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Abstract: The carpal bones are eight small bones with irregularities and high curvature on their
surfaces. The 3D model of the carpal bone serves as the foundation of further clinical applications,
e.g., wrist kinematic behavior. However, due to the limitation of the Magnetic Resonance Imaging
(MRI) technique, reconstructed carpal bone models are discretely undersampled, which has dramatic
stair-step effects and leads to abnormal meshes on edges or surfaces, etc. Our study focuses on
determining the viability of various smoothing techniques for a carpal model reconstructed by
in vivo gathered MR images. Five algorithms, namely the Laplacian smoothing algorithm, the
Laplacian smoothing algorithm with pre-dilation, the scale-dependent Laplacian algorithm, the
curvature flow algorithm, and the inverse distance algorithm, were chosen for evaluation. The
assessment took into account the Relative Volume Difference and the Hausdorff Distance as well as
the surface quality and the preservation of morphological and morphometric properties. For the five
algorithms, we analyzed the Relative Volume Difference and the Hausdorff Distance for all eight
carpal bones. Among all the algorithms, the scale-dependent Laplacian method processed the best
result regarding surface quality and the preservation of morphological and morphometric properties.
Based on our extensive examinations, the scale-dependent Laplacian algorithm is suitable for the
undersampled carpal bone model with small volume and large curvature.

Keywords: undersampled model; model smoothing; wrist joint; carpal bone

1. Introduction

Wrist pathologies can cause persistent discomfort and motor disorder, which interfere
with daily activities and potentially lower life quality. It was reported that around 10% of
the general population in the UK suffered nonspecific hand and wrist pain [1]. Another
study claimed that wrist and hand pain accounted for a consultation prevalence rate of
190 in 10,000 patients per year in total [2]. Deeper investigation into the wrist mechanism is
therefore highly warranted.

Non-invasive interventions are extremely meaningful for either in-vivo or in-vitro
investigations into wrists. Medical imaging techniques such as Computerized Tomography
(CT) and Magnetic Resonance Imaging (MRI) have been proven to substantially improve di-
agnosis and treatment procedures for bones [3]. However, most contemporary approaches
are confined to 2D representations, which are counterintuitive and sometimes inaccurate
regarding spatial information [4]. Compared to 2D images, 3D models provide realistic
visualization of anatomical features and can be utilized in orthopedics to visually check the
bone shape and joint structure as well as quantitatively assess various clinical states [5],
such as osteoarthritis, which may result in the change of bone volume. Mavrogenis et al.
demonstrated that employing bone models derived from CT data and computer-assisted
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navigation systems has been proven to be an effective technique of surgical assistance [6].
A 3D visualization of the wrist bones is of therapeutic importance due to the tiny size
and complicated anatomical features of them, which are challenging to observe in 2D
images [7]. With 3D carpal models, analyses—e.g., of wrist kinematic behavior—can be
directly conducted on a virtual model for therapy planning or surgery assessment [8,9].

As the precondition of the above-mentioned analysis, the individual bone model plays
a fundamental role. The typical process to generate a bone model can be simplified with the
following steps: (1) acquisition of stacked image sets; (2) segmentation of the desired objects;
(3) reconstruction and smoothing of the object surface. However, due to the small scale
(e.g., the volume of the pisiform can be as low as 854 ± 203 mm3 in men and 570 ± 122 mm3

in women [10]) and large curvature of the carpal bones, the acquisition appears often
undersampled. Meanwhile, high-frequency information on stacked 2D images, which may
belong to the cortex and sponge of the bones, is rather delicate under image processing.
Hence, a smoothing procedure of the bony structures remains necessary. Various algorithms
for the surface representation may result in completely different outcomes, e.g., irregular
meshes on edges or surfaces with high curvatures. Due to the tiny volume and sophisticated
geometry of the carpal bones, volume shrinkage and the ensuing loss of anatomical features
during the smoothing procedure degrade the model accuracy massively. The conventional
approaches integrated into, e.g., ITK-SNAP [11] or 3DSlicer [12] either simply stack the
2D images with scanning parameters, which results in the stair-step effect, or smooth
the model by losing the bony structure dramatically (see Figure 1). By introducing a
proper approach, the model surface could be smoothly refined while maintaining essential
anatomical features.
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Figure 1. Anatomical information loss. Left: Carpal bones shown in the ITK-SNAP in a voxel
representation. Right: Same bones smoothed by the build-in smoothing function in the ITK-SNAP.
Dashed boxes with the same color highlight the anatomical features.

Within this paper, we conduct a feasibility study to characterize the smoothing effect
of different approaches on the carpal bones, aiming to conclude an optimal approach for
carpal bone smoothing. We have made three contributions: (1) we detailed the commonly
utilized smoothing algorithms; (2) we implemented the algorithms on our in vivo gathered
human wrist MRI sets; (3) we then compared and explained the results mathematically of
each algorithm and offered a fitted smoothing strategy for carpal bones with high quality
and accuracy.

2. Materials and Methods
2.1. Data Acquisition and Preprocessing

The datasets involved in this study were adapted from our former research, which has
been approved by the institutional review board (EK 171/10), and written informed consent
requirements were obtained [13]. We randomly selected MRI scans and corresponding
segmented ground truths from ten subjects. The reconstructed models were directly
outputted through the ITK-SNAP without any further build-in smoothing procedures.
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2.2. Laplacian Smoothing

Laplacian smoothing is a typical approach for polygonal mesh smoothing, which is
also known as diffusion. The essential principle is that the vertices of a mesh are shifted
in the Laplacian direction in steps. The smoothing equation is given in differential form
as follows:

∂X
∂t

= λL(X), (1)

where X denotes the mesh vertices, L is the Laplacian operator, and λ is a positive coefficient
that controls the diffusion speed.

More rigorously, consider that a mesh M with vertex set V = {1, . . . , n} is given
by a tuple (K, p), where K ⊆ 2V is a simplicial complex and p : V → R3 maps the ver-
tex i ∈ n to its position pi. Laplacian smoothing can be discretely approximated as a
repeated replacement of position pi of the vertex i by the umbrella operator U (pi) [14,15]
to the following:

p(t+1)
i = p(t)

i + λU (pi)
(t), (2)

U (pi) =
1
m

 ∑
j∈N1(i)

qj

− pi, (3)

where N1(i) denotes the one-ring neighbors of the vertex i and m is the number of neighbors
of the pi (see Figure 2). The umbrella operator U can be seen as a low-pass filter.
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points on the one-ring neighbor of the vertex pi.

2.3. Laplacian Smoothing with Pre-Dilation

As mentioned previously, Laplacian smoothing reduces the high-frequency signals
and hence causes volume shrinkage. To avoid this volume loss, we propose a pre-dilation
algorithm before the smoothing to compensate for such an impact.

Given a position pi = (xi, yi, zi) of the vertex i of a mesh M, the dilation is defined
as follows: 

xi = xi + α · nxi

yi = yi + α · nyi

zi = zi + α · nzi

, (4)

where α is a positive coefficient and nx, ny, and nz represent the normal components of
the corresponding point. Since the total complexity for volume preservation is linear, the
dilatation is frequency-insensitive. When compared to previous scaling methods, our
technique can maintain the absolute location.

The model volume reduces gradually throughout the Laplacian smoothing, and the
process is terminated as (1) the smoothed surface contacts the boundary of the original
surface or (2) the volume difference between the smoothed model and the original model
reaches a certain threshold (e.g., 0.5% of the original volume). The Algorithm 1 is summa-
rized underneath.
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Algorithm 1: Laplacian smoothing with pre-dilation

Input: Vt, pt, λ, α, threshold
Output: Vt+1, pt+1

1. Initialization: λ, α

2. Dilation using Equation (4)
3. while volume difference > threshold do
4. p(t+1)

i ←− p(t)i + λU (pi)
(t)

5. volume difference = volume of Vt+1 − volume of Vt

6. end while

2.4. Scale-Dependent Laplacian Smoothing

Typically, we utilize the umbrella operator to approximate the Laplacian operator. As
expressed in Equation (2), the vertex is assumed to have edges with the same length, and all
angles between neighboring edges around the vertex are equal. Since actual meshes have a
variety of triangles of varying sizes, the scale-dependent umbrella operator is defined as
follows [16,17]:

U (pi) =
2
E ∑

j∈N1(i)

pj − pi∣∣eij
∣∣ , (5)

E = ∑
j∈N1(i)

∣∣eij
∣∣, (6)

As illustrated on the left side of Figure 3, eij is the edge connecting the vertices in
positions pi and pj.
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2.5. Curvature Flow

The smoothing approach based on curvature flow makes no use of the surface’s
inherent features. It smooths the surface by moving along the surface normal n with a
speed equal to the mean curvature κ [18]. Equation (1) can be rewritten as follows:

∂xi
∂t

= −κini, (7)

κi =
κ1 + κ2

2
. (8)

The definition of the mean curvature around a vertex is defined as follows:

κ = div n, (9)

where div(·) is a vector operator in vector analysis that corresponds a vector field in a
vector space to a scalar field [19].

We can use a differential geometry curvature as an approximation to the (x, y, z)
coordinates of the vertex to the following:

κn =
∇A
2A

, (10)
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where A is the area of a small region around the vertex and∇ denotes the gradient. A vertex
xj in its position pj and the area of all the triangles of the one-ring neighbors would be taken
into consideration, while the area of the triangle uses the cross-products of adjacent edges.

The expression is reformed as follows:

− κn =
1

4A ∑
j∈N1(i)

(
cot αj + cot β j

)(
pj − pi

)
. (11)

In the equation above, αj and β j are two angles opposite to the edge in the two triangles

having the edge eij, and Aα
j and Aβ

j are the areas of the triangles, as shown in Figure 3.
Similar to previous approaches, we may reduce the non-linear formulation of the

curvature normal method into the following linear system with an implicit integration
known as the backward Euler method [17]:

(I − λ dt K) Pn+1 = Pn. (12)

Then, the equation can be normalized to be used in explicit integration for quick
smoothing [17]:

(κn)normalized =
1

Σj

(
cot αl

j + cot αr
j

) ∑
j

(
cot αl

j + cot αr
j

)(
Pi − Pj

)
. (13)

2.6. Inverse Distance

From Equations (3)–(5), it is obvious that the definition of the weights ωi in the
umbrella operator varies the smoothing strategy, e.g., ωi =

1
m in Equation (3).

Another option of the weights is the inverse distances between P and its neighbors
Qi [20], as shown in Figure 2:

ωi = ‖P−Qi‖−1. (14)

The local update rule still follows Equation (2).

2.7. Validation

Since the real carpal bone surface geometry cannot be completely obtained in vivo
and any smoothing process on the model surface causes unavoidable loss of anatomical
information, we selected models directly outputted by the ITK-SNAP without any built-
in processing as ground truths, where every convex ridge represents a real anatomical
boundary on the selected carpal bone, and then compared them to smoothing results from
the employed approaches to characterize the approach that offered the best compromise
between smoothness and fidelity.

Therefore, we utilized various methods for the validation of the referred smooth-
ing methods, which are described underneath. For convenience, we denote the Lapla-
cian smoothing method as M1, the Laplacian method with pre-dilation as M2, the scale-
dependent Laplacian method as M3, the curvature flow method as M4, and the inverse
distance method as M5. We empirically applied a 5% dilatation on the origin model as
input for M2. As M2 converges automatically, all other methods were manually set to
terminate after 30 iterations.

2.7.1. Quantitative Metrics

We employed the Relative Volume Difference (RVD, %) and the Hausdorff Distance
(HD, mm) as the surface distance measures. The VD and the HD are defined as follows:

RVD(G,S) = |VS | − |VG ||VG |
·100 , (15)
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HD(G,S) = max
(

max
x∈G

d(x,S), max
y∈S

d(x,G)
)

. (16)

where G and S represent ground truth and segmentation, respectively; d(a, b) the nearest
Euclidean distance between a surface point a and the surface b; and |·| the number of
corresponding surface voxels. A value of the RVD and the HD equal to zero means a
perfect segmentation.

As the ridges on the ground truth model portray the real anatomical geometry, the
HD implies how the involved approach maintains such information by measuring the
maximum distance between two comparisons. The RVD measures the degree of the volume
change. Since the RVD is given as a signed number, it reveals model expansion or shrinkage
as well.

2.7.2. Qualitative Metrics

Following quantitative assessment, we further investigated how the employed smooth-
ing approaches preserved the anatomical features, which can intuitively identify the dis-
crepancies in smoothing outcomes. Specifically, we compared the morphological and
morphometric features of the scaphoid and trapezium due to their highly complex spatial
geometries [21,22].

Compson et al. outlined the morphological landmarks of the scaphoid as follows [21]:
(1) the scaphoid has six facets, four of which are articular facets; (2) the lunate facet is
semilunar in shape and faces medially and slightly into the palmar direction; (3) the
capitate facet is larger and concave and faces medially and slightly distally; (4) the dorsal
edge of the capitate facet is more concave than the palmar and can contain a notch; and
(5) the position of the capitate facet varies in its relationship to the proximal end of the
scaphoid, which leads to an associated variability in the width of the lunate facet (see
Figure 4).
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S.L. = Scapho-lunate joint. S.R. = Scapho-radial joint. S.T.T. = Scapho-trapezium-trapezoid joint.

The morphological landmarks of the trapezium are as follows [23]: (1) the trapezium
displays six facets, comprising four articular facets and two other non-articular palmar and
dorsal facets; (2) the largest articular facet is the thumb metacarpal facet, which is saddle-
shaped and faces distally and radially (see Figure 5D), being radioulnarly concave while
palmardorsally convex; (3) the second largest of the articular facets is the trapezoid, which
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is elongated and concave and faces ulnarly as the most irregular surface (see Figure 5C);
(4) the concave scaphoid facet articulates with the tubercle of the scaphoid, and it is rounded
and the most proximal of all the articular surfaces; (5) the most prominent feature on the
palmar facets is the trapezial ridge (see Figure 5C), which is a bony ridge that runs from
proximal to distal, facing ulnarly; and (6) the dorsal facets displays two distinct tubercles
(see Figure 5D).
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3. Results
3.1. Quantitative Metrics

As listed in Table 1, M1 suppressed the volume the most. Compared to M1, M2
performed exceptionally well in terms of volume retention. M3, M4, and M5 all had a
comparable effect on mitigating the volume shrinking effect during the smoothing process.

Table 1. RVD (in %) of five methods on eight carpal bones.

Method Scaphoid Lunate Triquetrum Pisiform Trapezium Trapezoid Capitate Hamate

M1 −7.139 −7.625 −9.1 −12.59 −7.292 −8.755 −5.589 −6.379
M2 0.3133 0.436 0.181 0.3328 0.4872 0.4425 0.3548 0.3525
M3 −1.526 −1.667 −1.925 −2.723 −1.653 −2.217 −1.114 −1.453
M4 −1.373 −1.479 −1.755 −2.414 −1.456 −1.82 −1.043 −1.298
M5 −1.445 −1.554 −1.842 −2.527 −0.01525 −0.01883 −0.01097 −0.01361

The mean HD and Root Mean Square (RMS) of the five methods on eight carpal bones
are shown in Table 2. The HDs of M3, M4, and M5 have similar standard deviations and
are all smaller than those of M1 and M2.

Table 2. HD (in mm) of five methods on eight carpal bones.

Method Scaphoid Lunate Triquetrum Pisiform Trapezium Trapezoid Capitate Hamate

M1 0.176 ± 0.217 0.188 ± 0.226 0.198 ± 0.242 0.205 ± 0.244 0.180 ± 0.227 0.193 ± 0.241 0.170 ± 0.214 0.199 ± 0.245
M2 0.118 ± 0.145 0.115 ± 0.144 0.121 ± 0.1472 0.096 ± 0.117 0.121 ± 0.151 0.129 ± 0.160 0.124 ± 0.153 0.146 ± 0.182
M3 0.075 ± 0.096 0.074 ± 0.095 0.079 ± 0.101 0.083 ± 0.102 0.082 ± 0.104 0.079 ± 0.103 0.073 ± 0.096 0.075 ± 0.098
M4 0.073 ± 0.093 0.072 ± 0.093 0.076 ± 0.097 0.077 ± 0.099 0.079 ± 0.101 0.077 ± 0.100 0.070 ± 0.093 0.075 ± 0.098
M5 0.074 ± 0.094 0.074 ± 0.095 0.077 ± 0.098 0.081 ± 0.099 0.081 ± 0.103 0.079 ± 0.102 0.072 ± 0.095 0.077 ± 0.101
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Figures 6–9 visualize the HD distribution along the bone surface smoothed by the
approaches employed on all of the eight carpal bones. Generally, M1 has the largest HD
distribution and M3 has the smallest on all the bones. M2 performs better than M1; however,
M2 does not work well at the surface with negative curvature (the scaphocapitate facet in
Figure 6a). M3, M4, and M5 share a similar outcome, although M3 achieves less distortion
on the edge (shown in Figure 6b).
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(a) (b) 

Figure 6. Heat map of the HD between the original model and the model after processing of the
scaphoid (a) and the lunate (b).
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3.2. Surface Quality

The surface quality for the used algorithms is shown in the following section. Figure 10
demonstrates the original model of a scaphoid bone and the results of M1 to M5.
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Figure 10. Smoothing quality of models smoothed by different approaches. Red dashed boxes: Oscilla-
tory ripples on the surface.

The original model suffers from a stepwise surface due to the directly stacked seg-
mentation slices. All the smoothing methods significantly improved the surface quality
by reducing the stair-step effect in the original model. M1 and M2 offered the best result
regarding surface smoothness. M3, M4, and M5 share similar results, where the majority of
the stepped edges were eliminated while some of them remained. Additionally, compared
to M3, M4 and M5 generated unnecessary local oscillatory ripples on the edges.

3.3. The Preservation of the Morphological and Morphometric Features

Figures 11 and 12 illustrate the morphological characteristics of the scaphoid and
their preservation status. The comparison between M1, M2, M3, M4, and M5 clearly
illustrates the damage of the different smoothing strategies regarding morphological and
morphometric features. As shown in those figures, both M1 and M2 have a considerable
negative effect regarding the form of the models, resulting in a significant deterioration
of the anatomical features. In Figure 13, we also notice the unnecessary expansion on the
scaphocapitate concave facet.
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Figure 13. Comparison of scaphoid model overlap. Pink: Original model obtained by segmentation;
Blue: M1; Green: M2; Plum: M3; Yellow: M4; Purple: M5.

The preservation of the morphological characteristics of the trapezium is displayed in
Figures 14 and 15. As a result of the smaller bone volume compared to the scaphoid, the
morphological features on the trapezium were generally preserved. In Figure 14, unlike the
results from M3–M5, both M1 and M2 have a remarkable negative effect on the preservation
of the thumb metacarpal facet. Figure 15 shows the preservation of the trapezial ridge. All
approaches preserve the trapezial ridge, though the results in M3–M5 are better compared
to M1 and M2.



Life 2022, 12, 770 12 of 14

Life 2022, 12, x FOR PEER REVIEW 12 of 15 
 

 

 

Figure 13. Comparison of scaphoid model overlap. Pink: Original model obtained by segmentation; 

Blue: M1; Green: M2; Plum: M3; Yellow: M4; Purple: M5. 

The preservation of the morphological characteristics of the trapezium is displayed 

in Figures 14 and 15. As a result of the smaller bone volume compared to the scaphoid, 

the morphological features on the trapezium were generally preserved. In Figure 14, un-

like the results from M3–M5, both M1 and M2 have a remarkable negative effect on the 

preservation of the thumb metacarpal facet. Figure 15 shows the preservation of the tra-

pezial ridge. All approaches preserve the trapezial ridge, though the results in M3–M5 are 

better compared to M1 and M2. 

 

Figure 14. The preservation of the thumb metacarpal facet of the trapezium. All models are pre-

sented in the same orientation. Black dashed boxes: Loss of features. 

Figure 14. The preservation of the thumb metacarpal facet of the trapezium. All models are presented
in the same orientation. Black dashed boxes: Loss of features.

Life 2022, 12, x FOR PEER REVIEW 13 of 15 
 

 

 

Figure 15. The preservation of the trapezial ridge of the trapezium. All models are presented in the 

same orientation. Red and green dashed lines: Loss of features. 

4. Discussion 

While M1 effectively improves the model’s surface quality, according to Equations 

(2) and (3), M1 suppresses vertices on the surface at each iteration, resulting in a significant 

volume reduction, which is incompatible with objects with limited volume and consider-

able curvatures such as the carpal bones. Meanwhile, since each step on the original model 

represents a real bony contour, M1 loses anatomical features the most. 

Such volume shrinkage can be relieved by implementing dilatation before Laplacian op-

eration, as in M2. Nevertheless, the expansion of M2 is rather empirical, which is individual-

dependent and thus hardly practical for routine processing. Furthermore, the processing 

might damage the crucial surface morphological and morphometric properties as M2 shares 

the same smoothing strategy as M1. Figure 13 shows that the model processed by M2 expands 

on the scaphocapitate facet, and the articular concavity moves slightly centripetally, which 

decreases the scaphocapitate distance, resulting in a potential interference on inter-bone kine-

matic characters or even a cartilage modeling failure in terms of a more detailed wrist model. 

Such a drawback is explained through Equation (4), which enlarges the model homogene-

ously by setting the normal direction of individual voxels outwards generally. As a result, the 

sections of the model surface with positive curvature and negative curvature are equally un-

duly extended. Thus, the scaphocapitate facet curvature varies when no compensation 

through the following Laplacian operation is performed. 

M3, M4, and M5 smooth the models in a similar manner, as all of them are variations of 

the traditional Laplacian method. M4 and M5 perform admirably in terms of volume preser-

vation and morphological and morphometric feature retention as they do not change the 

model shape at the facet that is flat. Therefore, fewer vertices are to be handled, leading to 

fewer differences between the smoothed and original models and a smaller HD listed in Table 

2. However, in Figure 6, the methods do not converge at locations with small curvature during 

the smoothing, which causes oscillatory ripples on the surface. It is reported that according to 

Equations (13) and (14), the nonlinear evolutions of M4 and M5 under an unstable flow or in 

a finite time interval exhibit unstable behavior [24,25]. 

M3 offers the premier smoothing results regarding the carpal bones among all the com-

parisons. As expressed in Equation (6), by adapting the edges of the umbrella operator de-

pending on each vertex, M3 avoids an indistinguishable high-frequency filtration along the 

surface, which limits the volume shrinkage compared to M1. Although the length of the edges 

drives the operator to become nonlinear, it varies within a certain level. Desbrun et al. reported 

that the operator of M3 remains constant during numerical implementation [17] and could 

therefore avoid oscillation. 

Indeed, we noticed the limitations of this work. Due to the principle of MRI, the dis-

crete acquisition offers limited anatomical features of carpal bones. The segmentations 

and the resultant generated ground truth models can hardly completely mimic the real 

Figure 15. The preservation of the trapezial ridge of the trapezium. All models are presented in the
same orientation. Red and green dashed lines: Loss of features.

4. Discussion

While M1 effectively improves the model’s surface quality, according to Equations (2) and (3),
M1 suppresses vertices on the surface at each iteration, resulting in a significant volume
reduction, which is incompatible with objects with limited volume and considerable curva-
tures such as the carpal bones. Meanwhile, since each step on the original model represents
a real bony contour, M1 loses anatomical features the most.

Such volume shrinkage can be relieved by implementing dilatation before Laplacian
operation, as in M2. Nevertheless, the expansion of M2 is rather empirical, which is
individual-dependent and thus hardly practical for routine processing. Furthermore, the
processing might damage the crucial surface morphological and morphometric proper-
ties as M2 shares the same smoothing strategy as M1. Figure 13 shows that the model
processed by M2 expands on the scaphocapitate facet, and the articular concavity moves
slightly centripetally, which decreases the scaphocapitate distance, resulting in a potential
interference on inter-bone kinematic characters or even a cartilage modeling failure in
terms of a more detailed wrist model. Such a drawback is explained through Equation (4),
which enlarges the model homogeneously by setting the normal direction of individual
voxels outwards generally. As a result, the sections of the model surface with positive
curvature and negative curvature are equally unduly extended. Thus, the scaphocapitate
facet curvature varies when no compensation through the following Laplacian operation
is performed.

M3, M4, and M5 smooth the models in a similar manner, as all of them are variations
of the traditional Laplacian method. M4 and M5 perform admirably in terms of volume
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preservation and morphological and morphometric feature retention as they do not change
the model shape at the facet that is flat. Therefore, fewer vertices are to be handled, leading
to fewer differences between the smoothed and original models and a smaller HD listed
in Table 2. However, in Figure 6, the methods do not converge at locations with small
curvature during the smoothing, which causes oscillatory ripples on the surface. It is
reported that according to Equations (13) and (14), the nonlinear evolutions of M4 and M5
under an unstable flow or in a finite time interval exhibit unstable behavior [24,25].

M3 offers the premier smoothing results regarding the carpal bones among all the
comparisons. As expressed in Equation (6), by adapting the edges of the umbrella operator
depending on each vertex, M3 avoids an indistinguishable high-frequency filtration along
the surface, which limits the volume shrinkage compared to M1. Although the length of the
edges drives the operator to become nonlinear, it varies within a certain level. Desbrun et al.
reported that the operator of M3 remains constant during numerical implementation [17]
and could therefore avoid oscillation.

Indeed, we noticed the limitations of this work. Due to the principle of MRI, the
discrete acquisition offers limited anatomical features of carpal bones. The segmentations
and the resultant generated ground truth models can hardly completely mimic the real
scenario. Meanwhile, based on the project demands, we mainly focused on the implicit
approaches derived from Laplacian smoothing. An explicit Euler scheme-based approach
or other embedded kernel function-based approaches, such as Gaussian kernel, remain
promising research topics. Furthermore, the application can also be extended to other joints,
e.g., tarsus or vertebra, which have similar surface features.

5. Conclusions

In this work, the performance of various smoothing methods on the carpal bones
has been investigated for the first time. We pointed out the best solution for smoothing
the medical objects with large curvature and undersampled by MRI. Specifically, we first
expressed five commonly employed smoothing methods mathematically, i.e., Laplacian
smoothing (M1), Laplacian smoothing with pre-dilation (M2), scale-dependent Laplacian
smoothing (M3), curvature flowing smoothing (M4), and inverse distance smoothing
(M5). We then implemented the methods on our in-house gathered in vivo MR carpus
image sets. The results were quantitatively—i.e., through Relative Volume Difference and
Hausdorff Distance—and qualitatively—i.e., through morphological and morphometric
features—evaluated. We then discussed the outcomes and the main drawbacks of the
methods mathematically.

Generally, Laplacian smoothing is appropriate when the model processes a consider-
able volume, and the assessment criterion is loose regarding local feature preservation. The
dilation algorithm can be utilized in conjunction with the Laplacian smoothing algorithm
to achieve the desired volume preservation. The curvature flowing smoothing and inverse
distance smoothing methods showed a great performance to shape. However, optimization
is still needed to solve the problem of surface oscillation.

We recommend employing scale-dependent Laplacian smoothing for large curvature,
small volume, and undersampled models since it can optimize the surface quality to an
acceptable level while maintaining the model volume and the anatomical details demanded.
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