPS II: Simplified Acute Physiology Score II; SOFA: Sequential Organ Failure Assessment Score; ICU: intensive care unit; PEEP: positive end expiratory pressure; BRG: burn resuscitation guidelines, TEP: Trauma Exsanguination Protocol; RF: risk factor; CLFM: conservative late fluid management; 0.9% saline (NS group), combination of 0.9% saline and hydroxyethyl starch (HES) (SH group), combination of 0.9% saline, hydroxyethyl starch and glutamine (SHG group); L: liters; P: platelets; LOS: length of stay; MV: mechanical ventilation; OF: organ failure; ECW: extracellular body water; eEVR: emergency endovascular repair; eOR: emergency open repair; POD: post-operative day.
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Table 2. Summary of findings of retrospective studies on fluid administration and IAH.
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	Author
	Year
	Population
	Patients
	Resuscitation Fluids
	IAP (mmHg)
	Intervention
	Results





	Boehm et al. [27]
	2019
	Burn
	38 ACS+ vs. control
	Average FB/day:

ACS vs. control

13.3 L ± 7.7 L vs. control 7.9 L ± 7.9 L (NS)
	Not reported
	Not reported
	↑ mortality rate of 84% in ACS+ vs. 32% in control (p = 0.00008)



	Hershberger et al. [28]
	2007
	Burn
	25 ACS+
	Mean fluid infused 2102 mL/h before DL
	Mean IAP 57 ± 4.2
	DL
	22 patients (88%) died



	Hobsen et al. [29]
	2002
	Burn
	n = 1014

10 ACS
	3.1 mL/kg/% TBSA for the first 12 h
	Mean 40 ± 10
	DL
	40% of ACS patients survived



	Markell et al. [30]
	2009
	Burn
	n = 1825

ACS: 32
	6.02 mL/kg/% TBSA
	>30
	DL
	90% mortality for ACS



	McBeth et al. [31]
	2014
	Burn
	110
	48-h FB:

25.6 (± 11.1) L exceeding predicted Parkland formula estimates by

86% (± 32)
	12.1 (± 4.2)
	3 patients DL
	39 patients died



	Park et al. [32]
	2012
	Burn
	159
	Pre-protocol 4.6 ± 2.3 mL/kg/% TBS.

Post-protocol: 4.2 ± 1.7 mL/kg/% TBS, mean ± SD; p not significant
	Pre-protocol:

	-

	
10% ACS






Post-protocol:

	-

	
2% ACS






p not significant
	DL, n (%)

Pre-protocol: 6

Post-protocol: 0 (p < 0.05)
	Mortality, n (%)

	-

	
26 (26) vs. 5 (10)




	-

	
(p < 0.01)









	Britt et al. [38]
	2005
	Burn, trauma
	10 ACS
	Mean volume in the first 24 h: 33 L (12.4–69)
	Mean 44.6
	DL
	
	-

	
Overall mortality 60%






Mortality in DL: 43%



	Reed et al. [39]
	2006
	Trauma, burn, solid organ injury
	12
	12 L of fluids or >500 mL/h for 4 consecutive hours
	Average before and after catheter insertion 44.8 and 58.7
	2 patients DL,

8 patients intra-abdominal catheters
	7 patients survived



	Gracias et al. [54]
	2002
	Trauma
	5 ACS vs. 15 control
	ACS: 37 L crystalloid vs.

Control: 16.1 L crystalloid
	>25
	Decompression
	60% in ACS vs. 7% in control



	Balogh et al. [53]
	2003
	Trauma
	71 N vs. 85 SN
	SN vs. LR infusion:

	-

	
mean ± SD 13 ± 2 L vs. 7 ± 1 L (p < 0.05)






	SN vs. LR:

	-

	
IAH 42% vs. 20% (p < 0.05)




	-

	
ACS 16% vs. 8% (p < 0.05)






	Not reported
	Mortality SN vs. LR:

27% vs. 11% (p < 0.05)



	He et al. [55]
	2019
	Trauma
	455 pts (44 IAH; 5 ACS)
	Volume of IV fluids over 24 h: 3.965 ± 739 mL
	Mean IAP 24.4 ± 8.5
	DL
	
	-

	
Mortality in DL 15%




	-

	
Mortality in ACS 40%









	Hwabejire et al. [56]
	2016
	Trauma
	n = 1976 of which

122 ACS
	Total fluid/kg:

	-

	
ACS+ 498 ± 268 mL/kg vs.



ACS- 293 ± 171 mL/kg (p < 0.001)






	Not reported
	98.4% DL
	ACS+: 37.7% vs. ACS-: 14.6% (p < 0.001)

Rise in ACS risk after total volume + 1302 mL/kg



	Joseph et al. [57]
	2014
	Trauma
	799
	
	-

	
DL in 151 patients




	-

	
Mean crystalloids in ACS after DL 23 L




	-

	
4 patients with ACS after DL






	18 patients ACS
	DL in 18.9%
	
	-

	
Overall mortality: 14.5%




	-

	
ACS mortality: 55.6%




	-

	
DL mortality: 47%









	Macedo et al. [58]
	2016
	Trauma
	10
	
	-

	
Average crystalloid intraoperatively: 12.8 ± 8.2 L (range 3–30 L)




	-

	
Mean U RCC: 25.6 ± 16.31 U (9–53)




	-

	
Mean U FFP 13.5 ± 10.6 U (4–36)




	-

	
Mean U platelets:11.5 ± 9.4 U (0–30)






	Not reported
	DL
	60% overall mortality



	Shaheen et al. [62]
	2016
	Trauma
	28
	>10 U of RCC in 24 h
	60.7% developed ACS
	Not reported
	- 30-day mortality was 32.1%



	Madigan et al. [59]
	2008
	Trauma
	ACS (n = 48) vs.

control (n = 48)
	Net fluid for DC until 48 h post-admission was 18.2 L vs. 5.1 L (p < 0.0001)
	Not reported
	DL
	Mortality 60% ACS vs. 2% controls (p < 0.0001)



	Maxwell et al. [60]
	1999
	Trauma
	46
	Mean 19 ± 5 L crystalloid

29 ± 10 U RCC
	Mean: 33± 3
	DL
	67% mortality



	Rodas et al. [61]
	2005
	Trauma
	5
	Crystalloid: 15 ± 1.7 L

Blood: 11 ± 0.4 U
	NR
	DL
	No mortality



	Strang et al. [75]
	2015
	Trauma
	567

509 no IAH

58 IAH
	No IAH: 4.2 L Crystalloid vs. IAH: 6 L crystalloid; no IAH: 1.5 L colloids vs. IAH: 2.5 L colloids; no IAH: 2 U RCC vs. IAH: 17 U
	30 patients ACS
	NR
	IAH: 25.9% vs. 12.2% no IAH; p = 0.012).



	Zaydfudim et al. [69]
	2010
	Trauma
	39 pre-TEP vs. 36 TEP
	Pre-TEP: 12 U RCC vs. TEP: 12.5 U RCC

Pre-TEP: 4 U FFP, vs. TEP: 8 U FFP;

p < 0.01

Pre-TEP: 1 U platelets vs. TEP: 2 U platelets; p < 0.01

Pre-TEP: 6 L of crystalloids vs. TEP: 4 L crystalloids; p < 0.01
	20% ACS in pre-TEP vs. 0% ACS in TEP
	NR
	pre-TEP cohort: 31% 30-day survival TEP cohort: 53% 30-day survival



	Cothren et al. [106]
	2007
	Surgical & Medical patients
	54 patients
	Total fluid resuscitation before DL:

	-

	
Medical patients: 18.5 ± 1.8 L vs.




	-

	
Surgical patients: 16 ± 1.5 L (NS)






Total transfusion of RCC: Medical: 3.7 ± 1.8 U vs. Surgical: 14.5 ± 2 U (p = 0.006)
	Medical: 33.5 ± 1.1 vs.



	-

	
Surgical: 32.8 ± 1.8






	DL
	MOF:

	-

	
Medical patients: 62% vs. Surgical patients: 27% (p < 0.05)






Mortality:

	-

	
Medical patients: 54% vs. Surgical patients: 34%









	Cordemans et al. [78]
	2012
	ALI
	57 PAL vs.

57 control
	Cumulative FB after 1 week

8.027 ± 5.254 mL/day vs.

−1.451 ± 7.761 (p < 0.001)
	IAP at baseline:

PAL: 10 ± 4.2

Control: 8 ± 3.7 (p = 0.013)
	PAL treatment
	
	-

	
Overall mortality 38.6% (n = 44)




	-

	
49.1% in control vs. 28.1% PAL (p = 0.034)









	Pupelis et al. [44]
	2012
	Pancreatitis
	130 patients

75 CVVH

55 control
	Not reported
	CVVH: 19.6 ± 7.1

Control: 16.3 ± 5.5 p = 0.05
	DL n = 36
	11.7% CVVH and 13.8% no CVVH NS



	Struck et al. [79]
	2012
	TEN
	29 patients

5 ACS
	+ FB 4.6 ± 1.2 L
	33 ± 7
	DL
	Mortality: ACS+ 100% vs. ACS- 0%



	Aik-Yong et al. [105]
	2014
	Surgical & medical patients
	17 patients:

14 primary ACS

3 secondary ACS
	>3.5 L in 24 h
	
	DL
	Overall mortality 47.1%



	McNelis et al. [99]
	2002
	Surgery
	22 ACS vs. 22 control
	24-h FB:

ACS: 15.9 ± 10.3 L vs.

Control: 7 ± 3.5 L (p < 0.05)
	Not reported
	Not reported
	Mortality: 66.7% in ACS vs. none in control



	Rubenstein et al. [89]
	2015
	rAAA

open repair.

44 pts (60%)

EVAR:

29 pts (40%)
	73
	Intraoperative fluid higher in EVAR patients ACS+ vs. ACS-

	-

	
RCC: 5600 mL vs. 1100 mL (p < 0.0001)




	-

	
Total blood products 9300 vs. 1500 mL (p < 0.001)




	-

	
Crystalloid 11200 vs. 4500 mL (p < 0.001)






	ACS% 34% in open21% in EVARp not significant
	DL
	Overall mortality 42%:

	-

	
31% EVAR




	-

	
48% open repair






Mortality:

	-

	
ACS+: 62% vs. 33% ACS–(p = 0.022)









	Leclerc et al. [98]
	2017
	rAAA
	47
	ACS+: 5.250 (4.625; 9.375) L

ACS-: 4.125 (2.925; 5.500) L (p = 0.053)
	8 patients developed ACS
	
	30-day mortality in ACS+ higher (p = 0.108)



	Miranda et al. [88]
	2018
	rAAA
	25
	
	-

	
36% received ≥ 3 U RCC preoperatively and intraoperatively.




	-

	
36% received ≥ 3 L of crystalloid.




	-

	
All of those who developed ACS received more than 3 U RCC; 67% received >3 L of crystalloid






	12% (n = 3) developed ACS
	
	
	-

	
Overall mortality rate: 28%




	-

	
Mortality rate in ACS: 67%













FB: fluid balance; pts: patients; ACS+: with abdominal compartment syndrome; ACS-: without abdominal compartment syndrome; TBSA: total body surface area; DL: decompressive laparotomy; EVAR: endovascular aortic repair, NS: not significant; rAAA: ruptured abdominal aortic aneurysms; U: units; RCC: Red cell concentrate; PAL: peep-albumin-Lasix; CVVH: continuous veno-venous hemofiltration; S: surgical; M: medical; SN: supranormal resuscitation group; LR: lactated ringer infusion; d: day.
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Table 3. Summary of findings of case reports on fluid administration and IAH.
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	Author
	Year
	Population
	Resuscitation Fluids/Fluid Balance
	IAP (mmHg)
	Intervention
	Results





	Fietsam et al. [101]
	1989
	Surgery
	>25 L of fluid
	NR
	DL
	NR



	Burrows et al. [63]
	1995
	Surgery
	21 L of crystalloid; 4 U RCC
	NR
	DL
	Alive



	Burrows et al. [63]
	1995
	Trauma
	Pre-op: 7.3 mL/kg/h vs. Postop: 14.2 mL/kg/h
	39
	DL
	NR



	Burrows et al. [63]
	1995
	Trauma
	Pre-op: 9.2 mL/kg/h vs. Postop: 5.5 mL/kg/h
	40
	DL
	Died



	Burrows et al. [63]
	1995
	Trauma
	Pre-op: 14.7 mL/kg/h vs. Postop: 3.2 mL/kg/h
	NR
	DL
	Alive



	Ivy et al. [33]
	1999
	Burn
	32 L
	49
	DL
	Died



	Ivy et al. [33]
	1999
	Burn
	24 L
	50
	Escharotomy
	Died



	Ivy et al. [33]
	1999
	Burn
	32 L
	36
	None
	Died



	Kopelman et al. [65]
	2000
	Trauma
	+ FB: 25 L
	34
	DL
	Died



	Kopelman et al. [65]
	2000
	Trauma
	26 L of crystalloid
	25
	DL
	Died



	Kopelman et al. [65]
	2000
	Trauma
	+ FB: 29.5 L
	22
	DL
	Died



	Kopelman et al. [65]
	2000
	Trauma
	+ FB: 10 L
	26
	DL
	Alive



	Kopelman et al. [65]
	2000
	Trauma
	+ FB: 5 L
	46
	DL
	Alive



	Macalino et al. [77]
	2002
	Sepsis
	14 L crystalloids
	27
	NMB
	Died



	Kula et al. [72]
	2004
	Sepsis
	10 L + FB first 96 h.

4:1 (crystalloid: colloid)
	>25
	DL

CVVH
	Died



	Kula et al. [72]
	2004
	Sepsis
	12.5 L + FB first 96 h (crystalloids)
	29
	CVVH
	Died



	Shiiya et al. [103]
	2005
	Surgery
	34.1 L crystalloids vs. 13.7 L blood products
	NR
	DL
	Alive



	Parra et al. [34]
	2006
	Burn/Trauma
	25.55 L of crystalloid

12 U RCC
	34
	DL
	Alive



	De Wolf et al. [100]
	2008
	Surgery
	Massive fluid resuscitation
	24 in 1st patient

27 in 2nd patient
	DL
	Alive



	Tsuang et al. [76]
	2007
	Sepsis
	17 L fluid during first 20 h
	54
	DL
	Alive



	Chamisa et al. [64]
	2008
	Trauma
	Not reported
	>35
	DL
	Died



	Kula et al. [73]
	2008
	Trauma
	7.5 L + FB first 48 h. 4:1 (crystalloid: colloid)
	26
	CVVH
	NR



	Kula et al. [73]
	2008
	Trauma
	17 L + FB first 96 h. 3:1 (crystalloid: colloid)
	28
	CVVH
	NR



	Augustin et al. [90]
	2010
	Surgery
	16 L + FB
	19
	DL
	Died



	Augustin et al. [90]
	2010
	Surgery
	23 L + FB
	35
	None
	Died



	Rabbi et al. [102]
	2012
	Surgery
	Not reported
	50
	DL
	Alive



	Park et al. [46]
	2014
	SAP
	Not reported
	31
	PCD
	Alive



	Bressan et al. [91]
	2016
	Surgery
	4 L crystalloids

2 RCC during first 24 h
	21
	DL
	Alive



	Michel et al. [66]
	2016
	Trauma
	10.5 L (crystalloids, colloids & blood products)
	NR
	DL
	Alive



	Lee et al. [45]
	2019
	SAP
	6 L
	28
	DL
	Alive







+ FB: positive fluid balance; NR: not reported; CVVH: continuous veno-venous hemofiltration; NMB: neuromuscular blocker; SAP: severe acute pancreatitis; PCD: Percutaneous Catheter Drainage; DL: decompressive laparotomy; RCC: red cell concentrate.
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Table 4. Summary of findings of pediatric studies on fluid administration and IAH.
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	Author
	Year
	Type of Study
	Population
	Resuscitation Fluids
	IAP (mmHg)
	Intervention
	Results





	Divarci et al. [81]
	2016
	Prospective
	Sepsis
	NR
	14 patients with IAH (13–15)

6 patients ACS (17–24)
	Decompressive measures

DL
	1 Dead



	Ranjit et al. [84]
	2018
	Prospective
	Sepsis
	ST group (n = 30): 17.8 (10.8–25.2) L

TI group (n = 38): 10.02 (5.7–18.2) L

(p = 0.009)
	NR
	Percutaneous drainage of ACS, n (%)

ST group: 9 (30)

TI group: 3 (7.9) (p = 0.01)
	Mortality:

ST: 8 (26%)

TI: 1 (2.6%)

p = 0.008



	DeCou et al. [70]
	2000
	Case report
	Trauma
	Crystalloids and 16 U RCC and

4 U FFP
	NR
	Silo decompression
	Alive



	DeCou et al. [70]
	2000
	Case report
	Trauma
	Replacement of 2 x blood volume
	NR
	Silo decompression
	Alive



	DeCou et al. [70]
	2000
	Case report
	Sepsis
	NR
	26
	Silo decompression
	Alive



	Perks et al. [68]
	2005
	Case report
	Trauma
	NR
	NR
	Surgical decompression
	Alive



	Jensen et al. [37]
	2006
	Case report
	Burn
	5990 mL crystalloids
	>22
	DL
	Dead





	Jensen et al. [37]
	2006
	Case report
	Burn
	8580 mL crystalloids + 990 mL blood products +

805 mL albumin
	NR
	Abdominal wall escharotomy and NMB and peritoneal dialysis catheter
	Alive



	Jensen et al. [37]
	2006
	Case report
	Burn
	10300 mL crystalloids
	44
	Surgical decompression
	Dead



	Jensen et al. [37]
	2006
	Case report
	Trauma
	1950 mL crystalloids
	26
	Silo decompression
	Alive



	Morell et al. [67]
	2007
	Case report
	Trauma
	10000 mL crystalloids and 10 U RCC
	NR
	Laparotomy
	Alive



	Lam et al. [83]
	2008
	Case report
	Sepsis
	272 mL/kg
	35
	Paracentesis
	Died



	Lam et al. [83]
	2008
	Case report
	Sepsis
	220 mL/kg
	NR
	DL
	Died



	Lam et al. [83]
	2008
	Case report
	Reanimated after drowning
	334 mL/kg
	NR
	DL
	Died



	Lam et al. [83]
	2008
	Case report
	Sepsis
	500 mL/kg
	120
	None
	Died



	Lam et al. [83]
	2008
	Case report
	Sepsis
	NR
	NR
	Peritoneal catheter
	Alive



	Dauplaise et al. [80]
	2010
	Case report
	Sepsis
	70 mL/kg in first h and 330 mL/kg in first 24 h
	43
	DL
	Alive



	Gala et al. [82]
	2012
	Case report
	Sepsis
	NR
	NR
	Paracentesis
	Alive



	Streit et al. [35]
	2013
	Case report
	Burn
	NR
	27
	Decompression
	Alive



	Sun et al. [36]
	2015
	Case report
	Burn
	5600 mL LR during first 24 h
	22
	NMB, diuresis; percutaneous drain
	Alive



	Kobayashi et al. [71]
	2016
	Case report
	Trauma
	560 mL RCC.

960 mL FFP.

400 mL platelets and fluids
	NR
	Laparotomy
	Alive







NR: not reported; RCC: red cell concentrate; FFP: fresh frozen plasma; ST group: standard therapy; TI group: targeted intervention; DL: decompressive laparotomy; NMB: neuromuscular blockers.













3.2. Animal data


We found eleven animal studies, of which three were suitable, reporting on resuscitation and secondary IAH (Table 5). Fluid resuscitation leads to IAH and venous congestion (or venous hypertension), resulting in gut edema and diminished gut contractility [117]. Melatonin may prevent deleterious effects related to fluid overload [118]. Extensive fluid resuscitation preserves cardiac output, urine output, and serum parameters (e.g., ALT, lipase, AP, lactate, creatinine) in pigs with ACS, but organ damage occurs (vicious cycle) [119]. Previous animal studies showed that IAH provokes the release of pro-inflammatory cytokines which may serve as a second insult for the induction of MOF [121]. This is illustrated in Figure 3.





[image: Table] 





Table 5. Summary of findings of animal studies on fluid administration and IAH.
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	Author
	Year
	Population
	Intervention
	Results





	Schachtrupp et al. [119]
	2005
	12 Pigs:

	-

	
6 intervention group (IAP to 30 mmHg)




	-

	
6 control group






	Fluid intake:

Intervention group vs. control (p < 0.01)

10570 ± 1928 mL vs.

3918 ± 1042 mL
	Acidosis, liver, bowel, kidney and lung damage higher in intervention group (p < 0.01)



	Moore-Olufemi et al. [117]
	2005
	44 Rats

Experiment 1: 20 mL/kg saline

Experiment 2: 80 mL/kg saline

In each experiment 4 groups

	-

	
no venous HTN/no resuscitation (sham, n = 6),




	-

	
venous HTN/resuscitation (n = 6),




	-

	
no venous HTN/resuscitation (n = 6),




	-

	
venous HTN/no resuscitation (n = 4)






	A mesenteric venous hypertension/gut edema model was created to evaluate whether gut edema caused by acute mesenteric venous hypertension and/or crystalloid resuscitation is associated with impaired intestinal transit, mucosal barrier dysfunction, and/or injury
	Delayed intestinal transit, increased permeability, and decreased epithelial resistance are associated with gut edema



	Chang et al. [118]
	2016
	48 rats:

	-

	
Sham group (n = 8)




	-

	
shock group (n = 8)




	-

	
LR group (n = 8)




	-

	
melatonin group and LR (n = 8)




	-

	
HS + LR group (n = 8)




	-

	
HES + LR group (n = 8)






	Induced portal hypertension, hemorrhage to a MAP of 40 mmHg for 2 h (except for sham group)

Collected blood reinfused and treatment with:

	-

	
LR (30 mL/h),




	-

	
melatonin (50 mg/kg) + LR,




	-

	
HS (6 mL/kg) + LR,




	-

	
HES 30 mL/kg +LR.




	-

	
shock: no fluids






	Melatonin use associated with less inflammatory and oxidative injury, less intestinal permeability and injury, lower incidence of secondary IAH







LR: Ringer’s lactate solution, HES: hydroxyethyl starch, IAH: intra-abdominal hypertension.














4. Discussion


Existing studies and pathophysiological rationale support the association between fluid administration and IAH. However, current evidence does not allow clinicians to accurately identify specific fluid management strategies for patients with IAH. IAH often occurs in patients with sepsis, trauma, burns, and severe acute pancreatitis [122,123,124]. These conditions are united by an accompanying inflammatory response that often progresses to shock and requires ongoing intravenous fluid therapy. Addressing the underlying cause of the pathophysiological process is essential; however, in all these patients, fluid management remains a challenge. Avoiding hypovolemia as well as unnecessary excessive intravenous fluids and subsequent interstitial edema, with progression to IAH and ACS, is a difficult balance to achieve [125,126].



The origin of intravenous fluid therapy [127] dates back to the cholera outbreak in the 1830s. Resuscitation fluids are administered to restore intravascular volume and maintain tissue perfusion [17]. However, determining the volume status of a critically ill patient remains a diagnostic challenge [123]. Furthermore, the ideal synthetic intravenous resuscitation fluid does not exist. Both crystalloid and colloid solutions offer therapeutic options. Albumin is considered safe for use as a resuscitation fluid in most critically ill patients; however, in patients with traumatic brain injury, its use is associated with increased mortality [128]. The use of hydroxyethyl starch (HES) solutions is associated with increased rates of renal-replacement therapy and blood transfusion in patients with sepsis and surgery. The use of 0.9% saline has been associated with the development of metabolic acidosis and acute kidney injury.



Fluid movement through the microcirculation is partly determined by the imbalance between colloid osmotic and hydrostatic forces (Starling equation). Following this theory in IAH, an increase in microvenule blood pressure following venous compression reduces the difference in hydrostatic pressure, resulting in disturbance of microcirculatory fluid movement. The entire vascular endothelium is covered by the endothelial glycocalyx which consists of various proteoglycans, glycoproteins, and glycolipids. It which plays a vital role in the movement of fluids. The endothelial glycocalyx is semi-permeable to small molecules and ions and impermeable to molecules greater than 70 kDa [129,130]. The Starling equation has been revised to account for the sub-glycocalyx layer that contributes to a reflectance coefficient responsible for larger molecules staying intravascular. According to this revised Starling equation, the differences in plasma-sub-glycocalyx colloid osmotic pressure play a crucial role in trans-endothelial fluid movement [131]. The revised Starling equation has the sub-glycocalyx oncotic pressure replacing the interstitial oncotic pressure as a primary factor in transvascular fluid movement (Figure 4). The rule states that colloids such as albumin may delay transvascular fluid escape under selected conditions but will not pull fluids from the interstitium back into the vascular compartment; rather, albumin only returns to the intravascular compartment by the lymphatics [132,133]. A decreased arterial pressure in conjunction with an increased venous pressure is frequently observed in patients with IAH. Increased pressure in venules may increase hydrostatic capillary pressure and augment transcapillary fluid extravasation causing loss of plasma volume. This is because of the dependence on differences in transendothelial pressure for the movement of fluid. Thus, the administration of colloid solutions to restore mean arterial pressure may maintain colloid osmotic pressure but increase hydrostatic capillary pressure, which may intensify fluid filtration. Crystalloid solutions decrease colloid osmotic pressure and increase hydrostatic capillary pressure, theoretically leading to higher fluid filtration than colloids [131]. However, IAH is often the result of several pathologies coinciding, damaging the glycocalyx and causing increased vascular permeability. As a result, both crystalloid and colloid solutions leak from the intravascular compartment into the interstitial space.



Experimental models have confirmed that when maintaining a normal MAP of approximately 65 mmHg (using vasopressors), fluid movement and reduction of plasma volume are more pronounced when the capillary permeability is disrupted versus normal conditions [134]. Interestingly, the plasma-reducing effect was lower in hypovolemic conditions compared to normovolemic subjects. These findings may suggest that the decrease in hydrostatic capillary pressure following hypovolemia leads to higher fluid retention in the intravascular space [135]. This effect may be disrupted by IAH; however, this hypothesis is yet to be confirmed.



4.1. Type of Patients


The incidence of ACS and IAH differs across various patient populations, but with a high mortality rate, regardless of the population.



In severe burns, the systemic release of inflammatory and vasoactive mediators is responsible for a systemic capillary leak, intravascular fluid loss, and significant fluid shifts that should be managed with aggressive intravenous fluid resuscitation [136]. The implementation of the Parkland formula, developed by Baxter and Shires, reduced inadequate resuscitation in acute burn patients, which in turn significantly decreased burn mortality [137]. However, excessive intravenous fluid administration during resuscitation can also be detrimental and lead to an IAH prevalence as high as 82.6% in patients with more than 20% TBSA burned. Fluid creep is applied to a burn resuscitation, during which more fluid than predicted by standard formulas is administered. Increased fluid requirements may be necessary, but dangerous fluid creep is also caused by overly permissive fluid infusion and the lack of colloid supplementation [138]. Fluid creep is reported in 30% to 90% of patients with major burns [139,140]. Complications of fluid overload include extremity and abdominal compartment syndromes, respiratory failure, and ocular hypertension [138]. Factors that predispose to increased fluid requirements are inhalation injury, delay in resuscitation, and polytrauma or high voltage electrical injury [120]. The use of hypertonic saline, 5% albumin, and routine use of a burn resuscitation guideline are all measures to help limit unnecessary fluid resuscitation.



Severe acute pancreatitis is associated with high mortality rates [141], and the local and systemic inflammatory response in SAP leads to intravascular fluid depletion and extravascular fluid accumulation, leading to IAH and ACS. Generally, in patients with IAH, volume status is probably best monitored with volumetric preload indicators instead of barometric ones (such as central venous pressure and pulmonary capillary wedge pressure) [142]. The primary aim of fluid replacement is to improve circulatory dysfunction, which leads to tissue hypoperfusion, ischemia, and self-sustaining disease with persistent pancreatic injury, extra-pancreatic tissue damage, and organ failure [143]. Although many controversies exist about the ideal fluid strategy, an RCT performed on 76 patients with SAP showed that controlled, more conservative, fluid resuscitation offers a better prognosis in patients with severe volume deficit within 72 h of SAP onset [43,144]. Initiation of renal replacement therapy should be considered to help manage fluid accumulation and ACS.



In patients with SAP, sepsis, septic shock, or severe trauma, shock-induced endotheliopathy (SHINE) is responsible for endothelial cell and glycocalyx damage [145]. Disruption of the endothelial glycocalyx layer (EGL) can also be induced by rapid infusion of intravenous fluids (partly due to the release of atrial natriuretic peptide) and acute hyperglycemia [131]. In septic patients, interstitial oncotic pressure increases due to the capillary leak, leading to a reduction of the plasma-expanding efficacy of any infused fluid [131] and aggravating the development of tissue edema. More recently, it has been suggested that non-resuscitation fluids in critically ill patients may even have a more considerable absolute impact on cumulative positive fluid balance than resuscitation fluids. In contrast, unintentional fluid administration in the form of IV medications and concentrated electrolytes contributes to the phenomenon of ‘fluid creep’ [146].



Understanding the different phases of intravenous fluid management (Figure 1 represents the ROSE concept) is key to planning optimal fluid management. Hypovolemia should generally be treated with fluids and vasoplegia with vasopressors, but this balance is difficult to find in septic patients. Early vasopressors, in addition to fluid resuscitation, instead of fluids alone, may be necessary to avoid fluid overload [17,74,75,119,122,147,148]. The recent results of the CLASSIC trial have shed more light on this topic and showed that giving less fluids is not harmful [149]. On average IAH is observed in up to 43.5% of patients with severe sepsis [150].




4.2. Type of Resuscitation Fluids


Crystalloid fluids are the mainstay of fluid resuscitation; however, the findings of this review suggest alternative strategies require further investigation. A randomized controlled trial (RCT) compared HES with Ringer’s lactate resuscitation in 41 patients with SAP. Resuscitation using colloids resulted in a lower IAP and reduced need for mechanical ventilation compared to those in which Ringer’s lactate was used [41]. However, there is no evidence from RCTs that resuscitation with colloids in patients with trauma, burns, or following surgery, reduces the risk of death compared to resuscitation with crystalloids [151]. There is evidence of harm from synthetic colloids, especially synthetic starch solutions [152].



Balanced crystalloids may have advantages over 0.9% saline, possibly reducing inflammation, but no apparent effect on mortality or morbidity was demonstrated in patients with SAP [153,154]. The recently conducted pragmatic SMART study (involving 15802 critically ill adults) showed that using balanced crystalloids for intravenous fluid administration resulted in a lower rate of composite outcomes, including death from any cause, new renal-replacement therapy, or persistent renal dysfunction than the use of saline [155]. Accordingly, several current guidelines suggest using balanced rather than unbalanced crystalloids in extensive volume replacements, surgical patients, and in SAP [142,154,156].



Several studies (SAFE [157], FEAST [158], ALBIOS [159]), evaluated the use of albumin as a resuscitation fluid. Except for patients with traumatic brain injury, evidence suggests that albumin is well tolerated as a resuscitation fluid. However, there is no evidence to suggest that albumin offers substantial outcome benefits over crystalloid solutions, albeit that their use may result in a less positive fluid balance [160,161,162]. This was demonstrated in an RCT by Martensson et al., where resuscitation with 20% albumin decreased resuscitation fluid requirements, minimized positive early fluid balance, and was not associated with any harm compared with 4–5% albumin. The use of 5% albumin in severe burn patients requires further research [161].



Only one retrospective study involving 114 patients incorporated IAP into the respiratory and fluid management concept. This study showed that using PAL treatment (PEEP set at the level of IAP, albumin 20%, followed by Lasix®) was able to keep the cumulative fluid balance in check with a significant drop in IAP, EVLWI, and rise in P/F ratio. This also resulted in faster weaning from the ventilator and improved survival compared to the matched control group [87].



Wang et al., conducted an RCT in 132 patients with SAP using fresh frozen plasma as a resuscitation fluid. Fresh frozen plasma shortens the duration of positive fluid balance, decreases the overall fluid balance within 72 h, reduces the duration of mechanical ventilation and admissions to ICU, and improves PaO2/FiO2 and mortality in severe acute pancreatitis [163].



Several animal studies proved that hypertonic saline (HTS) resuscitation improves hemodynamics [164,165,166,167]. HTS treatment allows smaller fluid volume resuscitation in the burn shock period and reduces the risk of low abdominal perfusion and secondary ACS 21]. The American Burn Association evaluated the efficacy of HTS in burn patients, however, the evidence in favor is equivocal. Additional studies are required to define the correct dosage and timing [168].




4.3. Fluid Resuscitation Strategies


The 4 D’s of fluid therapy (drug, dosing, duration, and de-escalation) should be considered during the administration of resuscitation fluids [17,148]. Fluid requirements of critically ill patients tend to change throughout their illness, and fluid therapy should be adjusted to account for these changes. Therefore, we distinguish four phases of fluid administration (ROSE) (Figure 1): the Resuscitation phase, the Optimization phase, the Stabilization phase, and the Evacuation phase [17]. The ROSE concept may help to guide therapeutic decision-making [17].



Decisions regarding the administration of intravenous fluids should be guided by functional hemodynamic measurements, such as pulse pressure or stroke volume variation. They should not be solely based on increased lactate, low MAP, or oliguria (<0.5 mL/kg/hour) [169,170]. With the increased use of ultrasound as a bedside modality in both emergency and critical care patients, it is important to consider point-of-care ultrasound (POCUS) as an adjuvant tool for IAH and management of fluid strategies (Figure 5). POCUS during the first three days of admission improved clinical performance in IAH scenarios and fluid management [171].



All of these factors should be carefully considered, to avoid the dangerous complications and vicious cycle of fluid accumulation, as illustrated in Figure 3 [172]. Fluid overload was identified as an independent risk factor for developing intra-abdominal hypertension [7,173].



The ideal rate at which fluid is administered appears to depend on how much it takes to maintain perfusion, and thus there is no clear guidance from the available literature. This would largely depend on the systemic inflammation, rate of fluid extravasation out of the intravascular compartment, and effects on cardiac function. An RCT involving 60 patients with acute pancreatitis, but without organ failure, that received either aggressive (20 mL/kg bolus followed by 3 mL/kg/h) or standard (10 mL/kg bolus followed by 1.5 mg/kg/h) resuscitation with Ringer’s lactate solution. The rate of clinical improvement was more significant with aggressive hydration, and no patients developed signs of fluid overload [156]. Another RCT in 76 patients with SAP showed that rapid, uncontrolled fluid resuscitation (10–15 mL/kg/h or until a hematocrit <35% within 48 h) significantly worsened the rates of infections, ACS, the need for mechanical ventilation, and mortality [43]. Although these studies are relatively small, they suggest an optimum therapeutic range for fluid therapy. Further research in this field is required to help determine appropriate fluid resuscitation strategies in this group, particularly whether targeting a hematocrit is helpful [43].




4.4. Interventions with Potential Beneficial Effects That Need Further Investigation


Fluid requirements may be reduced by ascorbic acid, which has an apparent (osmotic) diuretic effect that may lead to hypovolemia and reduced inflammatory response [174]. This was shown in a prospective, randomized study where the use of high-dose ascorbic acid led to a significantly reduced amount of resuscitation volume [175].



Peritoneal resuscitation (PR) corrected many of the physiologic derangements that lead to eventual organ dysfunction, including endothelial cell dysfunction, tissue ischemia, reduction in capillary blood flow, derangements in fluid exchange, and electrolyte handling, and increased inflammatory mediators. Studies in trauma patients have shown that PR was associated with accelerated abdominal closure, reduced abdominal complications, and reduced mortality [176]. Further research in this field is required.




4.5. Limitations


Although the literature search was broad, it was limited to those studies published in English. There were potential sampling errors in the search terms, and the search was limited to Scopus and PubMed. Negative studies are less likely to be published and hence would not have come to our attention during the literature search. The studies included were also heterogeneous in their sampled populations and data, making pooled analysis impossible. Future studies should broaden the search to include other languages.



Final take-home messages on the relation between fluid resuscitation and IAH:



	
There is a relationship between fluid resuscitation, fluid accumulation, and secondary IAH. This signal, from the limited number of RCTs, needs further confirmation.



	
Crystalloids are associated with a more positive fluid balance and a greater likelihood of developing IAH compared to colloids or hypertonic solutions.



	
Fluid resuscitation in IAH may preserve cardiac output, however, it does not prevent organ damage.



	
Delivery of blood products in a 3:2 ratio of RCC: FFP (red blood cells: fresh frozen plasma) and 5:1 for RCC: platelets, may reduce MOF and infectious complications, and increase ventilator-free days [63].



	
Fluid resuscitation leads to IAH and venous congestion (or venous hypertension), contributing to gut edema and diminished gut contractility.



	
The relationship between fluid resuscitation, fluid accumulation, and secondary IAH holds in the setting of sepsis (capillary leak), severe burn injury, emergency surgery, and trauma with the presence of the deadly triad (coagulopathy, acidosis, hypothermia).



	
Fluid removal with diuretics or CVVH may restore cumulative fluid balance and may reduce IAP. The time to initiate RRT in this setting remains unclear.



	
Bladder pressure measurements should be performed after infusion of more than 25 mL during the acute resuscitation phase, and one should check for peak inspiratory pressures greater than 40 cm H2O.






The presence of IAH is associated with a poor prognosis. The presence of ACS warrants escharotomy or surgical decompression of the abdominal cavity, while IAH usually responds to medical therapy [48].





5. Conclusions


Intravenous fluid administration plays an essential role in developing IAH and ACS. Multiple pathophysiological mechanisms have been described, notably damaging the endothelial glycocalyx. Fluid balance has been identified as an independent risk factor in several clinical studies and can contribute to the development of IAH, venous congestion, gut edema, and diminished gut contractility. Evidence identifying the best resuscitation targets and management strategies regarding type, timing, and volume of fluids in patients with IAH is scarce. It is striking how there has been little advancement of new studies or data in recent years, as the bulk of the literature is more than five years old. Therefore, further research is required to improve insights into this topic.
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	ACS
	abdominal compartment syndrome



	ADH
	anti-diuretic hormone



	ALI
	acute lung injury



	APP
	abdominal perfusion pressure



	ARDS
	acute respiratory distress syndrome



	BMI
	body mass index



	BMT
	bone marrow transplantation



	BRG
	burn resuscitation guidelines



	CLFM
	conservative late fluid management



	CLI
	capillary leak index



	CO
	cardiac output



	CPB
	cardiopulmonary bypass



	CR
	case report



	CVVH
	continuous veno-venous hemofiltration



	CVP
	central venous pressure



	d
	day



	DL
	damage control laparotomy



	ECMO
	extra-corporeal membrane oxygenation



	ECW
	extracellular body water



	EGL
	endothelial glycocalyx layer



	eOR
	emergency open repair



	EVAR
	endovascular aortic repair



	EVLWI
	extravascular lung water index



	eEVR
	emergency endovascular repair



	FOAM
	free open access medical education



	FB
	fluid balance



	FFP
	fresh frozen plasma



	HES
	hydroxyethyl starch



	HLS
	hypertonic lactated saline



	IAP
	intra-abdominal pressure



	IAH
	intra-abdominal hypertension



	ICP
	intra-cranial pressure



	ICU
	intensive care unit



	ITP
	intra-thoracic pressure



	IV
	intra-venous



	L
	liters



	LR
	ringer’s lactate solution



	LOS
	length of stay



	M
	medical



	MAP
	mean arterial pressure



	MOF
	multiple organ failure



	MV
	mechanical ventilation



	NMB
	neuromuscular blocker



	NGT
	nasogastric tube



	NR
	not reported



	NS
	0.9% saline



	OF
	organ failure



	PAL
	positive end-expiratory pressure, albumin, and Lasix® (furosemide)



	PCD
	percutaneous catheter drainage



	PCS
	poly-compartment syndrome



	PEEP
	positive end-expiratory pressure



	POCUS
	point-of-care ultrasound



	pts
	patients



	rAAAs
	ruptured abdominal aortic aneurysms



	RCC
	red cell concentrate



	RF
	risk factor



	S
	surgical



	SAP
	severe acute pancreatitis



	SAPS II
	Simplified Acute Physiology Score II



	SH group
	combination of 0.9% saline and hydroxyethyl starch (HES)



	SHG group
	combination of 0.9% saline, hydroxyethyl starch and glutamine



	SHINE
	shock induced endotheliopathy



	SN
	supranormal resuscitation group



	SOFA
	Sequential Organ Failure Assessment Score



	ST group
	standard therapy



	TBSA
	total body surface area



	TEP
	trauma exsanguination protocol



	TI group
	targeted intervention



	U
	units



	UO
	urine output



	WSACS
	The Abdominal Compartment Society
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Figure 1. The four hits of shock. Graph showing the four-hit model of shock with evolution of patients’ cumulative fluid volume status over time during the five distinct phases of resuscitation: Resuscitation (R), Optimization (O), Stabilization (S), and Evacuation (E) (ROSE), followed by a possible risk of Hypoperfusion in case of too aggressive de-resuscitation. On admission patients are hypovolemic, followed by normovolemia after fluid resuscitation (EAFM, early adequate fluid management), and possible fluid overload, again followed by a phase going to normovolemia with late conservative fluid management (LCFM) and late goal directed fluid removal (LGFR) or de-resuscitation. In the case of hypovolemia, O2 cannot get into the tissue because of convective problems; in the case of hypervolemia, O2 cannot get into the tissue because of diffusion problems related to interstitial and pulmonary edema, gut edema (ileus and abdominal hypertension). Adapted according to the Open Access CC BY License 4.0 from Malbrain et al., with permission [17]. 
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Figure 2. Flowchart of literature review and selection of included publications. 
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Figure 3. The vicious cycle of fluid resuscitation, abdominal hypertension and kidney injury. Adapted according to the Open Access CC BY License 4.0 from Malbrain et al., with permission [17]. AKI: acute kidney injury; IAH: intra-abdominal hypertension. 
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Figure 4. Fluid movement in normal conditions (A) and abdominal hypertension (B). The physiological movement of fluid is determined by the imbalance between hydrostatic and colloid osmotic pressures. It is best described by the revised Starling equation: Jv = LpA[(Pc − Pi) − σ(IIc − IIi)], where Jv is net fluid filtration, Lp the capillary hydraulic permeability, A the capillary surface area (which is available for fluids and small molecule filtration), σ the capillary reflection coefficient, Pc the capillary hydrostatic pressure, Pi the interstitial hydrostatic pressure, IIc and IIi the capillary and interstitial colloid osmotic pressures, respectively. Generally, Pc dependent on the differences between the arteriole hydrostatic pressure (PA) and the venule hydrostatic pressure (PV). This difference strongly corresponds to the hydraulic resistances in arterioles and venule (RA and RV, respectively), which was described by the Pappenheimer Soto-Riviera Equation: Pc = (Pv [RA/RV] + PA)/(1 + [RA/RV]). According to this equation, every increase in PA or PV, as well as an increase in RA/RV (e.g., following intra-abdominal hypertension leading to venous congestion) or increase Pc. Under normal physiological conditions, the sub-glycocalyx colloid osmotic pressure strongly corresponds to interstitial pressure and its value ranges between 70% and 90% of the interstitial colloid pressure. Adapted from Levick et al. [133]. 
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Figure 5. Potential use of POCUS according to WSACS medical management algorithm. 
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