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Abstract: The human gut microbiome is associated with various diseases, including autism spectrum
disorders (ASD). Variations of the taxonomical composition in the gut microbiome of children with
ASD have been observed repeatedly. However, features and parameters of the microbiome CRISPR-
Cas systems in ASD have not been investigated yet. Here, we demonstrate such an analysis in order
to describe the overall changes in the microbiome CRISPR-Cas systems during ASD as well as to
reveal their potential to be used in diagnostics and therapy. For the systems identification, we used a
combination of the publicly available tools suited for completed genomes with subsequent filtrations.
In the considered data, the microbiomes of children with ASD contained fewer arrays per Gb of
assembly than the control group, but the arrays included more spacers on average. CRISPR arrays
from the microbiomes of children with ASD differed from the control group neither in the fractions of
spacers with protospacers from known genomes, nor in the sets of known bacteriophages providing
protospacers. Almost all bacterial protospacers of the gut microbiome systems for both children with
ASD and the healthy ones were located in prophage islands, leaving no room for the systems to
participate in the interspecies competition.

Keywords: microbiome; autism spectrum disorders; CRISPR-Cas; protospacer

1. Introduction

Among all possible natural communities suitable for metagenomics studies, the human
microbiome deserves special attention due to its medical importance. It is becoming clear
that microbes populating the human body are involved in different processes important
for the host and closely linked to its health. Among them are so sophisticated ones as the
formation of the host’s immune system [1] and regulation of metabolic processes [2]. Gut
microbiota also can affect neurological functions and even the behavior of the host [3]. Thus,
the emergence of more and more evidence for the microbiome association with various
diseases comes as no surprise.

For quite a long time, the human microbiome has been unattainable for complex
experimental studies as a considerable fraction of bacterial species is uncultivated. Ac-
cording to the recent estimations, in metagenomes this fraction makes up as much as 72%
of bacterial and 69% of archaeal species [4]. Only forty years ago, new methods allowed
sequencing of the genes encoding 5S [5] and 16S RNAs [6], which became a new milestone
in the taxonomic analysis of the microbiome [7]. For the whole genomes of organisms
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shaping the human microbiome, the problem was solved in principle only with the intro-
duction of the next-generation sequencing technologies, when the direct sequencing of
natural environmental samples had become possible. Massive sequencing of the human
microbiome was targeted by several international projects, such as the Human Microbiome
Project [8] and MetaHIT [9], and a series of national ones [10–12]. It was shown that the
taxonomic composition of the sequenced samples varied dramatically among different
parts of the human body they originated from and was changing gradually among them.
Due to that and based on the simplicity of obtaining probes, it became customary to discuss
microbiomes of separate human organs or cavities. For instance, within the HMP projects,
several probes from each donor were sequenced—namely nasal, oral, vaginal, gut and skin
microbiomes. Gut (or intestinal) microbiome turned out to be highly diverse and became
the most popular one for investigations.

Development of the next-generation sequencing technologies and the metagenomic
approach made it possible not only to describe the taxonomic composition of the studied
microbiomes but also to evaluate the impact of pathogens on human health and to study
complex changes in the entire microbial community associated with specific diseases. For
example, for the gut microbiome, a complex relationship between taxonomic distribution
and a variety of diseases was demonstrated. Among them were Crohn’s disease [13], Ulcer-
ative colitis [14], obesity [15] and others. In addition, further research revealed a complex
relationship between the gut microbiome and the brain. Now, this two-way relationship is
usually called the microbiome–gut–brain axis, and it is being actively studied [16]. Recent
research in this area shows a link between neurological diseases, such as Alzheimer’s [17]
and Parkinson’s [18] diseases, and autism spectrum disorder (ASD) [19].

The first evidence for the relationship between the gut microbiome and ASD appeared
at the turn of the millennium, when the development of regressive ASD as a response to
the antibiotic treatment for chronic otitis had been documented [20]. It was suggested that
Clostridiales bacteria might be associated with ASD due to the neurotoxin production [21].
Later this suggestion was supported by several studies, including a clinical trial on minocy-
cline effects in patients with autism [22] and an investigation of alterations in the upper
and lower intestinal flora of children with late-onset autism [23]. A significant step for the
treatment of autism symptoms was provided by the study [24], which demonstrated the
behavioral improvements for ASD children treated with Clostridiales-targeting antibiotics.
Finally, it was shown that stool samples from children with ASD contained different types
of Clostridiales compared to neurotypical patients [25], with Clostridium (Lachnoclostridium)
bolteae being typical for children with ASD and gastrointestinal disorders [26]. In addition
to Clostridium, various works also described such marker genera of autism as Nitriliruptor,
Youngiibacter, Burkholderia, Bilophila, Constrictibacter, Dichelobacter, Bacteroides and Prevotella,
as well as two orders—Desulfovibrionales and Methanomicrobiales [27,28].

However, some observations of the changes in the gut microbiota of patients with ASD
may look contradictory. For example, there is evidence that the composition of ASD patients’
microbiome differed significantly in comparison with the healthy ones, showing lower
abundances of Bifidobacterium species and higher abundances of Lactobacillus species [29],
or lower abundances of the genera Prevotella, Coprococcus, and unclassified Veillonellaceae
in autistic samples [30]. Additionally, several other studies demonstrated reduced overall
richness of microbiome in ASD patients compared to the neurotypical group [31,32]. On
the other hand, there were studies, where no significant difference [33], or even higher
richness of ASD patients gut microbiome had been observed [34]. Surprisingly, nothing
was reported about the role of bacteriophages in the process of the microbiome changes in
the course of ASD.

Namely, the described inconsistencies in the compositional changes of the gut micro-
biome in ASD inspired our interest in the CRISPR-Cas systems distribution and peculiarities
in ASD. Furthermore, the publicly available data resulted from the whole genome sequenc-
ing of the microbiome probes from the children with ASD have emerged recently and
became a reason for this study [35]. The original experimental study was organised in three
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independent series of collecting different, non-numerous and non-equal, groups of patients
and controls and sequencing using different protocols. The analysis of such data is further
complicated by the non-balanced content of males and females and slightly different ranges
of age in both target and control groups. However, obtaining the first results and formation
of the general hypotheses can be possible in such analysis.

CRISPR-Cas systems (Clustered Regularly Interspaced Short Palindromic Repeats and
CRISPR-associated proteins) are coded in special loci of bacteria and archaea. CRISPR
arrays combine tandemly repeated short fragments interspersed with commensurate se-
quences unique for the genome. The latter is called ‘spacers’ and often demonstrate
similarity to genetic mobile elements such as phages or plasmids. This feature reflects
the spacers’ origin and provides the systems with their main function to defend against
invading nucleic acids [36]. The unit of a new spacer and an additional copy of the direct
repeat is inserted between the leader sequence (a genome segment separating the array
from the cas genes) and the array, if the host cell has been able to repel an attack of an
invader. Thus, the array represents a unique record of the last infections of the particular
cell or its vertical descendants in chronological order [37].

Whereas cultivated bacteria served as a main object for investigations of CRISPR-Cas
systems, metagenomics data had recently begun to be in demand in this area. Several
studies were conducted from the description of systems in different ecological niches
(e.g., [38]) for a targeted search for new systems with editing potential (e.g., [39]). The
human microbiome was not set aside here as well, being studied with different approaches
for arrays’ identification and analysis (e.g., [40,41]). In all these studies, an emphasis was
made on the natural CRISPR-Cas systems in healthy human microbiomes.

In this study, we compared the CRISPR-Cas systems in the gut microbiomes of children
with ASD and the control group in order to trace disease-mediated changes in their arrays,
if any. The deeper analysis of protospacers became the second goal of this study because it
could not be ruled out that CRISPR arrays contain preferably traces of encounters with spe-
cific groups of viruses during ASD. Finally, as almost all previous research had focused on
the inhabitants of a healthy microbiota, the possibility of discovering previously unknown
CRISPR-Cas systems in a disease-modified human microbiome also seemed promising.

2. Data and Algorithms

The raw data used for the study were downloaded from the NCBI BioProject collection
(PRJNA516054). These data were initially obtained by sequencing of faecal probes from
77 children aged 1 to 9 years old, 54 of which were diagnosed with autism spectrum disor-
ders according to DSM-V criteria (Diagnostic and Statistical Manual of mental disorders,
fifth edition) [35]. In the original study sequencing was carried out in three independent
series of experiments with different protocols on different platforms, which is illustrated in
Table 1. No other differences in the parameters of the sample preparation and sequencing
among series were indicated in the original manuscript [35]. The downloaded data were
processed and assembled as described in [35]. Contigs with a length of less than 200 nt
were dropped.

For identification of CRISPR arrays, we started from the procedure described in [38]
and modified it by changing CRISPRFinder to CRISPRCasFinder [42]. Its aim was to reduce
false positive results produced by any of the tools used here. For that, only arrays predicted
with all algorithms simultaneously or supported by one of the known biological properties
of the real arrays, such as co-localisation with cas genes or similarity of the repeat sequence
with other direct repeats, were selected for the analysis. For clustering of direct repeats
for the arrays found by any of three tools we used the DNACLUST software [43] with a
similarity threshold of 0.8. The resulted algorithm is illustrated in Figure 1. All procedures
were performed for different series separately.
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Table 1. Description of samples and statistics of sequencing and assembly important for this study
(see [35]).

Human Gut Metagenome Samples
(NCBI BioProject ID: PRJNA516054)

Series I Series II Series III

Sex both sexes

Age (y.o.) 1–9 (ASD)
3–4 (control)

2–4 (ASD)
2–4 (control)

2–6 (ASD)
3 (control)

Number of samples 14 (ASD)
5 (control)

15 (ASD)
15 (control)

25 (ASD)
3 (control)

Platform and type
of sequencing

Illumina HiSeq
2500, paired-end

Illumina HiSeq
4000, paired-end

Illumina NovaSeq
6000, paired-end

Read length, nt 135 150 150
Range of assembly

size, Gb
0.06–0.26 (ASD)

0.13–0.19 (control)
0.11–0.30 (ASD)

0.14–0.28 (control)
0.11–0.37 (ASD)

0.17–0.27 (control)
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Figure 1. Schematic illustration of the algorithm for identification of reliable CRISPR arrays (see [38]).

In order to test whether differences in parameters of CRISPR-Cas systems and their
distribution were significant between microbiomes of children with ASD and the control
group, we compared the observation values for the parameters between datasets of ASD
and the control for each series. For that we used the Shapiro–Wilk test for normality
and Welch’s t-test for equality of expectations implemented in the Python scipy.stats
package. For single comparisons, the significance level of 0.05 was selected. As the test
for normality may provide unreliable results for small samples, we also performed the
Mann–Whitney–Wilcoxon nonparametric test to confirm the results obtained with Welch’s
t-test. It was performed with the same significance level using its implementation in the
Python scipy.stats package to confirm the results obtained with Welch’s t-test.

The arrays were treated as complete if they were flanked by at least 200 nucleotides
on both sides in their contigs. To test the possibility of combining the data of the datasets,
we compared the respective values for ASD or the control for different series using Welch’s
t-test and confirmed the conclusions with the Mann–Whitney–Wilcoxon test.

To search for the disease markers among direct repeats, we selected clusters containing
repeats from individual samples of children with ASD and not from the control group.
Only a precise identity of sequences was allowed in the similar procedure for spacers.

The CRISPR-Cas systems of Enterocloster bolteae were identified using CRISPRCasdb [44]
and its utilities in two known strains of the species. To investigate whether these sys-
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tems might be used as the disease markers, we searched for the respective repeats in the
microbiome data using the BLAST package [45].

To check whether microbiome strains of Enterocloster bolteae could contain CRISPR-Cas
systems with other repeats, we annotated all metagenomic contigs with MMseqs2 [46]
and selected those assigned to the species. The results of the general procedure of ar-
rays identification for these contigs were analysed in addition to independent results of
CRISPRCasFinder [42].

To find protospacers among bacteria and phages, we aligned spacer sequences to the
bacterial and viral sections of the RefSeq database using BLAST [47]. To exclude hits to
CRISPR arrays in bacteria, we also aligned the sequences of the respective direct repeats
with the same procedure. If a spacer and the corresponding repeat had been aligned to
the same bacterium, such case was excluded from the consideration. For each remaining
hit, the alignment was extended up to the full coverage of the spacer using the in-house
python script. After that, for the final set of protospacers, we selected hits with no more
than four mismatches only.

We also analysed the locations of the protospacers in known bacterial genomes. For
that purpose, we considered assemblies of bacterial genomes from the genomic subsection
of the RefSeq database. If an assembly contained protospacers for arrays from more than
ten metagenomic samples from any of the datasets, it was selected for further consideration.
For the selected assemblies, we identified regions of potentially phage origin with two
tools—Prophage Hunter [48] and PHAST [49], with default parameters for both. If the
location of a protospacer had not been included into such a region, we analysed the
neighbouring gene(s) using their annotation and/or best blast hits of their products. The
location was marked as «prophage», if it had been included in a prophage region by at
least one of the tools, or the annotation of the respective protein(s), or any of its (their) best
blast hits indicated by the phage origin.

3. Results
3.1. Distribution of the CRISPR-Cas Loci and Its Parameters

For our analysis we used publicly available sequencing data of the microbiomes
for children with ASD and the control group. In the original study, faeces samples of
54 children with ASD and 23 healthy children aged 1 to 9 years old were sequenced in three
independent series, differing in the sequencing protocols (Table 1) [35]. After appropriate
processing of the sequencing data, we performed the prediction of CRISPR arrays using
the procedure developed in [38] with CRISPRFinder replaced by its improved version
CRISPRCasFinder [42]. The improvement of the procedure allowed us to predict not
only the reliable list of CRISPR arrays but also cas genes located nearby, where possible
(Figure 1).

The number of the arrays normalised to the size of the microbiome assembly varies
from 321.43 to 1264.29 arrays per Gb for individual metagenomes. Parameters of the array
distribution for individual samples are illustrated in Supplementary Table S1, Figure 2 and
Table 2.

In order to compare the occurrence of CRISPR-Cas systems in individual microbiomes
between children with ASD and the control group, we performed statistical analysis
independently for each series. The reason for that is the sensitivity of the number of
identified CRISPR arrays to sequencing and assembly parameters, particularly read length.
Namely, these parameters varied among the protocols for the data obtained in the different
series (Table 1). Thus, we could not analyse all the data simultaneously straightaway.
Instead, we had to check the coincidence of the distribution expectations first. For this
purpose, we used Welsch’s adaptation of the Student’s t-test after confirmation of normality
for the distributions for each dataset with the Shapiro–Wilk test (see Data and Algorithms
and Figure 2).
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Table 2. Parameters of individual samples, their assemblies and arrays for healthy and ASD micro-
biomes for all series.

Parameters Series I Series II Series III

ASD

Age 4.50 ± 2.47 3.20 ± 0.77 3.60 ± 0.96
Assembly size (Gb) 0.17 ± 0.05 0.18 ± 0.06 0.21 ± 0.07

Arrays 161.14 ± 58.66 115.93 ± 45.23 155.08 ± 63.86
Complete arrays (flanks > 200) 22.21 ± 10.24 22.00 ± 9.58 33.04 ± 15.34

Arrays near cas 23.86 ± 9.99 25.87 ± 10.38 37.12 ± 16.69
Spacers 1247.57 ± 488.94 895.07 ± 321.10 1241.16 ± 511.32

Protospacers/Spacers (%) 6.09 ± 2.06 6.73 ± 2.42 4.64 ± 1.77

Control

Age 3.40 ± 0.55 2.87 ± 0.52 3.0 ± 0.0
Assembly size (Gb) 0.16 ± 0.02 0.18 ± 0.04 0.23 ± 0.05

Arrays 160.60 ± 16.62 122.13 ± 31.64 172.33 ± 38.53
Complete arrays (flanks > 200) 22.00 ± 8.03 23.47 ± 5.74 37.00 ± 19.08

Arrays near cas 24.80 ± 8.84 26.07 ± 5.90 39.00 ± 13.45
Spacers 1265.40 ± 226.49 923.73 ± 277.29 1381.67 ± 465.66

Protospacers/Spacers (%) 5.62 ± 2.17 6.36 ± 2.66 8.62 ± 2.34

The comparison demonstrated a smaller number of arrays in microbiomes of children
with ASD, than in ones of the control group for all series. However, all the differences were
insignificant even before the correction for multiple testing. To overcome this obstacle, we
tried to combine the data of different series. However, the pairwise comparison of arrays’
numbers for ASD or the control in different series allowed joining only Series II and Series
III, with none of them being allowed to join with Series I. However, the combined data
demonstrated no significance in the test as well (Figure 2A).

Among other microbiome parameters tested for differences between children with
ASD and the control group, only the length of complete arrays (i.e., average number of
spacers in the arrays flanked with more than 200 nt in their contigs) demonstrated consistent
results. In all comparisons, the complete arrays contained more spacers in the microbiomes
of children with ASD (see Figure 2B). The differences were insignificant for all separate
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series except for the second one. In it, the p-value was 0.04, i.e., under the significance level
for single comparisons. Here, according to the statistical test, combining all three series was
allowed in pairs. For the combination of Series II and Series III datasets, the p-value was
still higher than 0.05. However, after combining them with Series I datasets, it decreased to
values lower than 0.05, the selected significance level for single comparisons. However, in
all cases, the differences remained to be insignificant because of the need for the correction
for multiple testing.

Comparisons of the other parameters for CRISPR-Cas systems’ distribution, listed
in Table 2, between patients with ASD and the control group were neither significant for
any dataset nor consistent among different datasets. All comparisons were also rechecked
using the Mann–Whitney–Wilcoxon test with exactly the same results.

3.2. Search for Markers of the Disease among CRISPR-Cas Systems or Their Elements

The CRISPR-Cas systems represent a convenient platform for the method of close
bacterial strains distinction [50]. That is why we considered their elements, direct repeats
and particular spacers as candidates for markers of the disease. To reveal such systems and
elements, we selected arrays, which shared exact or very similar repeats that were present
in microbiomes of at least two children with ASD but absent in microbiomes of the control
group. For each series, such sets were respectively small and not numerous. For instance,
for the Series II data, including equal numbers of ASD and healthy children’s microbiomes,
there were only three such sets with arrays from three different individual microbiomes
each—one set with four arrays (two arrays from the same sample in the set) and two
containing three arrays from different samples each. For different series, the repeats of the
distinguishing sets differed substantially, and there was no repeat distinguishing children
with ASD from the control group, at least in two series (data not shown).

Similarly, we failed to find particular spacers systematically distinguishing micro-
biomes of children with ASD. For example, for Series II, there were no spacers represented
in more than four individual microbiomes of children with ASD and none occurred in
microbiomes of the control group. Moreover, even such spacers were different for the
different series.

For the opposite task, as Clostridium bolteae was reported as a candidate marker species
of the disease because it was found in many microbiomes of the children with ASD [26],
we checked our data for the presence of the CRISPR-Cas system intrinsic for the species.
C. bolteae, recently renamed Enterocloster bolteae [51], is represented in the current version
of CRISPRCasDB by its two strains—ATCC BAA-613 and CBBP-2. Both strains include
two CRISPR loci and one cas locus of type IC in their genomes. Repeats of the arrays
adjacent to cas genes differ by one nucleotide between the strains, and repeats of the distal
arrays are identical. Both repeats are specific for the species, but the distal one is also
present in two more species annotated as Lachnospiraceae bacterium or Lachnoclostridium
sp. with one mismatch. We checked the presence of these two repeats in all datasets. Both
repeats occurred in the microbiomes of children with ASD more frequently. The sequences
identical to one of the copies of the repeat adjacent to the cas locus was found in 12 out of 54
individual samples of microbiomes for children with ASD in contrast to 4 out of 23 samples
for the control group. The distal repeat was found in 15 samples out of 54 samples in
the datasets with the ASD mark in contrast to only 2 out of 23 samples for the control
group (Table 3). For the same dataset, the lists of the individual microbiome samples that
contained these two repeats were different but overlapping in all cases. Thus, in our data,
two CRISPR repeats of C. boltae, the adjacent repeat to the cas locus and the distal one, were
present roughly one and one-third or three times more frequently in the ASD samples than
in the control group, correspondingly.
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Table 3. Direct repeats from ATCC BAA-613 and CBBP-2 strains of Enterocloster bolteae and numbers
of individual microbiomes in which they were found.

Localisation in
Relation to cas

ATCC BAA-613
DR CBBP-2 DR

Series I Series II Series III

ASD/
Control

ASD/
Control

ASD/
Control

Adjacent to cas
GTCTCCGTCCTC
GCGGGCGGAG
TGGGTTGAAAT

ATTTCAACCCAC
TCCGCCCACGA
GGACGGAGAC

3/0 4/2 4/1

Distal from cas
ATTTCAATCCAC
AAGGCTCTCGC
GAGCCTCGAC

GTCGAGGCTCG
CGAGAGCCTTG
TGGATTGAAAT

3/0 4/2 8/0

In addition, we analysed metagenomic contigs annotated as Clostridium bolteae or
Enterocloster bolteae with MMseqs2 in order to check whether they could contain CRISPR
arrays with other direct repeats. According to automatic annotation, each individual
microbiome included one or more contigs assigned to the species for both children with
ASD and the control groups. However, there were no CRISPR arrays with any other direct
repeat identified in the search.

3.3. Search for Protospacers

We searched for protospacers in the genomic assemblies from the bacterial and viral
sections of the RefSeq database. To distinguish protospacers from hits with spacers in
CRISPR arrays, we had also performed a parallel comparison with the array repeats (see
Data and Algorithms). As a result, the protospacers were found only for a minor fraction
of the spacers in these databases (Supplementary Table S1). The fraction varied from 1.7%
to 31.2% and 1.9% to 36.4% for children with ASD and the control group, respectively.

We compared the fractions of spacers with protospacers in individual microbiomes
between ASD and the control. According to the Welch’s t-test, we had failed to reject the
null hypothesis about the equality of expectations, i.e., the distributions of the value did
not differ significantly. Moreover, the mean values of the fractions did not correlate among
series (Table 2 and Supplementary Table S1).

We analysed the sets of bacteriophages containing protospacers. For this purpose, we
compared the lists of phages providing protospacers for microbiomes of children with ASD
and the control group from all our datasets. All lists were not numerous, with substantial
intersections between lists for ASD and the control in each series (Supplementary Table S2).
For instance, for Series II, the lists consisted of 56 phages for the case of ASD and 51 phages
for the control group. The intersection of the lists of Series II included 21 organisms
and, in particular, all the phages with more than four protospacers in any of the datasets
(Supplementary Table S2). The comparison of the taxonomical distributions of phages for
the whole combined datasets for ASD and the control did not demonstrate substantial
differences in the level of families (Figure 3).

In order to analyse locations of multiple protospacers in the same known bacteria,
we performed the following procedure. We selected such bacterial Refseq records that
harboured protospacers for more than any ten individual microbiomes. There were no
requirements on the specificity of the datasets here. For all three series, a total of 26 such
records were selected by this procedure (Supplementary Table S3). Almost all protospacers
in these bacteria were tightly grouped in their location. The prediction of the prophage
regions with special tools and careful analysis of proteins encoded in these locations
confirmed the bacteriophage origin of the corresponding chromosomal segments. Only
two identified protospacers in two different bacteria had no signs of bacteriophage origin
nearby (see Supplementary Table S3, “NMTQ01000037.1” and “QSFJ01000016.1” sheets).
There was no preference for microbiomes of children with ASD or the control group for
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records either in the number of individual microbiomes obtaining hits in the analysed
bacterial genomes or the total number of protospacers in each genome (data not shown).
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4. Discussion

The problem of a priori CRISPR array identification has been solved quite efficiently
for completed genomes [52] mainly owing to the rigid structural features of the arrays.
However, the same features provide additional difficulties for sequencing assembly. That
is why this problem is much more complicated for massive highly fragmented data, such
as metagenomes, and is not closed yet. Computational tools designed for this purpose,
such as MetaCrast [53] or CRASS [54], do not cover the area exhaustively. The former
approach requires a list of predefined repeats as an input and, thus, is useless for the search
of previously unknown arrays and respective systems. The latter one is strongly limited
by the read length and fails to restore the order of spacers automatically in the case of
respectively short reads.

An alternative approach is provided by the use of a combination of tools, suitable
for completed genomes. For example, for CRISPRCasMeta, an online service for systems
identification in metagenomic data [55], main modules of CRISPRCasFinder are used in
combination with the CRT program. In [56], a modified version of CRT, CRT-CLI [57], was
used together with Piler-CR. Here, we used a slightly updated scheme based on all three
original tools, CRISPRFinder, Piler-CR and CRT, suggested in [38].



Life 2022, 12, 367 10 of 14

For the distribution of CRISPR arrays in microbiomes of children with ASD and the
control group, the only differences we observed were in the number of arrays per Gb of
assembly and the number of spacers per array (Figure 2). These differences were slight
and insignificant for our datasets, yet systematic. In our opinion, the main reason for the
absence of significance is the small sizes of the datasets. We failed to overcome this obstacle
by combining the data of different series. The data of different series were sequenced with
different protocols and demonstrated significant variance in the numbers of array per Gb
of assembly, in particular, for combinations of Series I and Series II or Series I and Series III,
but not in the number of spacers in arrays. The step-by-step data combining for the latter
parameter was accompanied by the decrease in the p-value down to the value a bit lower
than 0.05, the selected significance level for a single comparison. However, this observation
remains insignificant after the correction for multiple comparisons.

As CRISPR-Cas systems are distributed more or less evenly among different taxa,
the most probable explanation for the observed decrease in the number of arrays per Gb
seems to be the general diversity reduction, which was demonstrated for the datasets we
used [35]. The diversity reduction had also been observed in a number of other studies
on the microbiomes of children with ASD [31,32]. However, as we already noticed in the
introduction, some publications described the opposite effect [34].

Elongation of the arrays, on average, could reflect the bacteriophage burst in the ASD
microbiomes, which, in turn, could be the reason for the diversity reduction. Unfortunately,
almost nothing is known about the phage content of the gut microbiome in ASD. An
alternative explanation for the array elongation for children with ASD could lay in the
possibility of retention of the already used spacers for a bit longer due to the relaxation of
the interspecies competition as a result of the diversity reduction.

All the other parameters of the CRISPR-Cas distributions did not demonstrate signif-
icant or at least consistent differences in comparisons between ASD and the control. In
addition, the small sizes of the analysed datasets did not allow explaining the observed
differences by any type of subsets in the analysed datasets—by males or females, by subsets
of particular ages and so on.

We also tried to explain the differences in CRISPR-Cas parameters with any combina-
tion of the taxonomic units in the microbiomes using principal components analysis (data
not shown), but no significant dependencies were found. The main explanation for that
may lay in small fractions of raw data involved in the taxonomical representation of the
individual microbiomes, as only a minority of metagenomic reads resulted from the whole
genomes sequencing can be mapped onto the known genomes. Other possible explanations
for that are again small sizes of the analysed datasets, heterogeneity of the disease etiologies
and the respective evenness distribution of the CRISPR-Cas systems among different taxa.

There were no good candidates for markers of the disease among the elements of
CRISPR-Cas systems. Neither repeats nor spacers effectively distinguished microbiomes of
children with ASD from the healthy ones: there were no system elements widely spread in
ASD and not occurring in the control group. All candidate elements with biased distribution
were found only in a minor fraction of the ASD microbiomes and were not reproduced
among the series. Thus, we believe that the bias was accidental in all these cases. The
small sizes of the analysed datasets did not allow searching for systems elements occurring
in both ASD and the control but significantly overrepresented in ASD. Even systems of
Enterocloster bolteae, the only particular species named in the literature as characteristic for
the ASD microbiomes, being quite specific in general, were found in ASD subjects only
twice as often in the control group and were not widely spread. In our opinion, the most
obvious reason for that, along with small sizes of the analysed datasets, is the heterogeneity
of the disease, as the diagnosis unifies different conditions with similar symptoms but not
etiology [58]. Furthermore, the dynamic changes in both the bacterial and bacteriophages
compositions of the microbiome in the disease may be reflected in the instability of CRISPR-
Cas systems content and, consequently, the absence of their stable widely spread elements
among patients.
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We expected that, according to the taxonomical changes and much more knowledge
on the healthy gut microbiome, we would find notable differences in the comparison of
protospacers for systems of children with ASD and the control group. That is why we com-
pared fractions of spacers with protospacers in the known genomes and the sources of these
protospacers. The formers differed neither significantly nor systematically. Furthermore,
we failed to find substantial differences in the comparison of the lists of phages providing
protospacers or their taxonomy. The phage lists intersected in their essential parts and all
phages providing multiple protospacers belonged to the intersection. The overall number
of the protospacers in phages of any family did not differ substantially between children
with ASD and the control group as well. Thus, if phages do prevail in the microbiomes of
children with ASD, as we suggested earlier in this section, this prevalence occurs rather
due to the number of phages than to their diversity.

In the recent study on the oral microbiome, it was suggested that the CRISPR-Cas
systems could participate in the interspecies competition [59] based on the comparison of
the sources for protospacers of CRISPR arrays. In order to test this suggestion in the gut
microbiome, both for children with ASD and the control group, we analysed the localisation
of the protospacers in bacterial genomes, providing them for multiple individual samples.
It was demonstrated that almost all protospacers were located in compact regions of
chromosomal DNA, identified as prophage ones by special tools or based on the annotated
function or best blast hits of the coded proteins. Only two protospacers, out of several
hundred checked, in two different bacteria were located separately from the others and
not inside or close to the genes of potentially phage origin. Therefore, the most probable
function of the microbiome protospacers is the antiphage defence rather than participation
in the interspecies competition. Thus, the considered phenomenon is at least not common
in the gut microbiomes, both for children with ASD and for the healthy ones.

5. Conclusions

Here we analysed the CRISPR-Cas systems, their parameters and distribution in gut
microbiota in health and disease. To the best of our knowledge, the observed differences
were demonstrated for the first time. The number of samples analysed here was insufficient
and the observations were not significant but systematic. That is why the described
patterns need to be tested additionally on massive microbiome data. The latter may allow
discovering particular contributions to the observed effects provided by the patient subsets
with different sex, age and clinical traits.

Furthermore, the study provides the first indication of the bacteriophage involvement
in the changes of microbiome composition in ASD. To our surprise, the bacteriophage
content of the microbiomes in ASD is standing apart from the investigations in this direction.
The detailed description of the taxonomical composition for the microbiome phages may
shed light on the origin of the described changes in ASD.

Possibly revealing untypical functions for CRISPR-Cas systems in disease microbiomes
also looks very attractive and awaits future investigation. Here, we checked the hypothesis
on the involvement of CRISPR-Cas systems in the interspecies competition. It might be the
small size of the analysed data that did not allow detecting such effects. That is why this
needs to be tested on a more numerous dataset along with competing hypotheses.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/life12030367/s1, Supplementary Table S1: Parameters of CRISPR arrays for all individual sam-
ples of all series, Supplementary Table S2: Bacteriophages providing protospacers for the microbiome
CRISPR-Cas systems and total number of protospacers from microbiomes of children with ASD and
the control group, Supplementary Table S3: Detailed description of the 26 bacterial loci harbouring
multiple protospacers. Each sheet corresponds to one bacterial RefSeq record, colouring reflects the
algorithm with that the phage’s origin of the protospacer location was identified.

https://www.mdpi.com/article/10.3390/life12030367/s1
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Life 2022, 12, 367 12 of 14

Author Contributions: Conceptualization, O.V.A., V.N.D. and I.I.A.; methodology, I.I.A.; software,
N.V.Z. and M.S.N.; supervision, I.I.A.; validation, N.V.Z., M.S.N., A.S.K., V.O.M. and I.I.A.; writing—
original draft, M.S.N. and I.I.A.; writing—review and editing, N.V.Z., A.S.K., O.V.A. and I.I.A. All
authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Russian Foundation for Basic Research (RFBR) grant
no. 18-29-07087 and partially supported by Russian program of Fundamental Research for State
Academies NO.0112-2019-0001 and NO.0112-2019-0007.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Thaiss, C.A.; Zmora, N.; Levy, M.; Elinav, E. The microbiome and innate immunity. Nature 2016, 535, 65–74. [CrossRef] [PubMed]
2. Visconti, A.; Le Roy, C.I.; Rosa, F.; Rossi, N.; Martin, T.C.; Mohney, R.P.; Li, W.; de Rinaldis, E.; Bell, J.T.; Venter, J.C.; et al. Interplay

between the human gut microbiome and host metabolism. Nat. Commun. 2019, 10, 4505. [CrossRef] [PubMed]
3. Sampson, T.R.; Mazmanian, S.K. Control of brain development, function, and behavior by the microbiome. Cell Host Microbe 2015,

17, 565–576. [CrossRef] [PubMed]
4. Hofer, U. The majority is uncultured. Nat. Rev. Microbiol. 2018, 16, 716–717. [CrossRef]
5. Specht, T.; Szymanski, M.; Barciszewska, M.Z.; Barciszewski, J.; Erdmann, V.A. Compilation of 5S rRNA and 5S rRNA gene

sequences. Nucleic Acids Res. 1997, 25, 96–97. [CrossRef]
6. Patel, J.B. 16S rRNA gene sequencing for bacterial pathogen identification in the clinical laboratory. Mol. Diagn. 2001, 6, 313–321.

[CrossRef] [PubMed]
7. Woo, P.C.; Lau, S.K.; Teng, J.L.; Tse, H.; Yuen, K.Y. Then and now: Use of 16S rDNA gene sequencing for bacterial identification

and discovery of novel bacteria in clinical microbiology laboratories. Clin. Microbiol. Infect. 2008, 14, 908–934. [CrossRef]
[PubMed]

8. Turnbaugh, P.J.; Ley, R.E.; Hamady, M.; Fraser-Liggett, C.M.; Knight, R.; Gordon, J.I. The human microbiome project. Nature 2007,
449, 804–810. [CrossRef]

9. Ehrlich, S.D.; Consortium, M. Metahit: The european union project on metagenomics of the human intestinal tract. Metagenom.
Hum. Body 2011, 307–316. [CrossRef]

10. Tyakht, A.V.; Alexeev, D.G.; Popenko, A.S.; Kostryukova, E.S.; Govorun, V.M. Rural and urban microbiota: To be or not to be? Gut
Microbes 2014, 5, 351–356. [CrossRef]

11. McDonald, D.; Hyde, E.; Debelius, J.W.; Morton, J.T.; Gonzalez, A.; Ackermann, G.; Aksenov, A.A.; Behsaz, B.; Brennan, C.; Chen,
Y.; et al. American gut: An open platform for citizen science microbiome research. mSystems 2018, 3, e00031-18. [CrossRef]

12. Qin, J.; Li, Y.; Cai, Z.; Li, S.; Zhu, J.; Zhang, F.; Liang, S.; Zhang, W.; Guan, Y.; Shen, D.; et al. A metagenome-wide association
study of gut microbiota in type 2 diabetes. Nature 2012, 490, 55–60. [CrossRef]

13. Torres, J.; Mehandru, S.; Colombel, J.F.; Peyrin-Biroulet, L. Crohn’s disease. Lancet 2017, 389, 1741–1755. [CrossRef]
14. Guo, X.Y.; Liu, X.J.; Hao, J.Y. Gut microbiota in ulcerative colitis: Insights on pathogenesis and treatment. J. Dig. Dis. 2020, 21,

147–159. [CrossRef] [PubMed]
15. John, G.K.; Mullin, G.E. The gut microbiome and obesity. Curr. Oncol. Rep. 2016, 18, 45. [CrossRef]
16. Gupta, A.; Osadchiy, V.; Mayer, E.A. Brain-gut-microbiome interactions in obesity and food addiction. Nat. Rev. Gastroenterol

Hepatol. 2020, 17, 655–672. [CrossRef]
17. Vogt, N.M.; Kerby, R.L.; Dill-McFarland, K.A.; Harding, S.J.; Merluzzi, A.P.; Johnson, S.C.; Carlsson, C.M.; Asthana, S.; Zetterberg,

H.; Blennow, K.; et al. Gut microbiome alterations in Alzheimer’s disease. Sci. Rep. 2017, 7, 13537. [CrossRef] [PubMed]
18. Caputi, V.; Giron, M.C. Microbiome-gut-brain axis and toll-like receptors in Parkinson’s disease. Int. J. Mol. Sci. 2018, 19, 1689.

[CrossRef]
19. van De Sande, M.M.; van Buul, V.J.; Brouns, F.J. Autism and nutrition: The role of the gut-brain axis. Nutr. Res. Rev. 2014, 27,

199–214. [CrossRef]
20. Wimberley, T.; Agerbo, E.; Pedersen, C.B.; Dalsgaard, S.; Horsdal, H.T.; Mortensen, P.B.; Thompson, W.K.; Kohler-Forsberg, O.;

Yolken, R.H. Otitis media, antibiotics, and risk of autism spectrum disorder. Autism Res. 2018, 11, 1432–1440. [CrossRef]
21. Montecucco, C.; Schiavo, G. Mechanism of action of tetanus and botulinum neurotoxins. Mol. Microbiol. 1994, 13, 1–8. [CrossRef]

[PubMed]
22. Pardo, C.A.; Buckley, A.; Thurm, A.; Lee, L.C.; Azhagiri, A.; Neville, D.M.; Swedo, S.E. A pilot open-label trial of minocycline in

patients with autism and regressive features. J. Neurodev. Disord. 2013, 5, 9. [CrossRef]
23. Finegold, S.M.; Molitoris, D.; Song, Y.; Liu, C.; Vaisanen, M.L.; Bolte, E.; McTeague, M.; Sandler, R.; Wexler, H.; Marlowe, E.M.;

et al. Gastrointestinal microflora studies in late-onset autism. Clin. Infect. Dis. 2002, 35, S6–S16. [CrossRef] [PubMed]

http://doi.org/10.1038/nature18847
http://www.ncbi.nlm.nih.gov/pubmed/27383981
http://doi.org/10.1038/s41467-019-12476-z
http://www.ncbi.nlm.nih.gov/pubmed/31582752
http://doi.org/10.1016/j.chom.2015.04.011
http://www.ncbi.nlm.nih.gov/pubmed/25974299
http://doi.org/10.1038/s41579-018-0097-x
http://doi.org/10.1093/nar/25.1.96
http://doi.org/10.2165/00066982-200106040-00012
http://www.ncbi.nlm.nih.gov/pubmed/11774196
http://doi.org/10.1111/j.1469-0691.2008.02070.x
http://www.ncbi.nlm.nih.gov/pubmed/18828852
http://doi.org/10.1038/nature06244
http://doi.org/10.1007/978-1-4419-7089-3_15
http://doi.org/10.4161/gmic.28685
http://doi.org/10.1128/mSystems.00031-18
http://doi.org/10.1038/nature11450
http://doi.org/10.1016/S0140-6736(16)31711-1
http://doi.org/10.1111/1751-2980.12849
http://www.ncbi.nlm.nih.gov/pubmed/32040250
http://doi.org/10.1007/s11912-016-0528-7
http://doi.org/10.1038/s41575-020-0341-5
http://doi.org/10.1038/s41598-017-13601-y
http://www.ncbi.nlm.nih.gov/pubmed/29051531
http://doi.org/10.3390/ijms19061689
http://doi.org/10.1017/S0954422414000110
http://doi.org/10.1002/aur.2015
http://doi.org/10.1111/j.1365-2958.1994.tb00396.x
http://www.ncbi.nlm.nih.gov/pubmed/7527117
http://doi.org/10.1186/1866-1955-5-9
http://doi.org/10.1086/341914
http://www.ncbi.nlm.nih.gov/pubmed/12173102


Life 2022, 12, 367 13 of 14

24. Sandler, R.H.; Finegold, S.M.; Bolte, E.R.; Buchanan, C.P.; Maxwell, A.P.; Vaisanen, M.L.; Nelson, M.N.; Wexler, H.M. Short-term
benefit from oral vancomycin treatment of regressive-onset autism. J. Child Neurol. 2000, 15, 429–435. [CrossRef] [PubMed]

25. Finegold, S.M.; Dowd, S.E.; Gontcharova, V.; Liu, C.; Henley, K.E.; Wolcott, R.D.; Youn, E.; Summanen, P.H.; Granpeesheh, D.;
Dixon, D.; et al. Pyrosequencing study of fecal microflora of autistic and control children. Anaerobe 2010, 16, 444–453. [CrossRef]
[PubMed]

26. Song, Y.L.; Liu, C.X.; Finegold, S.A. Real-time PCR quantitation of Clostridia in feces of autistic children. Appl. Environ. Microb.
2004, 70, 6459–6465. [CrossRef]

27. Tomova, A.; Soltys, K.; Repiska, G.; Palkova, L.; Filcikova, D.; Minarik, G.; Turna, J.; Prochotska, K.; Babinska, K.; Ostatnikova, D.
Specificity of gut microbiota in children with autism spectrum disorder in slovakia and its correlation with astrocytes activity
marker and specific behavioural patterns. Physiol. Behav. 2020, 214, 112745. [CrossRef]

28. Zou, R.; Xu, F.; Wang, Y.; Duan, M.; Guo, M.; Zhang, Q.; Zhao, H.; Zheng, H. Changes in the gut microbiota of children with
autism spectrum disorder. Autism Res. 2020, 13, 1614–1625. [CrossRef] [PubMed]

29. Adams, J.B.; Johansen, L.J.; Powell, L.D.; Quig, D.; Rubin, R.A. Gastrointestinal flora and gastrointestinal status in children with
autism–comparisons to typical children and correlation with autism severity. BMC Gastroenterol. 2011, 11, 22. [CrossRef]

30. Kang, D.W.; Park, J.G.; Ilhan, Z.E.; Wallstrom, G.; Labaer, J.; Adams, J.B.; Krajmalnik-Brown, R. Reduced incidence of prevotella
and other fermenters in intestinal microflora of autistic children. PLoS ONE 2013, 8, e68322. [CrossRef]

31. Ma, B.; Liang, J.; Dai, M.; Wang, J.; Luo, J.; Zhang, Z.; Jing, J. Altered gut microbiota in chinese children with autism spectrum
disorders. Front. Cell. Infect. Microbiol. 2019, 9, 40. [CrossRef] [PubMed]

32. Kang, D.W.; Ilhan, Z.E.; Isern, N.G.; Hoyt, D.W.; Howsmon, D.P.; Shaffer, M.; Lozupone, C.A.; Hahn, J.; Adams, J.B.; Krajmalnik-
Brown, R. Differences in fecal microbial metabolites and microbiota of children with autism spectrum disorders. Anaerobe 2018,
49, 121–131. [CrossRef] [PubMed]

33. Gondalia, S.V.; Palombo, E.A.; Knowles, S.R.; Cox, S.B.; Meyer, D.; Austin, D.W. Molecular characterisation of gastrointestinal
microbiota of children with autism (with and without gastrointestinal dysfunction) and their neurotypical siblings. Autism Res.
2012, 5, 419–427. [CrossRef] [PubMed]

34. Ding, X.; Xu, Y.; Zhang, X.; Zhang, L.; Duan, G.; Song, C.; Li, Z.; Yang, Y.; Wang, Y.; Wang, X.; et al. Gut microbiota changes in
patients with autism spectrum disorders. J. Psychiatr. Res. 2020, 129, 149–159. [CrossRef] [PubMed]

35. Averina, O.V.; Kovtun, A.S.; Polyakova, S.I.; Savilova, A.M.; Rebrikov, D.V.; Danilenko, V.N. The bacterial neurometabolic
signature of the gut microbiota of young children with autism spectrum disorders. J. Med. Microbiol. 2020, 69, 558–571. [CrossRef]

36. Nussenzweig, P.M.; Marraffini, L.A. Molecular mechanisms of CRISPR-Cas immunity in bacteria. Annu. Rev. Genet. 2020, 54,
93–120. [CrossRef]

37. McGinn, J.; Marraffini, L.A. Molecular mechanisms of CRISPR-Cas spacer acquisition. Nat. Rev. Microbiol. 2019, 17, 7–12.
[CrossRef] [PubMed]

38. Sorokin, V.A.; Gelfand, M.S.; Artamonova, I.I. Evolutionary dynamics of clustered regularly interspaced short palindromic repeat
systems in the ocean metagenome. Appl. Environ. Microbiol. 2010, 76, 2136–2144. [CrossRef] [PubMed]

39. Burstein, D.; Harrington, L.B.; Strutt, S.C.; Probst, A.J.; Anantharaman, K.; Thomas, B.C.; Doudna, J.A.; Banfield, J.F. New
CRISPR-Cas systems from uncultivated microbes. Nature 2017, 542, 237–241. [CrossRef] [PubMed]

40. Munch, P.C.; Franzosa, E.A.; Stecher, B.; McHardy, A.C.; Huttenhower, C. Identification of natural CRISPR systems and targets in
the human microbiome. Cell Host Microbe 2021, 29, 94–106.e4. [CrossRef]

41. Gogleva, A.A.; Gelfand, M.S.; Artamonova, I.I. Comparative analysis of CRISPR cassettes from the human gut metagenomic
contigs. BMC Genom. 2014, 15, 202. [CrossRef] [PubMed]

42. Couvin, D.; Bernheim, A.; Toffano-Nioche, C.; Touchon, M.; Michalik, J.; Neron, B.; Rocha, E.P.C.; Vergnaud, G.; Gautheret, D.;
Pourcel, C. CRISPRCasFinder, an update of CRISPRFinder, includes a portable version, enhanced performance and integrates
search for cas proteins. Nucleic Acids Res. 2018, 46, W246–W251. [CrossRef]

43. Ghodsi, M.; Liu, B.; Pop, M. DNACLUST: Accurate and efficient clustering of phylogenetic marker genes. BMC Bioinform. 2011,
12, 271. [CrossRef] [PubMed]

44. Pourcel, C.; Touchon, M.; Villeriot, N.; Vernadet, J.P.; Couvin, D.; Toffano-Nioche, C.; Vergnaud, G. CRISPRCasDB a successor of
CRISPRdb containing CRISPR arrays and cas genes from complete genome sequences, and tools to download and query lists of
repeats and spacers. Nucleic Acids Res. 2020, 48, D535–D544. [CrossRef]

45. Altschul, S.F.; Madden, T.L.; Schaffer, A.A.; Zhang, J.; Zhang, Z.; Miller, W.; Lipman, D.J. Gapped BLAST and PSI-BLAST: A new
generation of protein database search programs. Nucleic Acids Res. 1997, 25, 3389–3402. [CrossRef] [PubMed]

46. Steinegger, M.; Soding, J. MMseqs2 enables sensitive protein sequence searching for the analysis of massive data sets. Nat.
Biotechnol. 2017, 35, 1026–1028. [CrossRef]

47. O’Leary, N.A.; Wright, M.W.; Brister, J.R.; Ciufo, S.; Haddad, D.; McVeigh, R.; Rajput, B.; Robbertse, B.; Smith-White, B.; Ako-Adjei,
D.; et al. Reference sequence (RefSeq) database at NCBI: Current status, taxonomic expansion, and functional annotation. Nucleic
Acids Res. 2016, 44, D733–D745. [CrossRef]

48. Song, W.; Sun, H.X.; Zhang, C.; Cheng, L.; Peng, Y.; Deng, Z.; Wang, D.; Wang, Y.; Hu, M.; Liu, W.; et al. Prophage Hunter: An
integrative hunting tool for active prophages. Nucleic Acids Res. 2019, 47, W74–W80. [CrossRef] [PubMed]

49. Zhou, Y.; Liang, Y.; Lynch, K.H.; Dennis, J.J.; Wishart, D.S. PHAST: A fast phage search tool. Nucleic Acids Res. 2011, 39,
W347–W352. [CrossRef] [PubMed]

http://doi.org/10.1177/088307380001500701
http://www.ncbi.nlm.nih.gov/pubmed/10921511
http://doi.org/10.1016/j.anaerobe.2010.06.008
http://www.ncbi.nlm.nih.gov/pubmed/20603222
http://doi.org/10.1128/AEM.70.11.6459-6465.2004
http://doi.org/10.1016/j.physbeh.2019.112745
http://doi.org/10.1002/aur.2358
http://www.ncbi.nlm.nih.gov/pubmed/32830918
http://doi.org/10.1186/1471-230X-11-22
http://doi.org/10.1371/journal.pone.0068322
http://doi.org/10.3389/fcimb.2019.00040
http://www.ncbi.nlm.nih.gov/pubmed/30895172
http://doi.org/10.1016/j.anaerobe.2017.12.007
http://www.ncbi.nlm.nih.gov/pubmed/29274915
http://doi.org/10.1002/aur.1253
http://www.ncbi.nlm.nih.gov/pubmed/22997101
http://doi.org/10.1016/j.jpsychires.2020.06.032
http://www.ncbi.nlm.nih.gov/pubmed/32912596
http://doi.org/10.1099/jmm.0.001178
http://doi.org/10.1146/annurev-genet-022120-112523
http://doi.org/10.1038/s41579-018-0071-7
http://www.ncbi.nlm.nih.gov/pubmed/30171202
http://doi.org/10.1128/AEM.01985-09
http://www.ncbi.nlm.nih.gov/pubmed/20118362
http://doi.org/10.1038/nature21059
http://www.ncbi.nlm.nih.gov/pubmed/28005056
http://doi.org/10.1016/j.chom.2020.10.010
http://doi.org/10.1186/1471-2164-15-202
http://www.ncbi.nlm.nih.gov/pubmed/24628983
http://doi.org/10.1093/nar/gky425
http://doi.org/10.1186/1471-2105-12-271
http://www.ncbi.nlm.nih.gov/pubmed/21718538
http://doi.org/10.1093/nar/gkz915
http://doi.org/10.1093/nar/25.17.3389
http://www.ncbi.nlm.nih.gov/pubmed/9254694
http://doi.org/10.1038/nbt.3988
http://doi.org/10.1093/nar/gkv1189
http://doi.org/10.1093/nar/gkz380
http://www.ncbi.nlm.nih.gov/pubmed/31114893
http://doi.org/10.1093/nar/gkr485
http://www.ncbi.nlm.nih.gov/pubmed/21672955


Life 2022, 12, 367 14 of 14

50. Barrangou, R.; Horvath, P. CRISPR: New horizons in phage resistance and strain identification. Annu. Rev. Food Sci. Technol. 2012,
3, 143–162. [CrossRef] [PubMed]

51. Haas, K.N.; Blanchard, J.L. Reclassification of the Clostridium clostridioforme and Clostridium sphenoides clades as Enterocloster gen.
Nov. and Lacrimispora gen. Nov., including reclassification of 15 taxa. Int. J. Syst. Evol. Microbiol. 2020, 70, 23–34. [CrossRef]
[PubMed]

52. Alkhnbashi, O.S.; Meier, T.; Mitrofanov, A.; Backofen, R.; Voss, B. CRISPR-Cas bioinformatics. Methods 2020, 172, 3–11. [CrossRef]
[PubMed]

53. Moller, A.G.; Liang, C. Metacrast: Reference-guided extraction of CRISPR spacers from unassembled metagenomes. PeerJ 2017, 5,
e3788. [CrossRef]

54. Skennerton, C.T.; Imelfort, M.; Tyson, G.W. CRASS: Identification and reconstruction of CRISPR from unassembled metagenomic
data. Nucleic Acids Res. 2013, 41, e105. [CrossRef] [PubMed]

55. CRISPRCasMeta. Available online: https://crisprcas.i2bc.paris-saclay.fr/CrisprCasMeta/Index (accessed on 30 December 2021).
56. Pavlova, Y.S.; Paez-Espino, D.; Morozov, A.Y.; Belalov, I.S. Searching for fat tails in CRISPR-Cas systems: Data analysis and

mathematical modeling. PLoS Comput. Biol. 2021, 17, e1008841. [CrossRef] [PubMed]
57. Huntemann, M.; Ivanova, N.N.; Mavromatis, K.; Tripp, H.J.; Paez-Espino, D.; Palaniappan, K.; Szeto, E.; Pillay, M.; Chen, I.M.;

Pati, A.; et al. The standard operating procedure of the DOE-JGI microbial genome annotation pipeline (MGAP v.4). Stand.
Genomic. Sci. 2015, 10, 86. [CrossRef] [PubMed]

58. Lai, M.C.; Lombardo, M.V.; Chakrabarti, B.; Baron-Cohen, S. Subgrouping the autism “spectrum”: Reflections on DSM-5. PLoS
Biol. 2013, 11, e1001544. [CrossRef]

59. Gong, T.; Zeng, J.; Tang, B.; Zhou, X.; Li, Y. CRISPR-Cas systems in oral microbiome: From immune defense to physiological
regulation. Mol. Oral Microbiol. 2020, 35, 41–48. [CrossRef] [PubMed]

http://doi.org/10.1146/annurev-food-022811-101134
http://www.ncbi.nlm.nih.gov/pubmed/22224556
http://doi.org/10.1099/ijsem.0.003698
http://www.ncbi.nlm.nih.gov/pubmed/31782700
http://doi.org/10.1016/j.ymeth.2019.07.013
http://www.ncbi.nlm.nih.gov/pubmed/31326596
http://doi.org/10.7717/peerj.3788
http://doi.org/10.1093/nar/gkt183
http://www.ncbi.nlm.nih.gov/pubmed/23511966
https://crisprcas.i2bc.paris-saclay.fr/CrisprCasMeta/Index
http://doi.org/10.1371/journal.pcbi.1008841
http://www.ncbi.nlm.nih.gov/pubmed/33770071
http://doi.org/10.1186/s40793-015-0077-y
http://www.ncbi.nlm.nih.gov/pubmed/26512311
http://doi.org/10.1371/journal.pbio.1001544
http://doi.org/10.1111/omi.12279
http://www.ncbi.nlm.nih.gov/pubmed/31995666

	Introduction 
	Data and Algorithms 
	Results 
	Distribution of the CRISPR-Cas Loci and Its Parameters 
	Search for Markers of the Disease among CRISPR-Cas Systems or Their Elements 
	Search for Protospacers 

	Discussion 
	Conclusions 
	References

