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Abstract: Cryo-electron microscopy (cryo-EM) has become an unrivaled tool for determining the
structure of macromolecular complexes. The biological function of macromolecular complexes
is inextricably tied to the flexibility of these complexes. Single particle cryo-EM can reveal the
conformational heterogeneity of a biochemically pure sample, leading to well-founded mechanistic
hypotheses about the roles these complexes play in biology. However, the processing of increasingly
large, complex datasets using traditional data processing strategies is exceedingly expensive in both
user time and computational resources. Current innovations in data processing capitalize on artificial
intelligence (AI) to improve the efficiency of data analysis and validation. Here, we review new
tools that use AI to automate the data analysis steps of particle picking, 3D map reconstruction,
and local resolution determination. We discuss how the application of AI moves the field forward,
and what obstacles remain. We also introduce potential future applications of AI to use cryo-EM in
understanding protein communities in cells.
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1. Introduction

In cells, macromolecules perform their biological roles in the context of complex
networks, exchanging binding partners and altering assembly states [1]. This molecular
network can be determined by the structural analysis of macromolecules, which is crucial
for understanding functional mechanisms and designing new drugs to exploit those func-
tions in disease states [2]. Since 2013, we have experienced a boom of structural discovery
with respect to biomolecules using cryo-electron microscopy (cryo-EM), now arguably
the most powerful tool in structural biology. Distinct from other conventional structural
approaches, such as X-ray crystallography (XRC) and Nuclear Magnetic Resonance (NMR),
cryo-EM can characterize the intact forms of various biomolecules and their interacting
partners in sizes ranging from small individual proteins to large complexes, at near-atomic
resolution [3,4]. This “resolution revolution” was achieved through advancements in both
instrumental hardware (e.g., vitrification machines, electron sources, and direct electron de-
tectors [5–7]) and image processing software (e.g., Relion [8], CryoSPARC [9], Cistem [10],
Scipion [11]). Single-particle analysis (SPA) cryo-EM uses a large number of extracted
particles randomly oriented in vitreous ice, resulting in a unique advantage in studying
macromolecular complexes. Using this technique, it is possible to observe numerous con-
formational variations between states and understand the flexibility of disordered regions
of biomolecular complexes [12,13].

Structural analysis using cryo-EM of biologically important macromolecules is increas-
ingly complex, scaling with the size of the complexes studied and the size of the datasets
collected by better, faster cameras. The heterogeneity of dynamic macromolecules can be a
great barrier to reconstructing high-resolution 3D structures. To address the challenge of
structural heterogeneity, semi-automated image processing algorithms and pipelines have
been developed [9,11]. However, despite computational developments, a high level of user
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skill, time, and attention are still required, which not only limits processing speed, but also
introduces significant variability to the end result [14,15]. With recent advances in artificial
intelligence (AI) technology, several fully automated deep learning-based image process-
ing approaches have been applied to the workflow of cryo-EM 3D reconstruction and
atomic structure determination, including steps such as particle picking [16–23], 3D map
reconstruction [24–26], resolution determination [27,28], map sharpening [29], and model
building [30,31], all relying on neural networks that are trained on “big data” (Figure 1 and
Table 1).
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Figure 1. General workflow diagram of SPA 3D reconstruction. The asterisk (*) represents steps in
which deep learning algorithms have been actively applied recently. The remaining steps, including
motion correction, CTF estimation and 2D classification, were not discussed in this paper. For more
details, please refer to [32–34]. The deep learning-based approaches (right boxes) introduced in this
review were placed at each corresponding stage of the computational pipeline.

This review paper will introduce various neural network-based programs actively
developed and currently used in the cryo-EM, explaining how the new programs address
current gaps in the field, and propose methodological areas for further development.
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Table 1. Recently introduced deep learning-based cryo-EM image processing approaches.

Name Application Area Reference

DeepPicker Particle Recognition Wang et al., 2016 [16]
DeepEM Particle Recognition Zhu et al., 2017 [20]
TOPAZ Particle Recognition Bepler et al., 2019 [22]
WARP Particle Recognition Tegunov et al., 2019 [23]

crYOLO Particle Recognition Wagner et al., 2019 [17]
PIXER Particle Recognition Zhang et al., 2019 [21]

DeepCryoPicker Particle Recognition Al-Azzawi et al., 2020 [19]
DRPnet Particle Recognition Nguyen et al., 2021 [18]

CryoGAN 3D Reconstruction Gupta et al., 2021 [25]
CryoDRGN 3D Reconstruction Zhong et al., 2021 [24]

3DFlex 3D Reconstruction Punjani et al., 2021 [26]
DeepRes Local resolution Ramirez-Aportela et al., 2019 [27]

DeepEMhancer Map Sharpening Sanchez-Garcia et al., 2021 [29]
Emap2sec Model building Maddhuri Venkata Subramaniya et al., 2019 [30]
EMBuild Model building He et al., 2022 [31]

2. Pre-Processing: Particle Picking

One of the most important tasks in SPA cryo-EM for high-resolution 3D reconstruction,
second only to preparing optimal samples, is particle selection. During data collection,
a low electron dose is used to minimize radiation damage to biological samples, which
generates noisy images with low contrast, making it difficult to recognize particles from
raw micrographs [35]. For this reason, the reconstruction of a reliable 3D map requires a
sufficiently large set of particle images, the selection of which is the first bottleneck in the
image processing steps of SPA. Over the past decades, many particle recognition methods
have been proposed, most of which are based on template matching, edge detection
and feature extraction [36–38]. Template matching is the most popular particle selection
approach. Template matching uses the cross-correlation of patched micrographs with
calculated particle image templates [39]. This semi-automated particle selection method
performs well with “good quality images”, meaning those with strong signal-to-noise
ratio (SNR) and a good contrast. However, because this method depends greatly on the
quality of the micrographs, its performance is significantly reduced for heterogeneous
samples commonly found with biological macromolecules. The weakness of requiring
exemplary micrographs for dynamic, non-ideal biochemical samples also applies to other
conventional approaches (e.g., edge detection and feature extraction). If semi-automated
particle selection is not reliable, users resort to manual particle selection, which requires a
great deal of time and effort and introduces many opportunities for user error or bias.

Over the past few years, new automated particle selection methods have been intro-
duced (e.g., DeepPicker [16], DeepEM [20]) using deep learning algorithms and convolu-
tional techniques to extract features from massive quantities of data through layers in neural
networks [40]. A convolutional neural network (CNN) is a biological process-inspired deep
learning algorithm that differentiates one from the other by accepting input images and
assigning importance (weight and bias) to various aspects of the images [41]. Similarly to
multi-layer perceptions, each convolution layer is connected within the network; that is,
the values of one layer act as inputs of the next layer, so that the algorithm learns complex
patterns [17].

DeepPicker [16] and DeepEM [20] are some of the earliest models of fully automated
particle recognition tools. These particle selecting tools crop micrographs with a default
step size by a sliding window and generate several image patches, which are then the
input of CNN that classifies the extracted patches into positive (actual particle) or negative
(background noise) images. For training purpose, DeepEM requires hundreds of manually
selected particles [20], while DeepPicker has an alternative training scheme which uses
a pretrained network with similarly shaped molecules as training data for particle pick-
ing [16]. These neural network-based particle picking tools have contributed significantly
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to particle selection from challenging datasets. However, these approaches still have some
drawbacks. The computational costs can be high, as these programs generate several image
patches by a sliding window to crop each collected micrograph and grouping these patches
into “good” or “bad” [17,18,21]. In addition, these approaches are not suitable for large
particles or samples with ice contamination.

Recently, several advanced deep learning-based particle picking packages have been
released to address the above issues, such as TOPAZ [22], WARP [23], and crYOLO [17].
TOPAZ, one of the most popular particle-picking tools in recent years, uses a similar deep
learning system to DeepPicker. In contrast to existing deep learning-based particle selection
tools, including DeepPicker and DeepEM, TOPAZ uses a relatively small number of training
samples, accomplished by using unlabeled samples in place of negative samples [22]. Since
negative data corresponding to non-particles have more diverse characteristics, the manual
selection of non-particles is an important but tedious task. To overcome this challenge,
TOPAZ formulates the problem description as a positive-unlabeled learning problem,
which trains a model given a small number of positive samples and the remaining samples,
which are unlabeled, are understood to be non-particles. WARP employs a deep residual
network (ResNet) architecture [42], which allows for the training of deeper CNNs by
effectively skipping some connections or layers [23]. WARP was trained with real data from
the electron microscopy public image archive (EMPIAR) [43] and synthetic data from the
protein data bank (PDB) [44]. In addition, WARP corrects micrograph motion and estimates
the local defocus, which ultimately identifies high-contrast artifacts and provides accurate
particle picking results. crYOLO utilizes an object detection approach called “You Only
Look Once” (YOLO) [45], which is a state-of-the-art approach in deep neural network in
terms of both speed and accuracy. The advantage of crYOLO is that it requires only a single
pass of the full image instead of multiple passes of cropped regions [17]. Moreover, as
crYOLO uses a single pass of the full image, it is more appropriate for detecting the larger
context around a particle of interest [17]. These advanced, fully automated, deep learning
approaches appear to be more suited for cryo-EM image processing than the conventional
methods. Nonetheless, as the size of cryo-EM datasets dramatically increases without the
improvement of SNR, the field must pay more attention to the issue of low-SNR images,
which significantly reduce the detection accuracy of these advanced particle picking tools.

3. Three-Dimensional (3D) Map Reconstruction

SPA cryo-EM is a method that determines the 3D structure of macromolecules at the
atomic level by imaging many individual particles, isolated from a biological sample, frozen
in a cryogenic state [46]. Although it deals with biological substances, 3D reconstruction is
an astonishing product of physical and mathematical theories. Since it is not the main topic
of this review paper, the detailed theories describing 3D reconstruction will not be covered,
but we will briefly introduce some basic principles used in SPA cryo-EM.

Transmission electron microscopy (TEM) produces 2D projection images, so the basic
concept of SPA 3D reconstruction is to generate a 3D model by computationally combining
various 2D images representing different orientations/views of the biological sample [47].
The most important part of this process is to accurately estimate the orientation and trans-
lational shift (pose) of each individual particle image extracted from the raw micrograph.
However, as mentioned in the previous section, cryo-EM collects images using a very low
electron dose to protect the sample from radiation damage, which results in a low SNR thus
hindering accurate pose estimation. To improve the SNR, several particle images are col-
lected and aligned in the same orientation through several computational approaches [48].
There are various strategies for pose estimation that have been implemented in EM im-
age processing software packages. One approach is projection matching [49], in which
unknown poses of each experimental image are assigned by comparing the unknown
pose with a computationally produced initial 3D reference model. Although the projection
matching approach is relatively simple, the accuracy of pose estimation is significantly
reduced at lower SNR, so projection matching requires high computational costs [34].



Life 2022, 12, 1267 5 of 12

In the advancement of 3D reconstruction algorithms in SPA cryo-EM, some approaches
using statistical weighting of projection images have been introduced, including maximum-
likelihood (ML) approaches [50,51]. In a ML implementation, each individual particle
image is not directly assigned a single pose (the best match). Instead, each particle image
is given a set of probable of orientations and similarity scores which eventually are used
as weights in 3D reconstruction [34,36,47,50,51]. During each iteration, the estimation
scores are improved until meeting a convergence criterion [51,52]. However, as it is still
difficult to search all possible 3D maps, results heavily depend on the first estimate of
the initial 3D model, resulting in an artifact known as model-bias [34]. More recently, an
implementation with ab-initio (initial model-free) model using a stochastic gradient descent
(SGD) algorithm has been proposed to address the model-bias derived misassignment
issue [9]. Although SGD minimizes optimization problems in SPA 3D reconstruction, it is
not sufficient for high-resolution 3D reconstruction (further refinement steps are required)
and is not a complete initial model-free approach as an initial guess for modeling is still
needed [51]. There are still many improvements needed, but SGD has recently received
a lot of attention because it greatly advances the application of the deep learning field to
cryoEM [53,54].

3.1. Model Building, 3D Classification, and 3D Refinement

The molecular mechanisms of proteins, protein complexes, and other biological macro-
molecules are essential for maintaining life. Until recently, however, these molecular
mechanisms have been largely inferred from static 3D structures. Now, if we can analyze
the presence and distribution of different conformations related to the versatile roles these
macromolecules play, a more complete understanding of the secrets of life can be achieved.

SPA cryo-EM is considered an optimal approach for determining high-resolution 3D
structures of a variety of macromolecules, especially for heterogenous, flexible, and/or dy-
namic complexes [55,56]. The predominant approach used for heterogenous reconstruction
in SPA image processing packages is a discrete classification, such as 3D classification or
heterogeneous refinement (e.g., local refinement [10,36] and multi-body refinement [57]),
in which each particle can only belong to one class or pose, or to another. There is no
information about possible relationships between classes. For such an approach, it is neces-
sary to specify an initial model to provide information on the underlying structural state,
which can result in a fatal errors or biases as described above [24]. The most problematic
point is that the 3D reconstruction approach is not suitable for observing various confor-
mations of complexes that undergo continuous structural changes [24]. More recently, a
linear subspace model (Principal Component Analysis, PCA [58,59]), called 3D Variability
Analysis (3DVA) [60], has been proposed to resolve the continuous distribution of related
conformations of macromolecules. One caveat, however, is that 3DVA may introduce
artifacts when the structural change is incorrectly approximated by linear interpolations
through underlying volumes [24,60].

In SPA cryo-EM, utilization of deep learning algorithms is mostly limited to pre-
processing steps, including raw image denoising [61] and particle selection [16–21]. Very
recently, a few neural network-based approaches, which are feature unsupervised learning
and no requirement for prior training, have been applied to determine SPA 3D reconstruc-
tions, including CryoGAN [25], CryoDRGN [24], and 3D Flexible Refinement (3DFlex) [26].
CryoGAN [25] modifies generative adversarial networks (GANs) [62], in which the genera-
tor network of a classical GAN is replaced by a cryo-EM Physics Simulator, to reconstruct a
3D model for the continuous variability of biomolecules. CryoDRGN [24] uses a modified
variational auto-encoder (VAE) [63], called amortized variational inference approach, for
the posterior estimation of the volume, while 3DFlex [26] adopts an auto-decoder model
performing direct inference to increase the accuracy of the posterior estimation of the
conformational coordinates. Although the auto-decoder approach enables the reconstruc-
tion of flexible regions with higher resolution to understand more detailed information
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about the dynamics of macromolecules, it requires more computational resources than the
encoder-based approaches [26].

3.2. Postprocessing

Along with the remarkable advancements in equipment and image processing pro-
grams, high-resolution 3D EM maps of various complexes using SPA cryo-EM have reached
the point where detailed information about the biomolecules can be revealed. For this
reason, resolution evaluation and verification of reconstructed 3D maps is increasingly
important. Despite this importance, the concept of resolution has not yet been completely
defined in the electron microscopy field, and the various approaches currently used have
yet to be fully agreed upon [64,65]. Currently, the most commonly used approach to de-
fine the resolution of the 3D EM map is based on Fourier Shell Correlation (FSC) curves,
calculating the correlations of different resolutions of Fourier space at a given threshold
between two independent 3D maps of the same molecule [66,67]. However, this approach
remains somewhat controversial for a few reasons. First, this approach requires setting
a reference threshold for the measured information [27]. Second, the assessment of the
3D reconstruction through this approach is not sensitive to isotropic filtering of the whole
dataset and may vary depending on the local features of the density map [27,28].

One of the first local resolution approaches to evaluate the quality of local regions
of an EM map is BlocRes [64], which estimates the resolution of local regions based on
FSC through a sliding window over the entire density map. In addition to the limitations
of the FSC described above, this approach has the additional disadvantage of having to
specify the size of the moving window [27,64]. Another recently developed approach is
ResMap [65] which estimates the local resolution by detecting a 3D sinusoidal wave above
the noise level for each point on a density map. More recently, MonoRes [68] has been
proposed to define the local resolution of a 3D electron density map. This most recent
approach is based on a similar principle to the ResMap method, but it uses monogenic
amplitude at different frequencies. This MonoRes approach estimates the local resolution
by comparing the monogenic signals with the corresponding monogenic amplitude of
the noise within a defined resolution range. However, all approaches, including recently
proposed methods, require significant computational processing time, and additional
estimation of noise variance, so the final estimates produced by various approaches differ
considerably [28].

With the emergence of deep learning algorithms as new technology in the cryo-EM
field, some neural network-based approaches have also been proposed for local resolution
estimation procedures [27,28]. Among them, the recently released CNN-based automatic
local resolution estimation method, called DeepRes [27], addresses some of the drawbacks
of the conventional approaches that are currently being used in cryo-EM. In particular,
it is possible to detect local changes in the quality of 3D EM maps caused by various
post-processing procedures, such as isotropic filtering, model/non-model-based local
sharpening, and noise suppression, which are frequently used in the course of a modeling
workflow [27]. As there is no universally accepted approach to determine local resolution
estimation yet, and various debates continue, further development and research of deep
learning-based methods for this application are necessary.

4. Atomic Model Building

As a result of recent innovative technological advances in cryo-EM instrumentation
and analysis tools, including those described in this review, structural analysis of important
biological systems that were previously intractable has become possible. The broadening
diversity of analytic approaches is fueling sensational innovation that can reveal the secrets
of biology at a molecular level, with wide-ranging impacts on human health and our un-
derstanding of the world around us. In fact, the number of high-resolution maps obtained
by cryo-EM is rapidly increasing (Figure 2) [69], and in recent years, it is approaching the
number of 3D models reconstructed through XRC, which has long been the standard of
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structural techniques [44,69,70]. However, the goal of structural analysis is not simply to
reconstruct a 3D map in atomic detail, but to understand what those atomic structures sug-
gest about molecular mechanisms such as interactions between biological macromolecules.
In this regard, there is still much room for growth.
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High-resolution (<3 Å) EM maps are now sufficient for determining high-quality
atomic structures using only slightly modified software [71,72] originally designed for XRC.
In addition, de novo atomic model building using 3D maps with near-atomic resolution
(around 4 Å), which accounts for the greatest portion of cryo-EM maps deposited currently,
is now commonplace [73–75]. However, many 3D EM maps are still reconstructed at
intermediate resolutions, ranging from ~5–8 Å (Figure 2), due to inherent properties of
macromolecular complexes (e.g., high flexibility and multiple conformational states) which
have a significant impact on high-resolution 3D reconstruction, and these intermediate res-
olution maps are insufficient for determining atomic structures [30,69,76]. Moreover, with
the recent increase in the number of intermediate resolution maps obtained through sub-
tomogram averages of cryo-electron tomography (cryo-ET), the most rapidly developing
method in the cryo-EM field, accurate structural determination approaches for intermediate
EM maps are urgently needed [31,77–79]. Indeed, as of 2022, only about 2000 out of 4000
maps with intermediate resolution (in the range of ~5–8 Å) deposited to EMDB, have a
complete atomic structure [44,69].

Efforts are underway to solve this urgent issue, and several reliable approaches are
currently being explored. One common approach is to model the atomic structure by
fitting a given template, such as a previously determined homologous atomic structure or
a predicted structure based on amino acid sequences, to an EM map through a series of
refinement processes [80–83]. However, many problems remain with these approaches to
atomic model building using low-resolution EM maps. The success of the model fitting
approach described above requires a high degree of user expertise, so the final model
is heavily influenced by the skill and experience of the individual user performing the
fitting and refinements. Model fitting for protein complexes with flexible regions and
various conformational states requires complicated procedures which inevitably introduces
errors in the final model, while also incurring high computational costs [31]. In addition,
the software used in most approaches was primarily designed for single-chain protein
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fitting, but we now are often investigating macromolecular complexes made up of multiple
proteins or proteins and nucleic acids. Thus, EM map segmentation for each subunit of
the complex must be performed before full-scale model fitting [30,31]. For accurate map
segmentation, the information contained in the EM map is crucial, but low-resolution
EM maps carry less information than high-resolution maps, increasing the challenge of
building a reliable complete structure through model fitting approaches for an intermediate
resolution EM map, especially for molecular complexes [31].

To address such challenges, some deep learning-based approaches have been pro-
posed to automatically build the atomic structure from relatively low-resolution EM maps,
including Emap2sec [30] and EMBuild [31]. Emap2sec has implemented a CNN-based
algorithm which has the advantage of performing local structure detection across the whole
3D map [30]. Its performance was benchmarked using various EM maps with intermediate
resolution ranging from 5 Å to 10 Å, resulting in more accurate detection of secondary
structure with improved validation scores in the resulting 3D maps compared to those ob-
tained using traditional approaches [71,84]. However, despite showing improved detection
accuracy, an observed limitation is in building the specific secondary structure, such as
alpha-helices and beta-strands into the detected local regions [30]. More recently, another
deep learning-based approach (called EMBuild) using a nested U-net (UNet++) [85], a fully
convolution network (FCN) which is a more powerful architecture for image segmentation,
has been applied to atomic model building from intermediate resolution EM maps [31].
EMBuild was evaluated not only on SPA EM maps (4–8 Å), but also maps obtained by
sub-tomogram averaging (4–9 Å), and it showed excellent performance in building reliable
atomic structures into intermediate resolution 3D maps [31]. Although many modifications
are still needed in the future, recently developed deep learning-based algorithms are ex-
pected to serve as an essential tool for simplifying structural determination in intermediate
resolution cryo-EM maps.

5. Future Applications

Through the era of the “resolution revolution” of cryo-EM, brought about by advances
in instrumentation and sample preparation, we have learned a tremendous amount of struc-
tural and functional information about numerous, important macromolecular complexes.
However, due to the inherent characteristics of macromolecular complexes that perform
various roles in cells (e.g., heterogeneity), structural analysis becomes more complicated
compared to analysis of individual proteins, and many challenges are amplified in these
higher quality data sets [13]. To overcome these problems that cannot be solved by existing
structural analytic methods, several approaches have been introduced building on the
advancements of deep learning-based algorithms. In particular, CNN-based models excel
in image classification and particle recognition steps, which are the most fundamental
steps in the cryo-EM image processing workflow [86]. Moreover, some neural-network
algorithms capable of reconstructing high-resolution 3D structures for heterogenous sam-
ples are also proposed [24,25,52]. More recently, deep learning-based approaches related
to post-processing, the final step associated with the enhancement of the reconstructed
3D electron density map, have also been launched [29]. Thus, we are in the early stages
of a period of rapid advancement in data analysis capabilities built on the strength of AI
and machine learning. This advancement will open a new frontier in the types of samples
accessible to high resolution characterization by cryoEM.

In SPA cryo-EM, scientists typically analyze the structures and functions of various
molecular complexes which have been isolated and taken out of their original context in
cells. These purified samples are used in in vitro experiments to understand their important
physiological processes. However, this approach does not capture the characteristics of
molecular complexes in cells, especially versatile protein complexes that function through
interactions with several functionally synchronized partners in their original environments,
called protein communities [87,88].
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The next frontier in analyzing these protein communities is to directly observe and
structurally characterize native cell extracts. A recent study combined electron microscopy
and mass spectrometry data to visualize each protein complex within the communities
in native cell extracts [89]. In addition, with the recent advancements in cryo-EM [3], it
is now possible to obtain high-resolution data on native cell extracts, and many related
studies have been published recently [13,88,90,91]. However, despite these advances, the
high complexity of cell extracts makes it difficult to properly quantify and 3D reconstruct
molecular complexes interacting within the cell extract [92]. To meet this need, neural
network-based approaches are being developed to effectively detect and isolate in silico
particles of different shapes and sizes within protein communities from EM images of cell
extracts [13]. The biggest obstacle to this strategy is how effectively we can determine the
3D model of each component from heterogeneous 2D projections of imaged cell extracts [92].
Advances in recently published AI-based protein structure prediction tools [93–95] have
opened a new path for the study of these cell extracts. Researchers will now be able to easily
access reliable model prediction tools, gaining insight into the 3D structure of molecular
complexes applicable to the study of native cell extracts.
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