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Abstract: Concurrent use of multiple drugs can lead to unexpected adverse drug reactions. The
interaction between drugs can be confirmed by routine in vitro and clinical trials. However, it is
difficult to test the drug–drug interactions widely and effectively before the drugs enter the market.
Therefore, the prediction of drug–drug interactions has become one of the research priorities in the
biomedical field. In recent years, researchers have been using deep learning to predict drug–drug
interactions by exploiting drug structural features and graph theory, and have achieved a series of
achievements. A drug–drug interaction prediction model SmileGNN is proposed in this paper, which
can be characterized by aggregating the structural features of drugs constructed by SMILES data
and the topological features of drugs in knowledge graphs obtained by graph neural networks. The
experimental results show that the model proposed in this paper combines a variety of data sources
and has a better prediction performance compared with existing prediction models of drug–drug
interactions. Five out of the top ten predicted new drug–drug interactions are verified from the latest
database, which proves the credibility of SmileGNN.

Keywords: drug–drug interaction prediction; graph neural network; knowledge graph; structural
features; topological features

1. Introduction

Drug–drug interaction (DDI) prediction is one of the focuses of biomedical research.
For many diseases with complex pathways of action, the use of a single drug may not be
ideal for treatment. One solution is combination drug therapy, which uses several drugs
at the same time. For instance, leukemia can be effectively treated by the concurrent use
of Venetoclax and Idasanutlin, with Venetoclax inhibiting the anti-apoptotic Bcl-2 family
protein and Idasanutlin activating the p53 pathway [1]. However, the concurrent use of
multiple drugs may lead to adverse drug events (ADEs) [2,3]. Although DDIs can be
confirmed by routine in vitro and clinical trials, it is difficult to test DDIs extensively and
effectively before drugs are marketed. Due to the large number of drugs and the time cost
of verification, it is almost impossible to test DDIs for every two drugs. At the same time,
due to the fact that ADEs are not always reported and counted in time after the occurrence,
there are relatively few documented and verified DDIs compared with the large number
of drugs.

At present, DDI prediction methods are mainly divided into two categories: the drug
structural feature-based approach and graph-based approach.

The drug structural feature-based approach assumes that chemically similar drugs
have similar DDIs. Ryu et al. [4] proposed the DeepDDI model, which is the first model to
use deep learning in drug–drug interaction prediction. Structural Similarity Profiles (SSP)
of pairs of drugs are generated by using SMILES (Simplified Molecular Input Line Entry
Specification) data of the drugs. PCA (Principal Components Analysis) is then used for
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dimension reduction. Finally, the SSPs are sent into the Deep Neural Network (DNN) for
classification. On the basis of DeepDDI, Lee et al. [5] added two new data with the method
similar to how SSP is generated by drugs’ SMILES data: target gene data to generate TSP
(Target Similarity Profile) and gene ontology (GO) to generate GSP (Gene Ontology Term
Similarity Profile). These three feature vectors (SSP, TSP, and GSP) are reduced in dimension
by an improved encoder and then are stitched into a single feature vector for the drug pair,
which is put into DNN for training. This improved model combines more data and has a
higher accuracy. Based on the DeepDDI, a polymorphic deep learning model was proposed
by Deng et al. [6], which uses the filtered complete information for training. It can use the
information related to a variety of drugs to learn more efficiently and has a higher accuracy.
The methods based on drug features have high accuracy on known data sets but they also
have some limitations. The hypothesis that “drugs with similar chemical structures have
similar DDIs” has not been scientifically verified. Thus, there may be a large deviation in
the prediction results in actual clinical verification.

In recent years, a series of studies on the application of graph theory in the molecular
level have achieved great success. Many researchers are trying to use graph theory for
DDI prediction. Marinka et al. [7] proposed the model Decagon, which is a two-layer
heterogeneous graph. It is constructed to predict the type of polypharmacy side effects of
drug pairs whose drug targets are all proteins. In this study, the Graph Neural Network
(GNN) is used to train the model by graph representation learning and it is shown that
the GNN has better performance in predicting DDIs than both the traditional shallow
graph structure model and the traditional graph embedding method. Bougiatiotis et al. [8]
extracted the three-dimensional relationships related to a specific disease from various
databases and expressed them with the Unified Medical Language System (UMLS) to
construct multiple knowledge graphs (KG) for specific diseases. The model DDI-BLKG
extracts drug features based on its pathways, which has a certain enlightenment for the
prediction of DDIs. Lin et al. [9] extracted a large number of drug-related data from the
database and processed data into triples. The triples were encoded to construct a huge KG.
The feature vectors of drugs were generated through two times of aggregation by GNN.
Thus, the vector includes not only the information of the drug itself but also the information
of drug-related entities. The method based on graphs can model more drug data, such as
the drug action pathway, and uses methods such as deep learning to make predictions. The
graph-based method has a good explanatory power but sometimes neglects the information
contained in the entities.

The Graph Neural Network (GNN) extends the convolutional neural network to non-
Euclidean space, which provides a more natural and effective method for the modeling of
graph structured data [10]. GNN can be regarded as an embedding method which extracts
the embedding vectors of adjacent nodes for updating its own embedding vectors without
the need for manual feature engineering [11]. In recent years, GNN has been widely used
in the molecular level and has shown excellent performance [7,9,12,13].

The Knowledge Graph (KG), as a knowledge representation and management method,
was proposed by Google in 2012. In recent years, KG has become popular in academia and
industry, and its use has expanded from the search engine field to all fields involving big
data [14]. The application of KG to DDI prediction also got good results [8,9,15–17]. KG is a
kind of data structure based on graphs and is usually represented as triples, i.e., G = (head,
relation, and tail). The head and tail are the head entity and tail entity, respectively, which
are different entities generated from web pages. Relation is the relation in the knowledge
base, which is transformed from the hyperlink of the web page into the semantic relation
between entities.

2. Methodology
2.1. Drug Structural Features

One of the main data sources for this paper is DrugBank [18]. DrugBank is a drug
knowledge database that describes clinical information on drugs, such as side effects, DDIs,
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etc. DrugBank also provides data on the molecular level, such as the chemical structure
of the drug, the target protein of the drug, etc. SMILES (Simplified Molecular Input Line
Entry Specification) is a specification that explicitly describes molecular structures using
ASCII strings. SMILES can describe a three-dimensional chemical structure with a string of
characters. For example, Figure 1 shows a two-dimensional graph of the drug Leucovorin
and its corresponding SMILES. SMILES can be imported by molecular editing software
and converted into two-dimensional graphics or three-dimensional models of molecules.

Figure 1. Two-dimensional graphs of the drug Leucovorin and its corresponding SMILES.

The SMILES2Vec [19] method was proposed to apply Seq2seq [20] technology in
natural language processing to a SMILES string. In SMILES2Vec, chemical structure
information is used as an input variable into the deep neural network to predict the
physical properties of compounds. SMILES2Vec removes some of the long (more than
250 letters) SMILES during preprocessing and conducts one-hot coding on the remaining
SMILES, converting each SMILES into a vector of length 26. Based on this pretreatment
method, the chemical structure of the drug is pretreated, as shown in Figure 2.

Figure 2. Pretreatment methods of SMILES.

All the SMILES stored in DrugBank are converted into a word bag with 251 elements.
Then, one-hot encoding is used to transform them into 251 dimensional vectors. Finally,
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PCA is used to reduce the 251-dimensional SMILES vectors to a specific dimension. Thus,
we obtain a vector of lower dimension used to represent the structural feature of a drug.

2.2. Drug Topological Features

Construction of KG. The data from two databases are used to construct KG, which are
then used to obtain the topological features of the drugs. The Kyoto Encyclopedia of Genes
and Genomes (KEGG) [21] is a database resource for understanding advanced functions
and utilities of biological systems from molecular-level information. There are multiple sub-
databases under KEGG. Wang et al. [22] constructed a large, high-quality heterogeneous
map linking the Patient, Disease, and Drug (PDD) into an Electronic Medical Record (EMR).
The PDD database extracts key medical entities from MIMIC-III (Medical Information
Mart for Intensive Care III) [23] and links them to current biomedical knowledge graphs
(including ICD-9 Ontology and DrugBank). PDD diagrams are accessible on the web
through SPARQL endpoints and provide information for medical research and treatment
recommendations.

RDF (Resource Description Framework) [24] is a resource description language com-
monly used as a representation of the KG. The Bio2RDF project [25] provides tools to
convert data to n-quads or other formats of RDF. Then, the RDFlib library is used to parse
these n-quads data and divide them into triples (entity, relationship, and entity) in a format
that is convenient for KG to generate embedded features, as shown in Figure 3.

Figure 3. KG construction.

Here, we introduce a metric named density to evaluate the KG. Density is used to
describe the connection’s density between nodes in a graph/network. For a graph G with
L edges and N nodes, the density calculation formula is shown in (1):

d(G) =
2L

N(N − 1)
(1)

The density of the graph has a certain influence on the results of graph-based research
and machine learning. This will be discussed in subsequent experiments.

We construct two KGs by KEGG and PDD, respectively. The corresponding data is
shown in Table 1.

Table 1. Comparison of KEGG KG and PDD KG.

KEGG PDD

Number of drugs 11,174 1495
The proportion of drugs with

structural records 13.96% 72.37%

The density of the graph 4.300 × 10−5 8.571 × 10−4

Number of positive samples 56,983 36,768
Drug-drug interaction

subgraph density 9.128 × 10−4 3.292 × 10−2
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It can be seen from the table that there are more types of drugs in the KEGG data set
but the graph itself is relatively sparse and the proportion of drugs with structure records
is relatively lower. The PDD dataset has fewer drug types but the graph is denser and the
proportion of drugs with structure records is higher.

Extraction of topological features. Generally, the models that use KG to predict DDIs
can only capture data information in a small range. The KGNN [9] model was proposed to
expand the receptive field, obtain the rich entity information in the KG, and explore the
potential correlation between drugs and other entities. It extracts the higher-order structure
and semantic relations of drugs by GNN and learns the representation of drugs and
their neighborhoods from the KG. We used the KGNN model to calculate the topological
features of drugs on the KG, as shown in Figure 4. For each entity, the model extracts
several entities from the domain of the entity and aggregates the information of these
entities to form the topological feature representation of the entity. There are three kinds of
entity aggregation methods: sum aggregation is a superposition operation, concatenate is a
concatenate operation, and neighbor only aggregates information from the neighborhood
but not the node itself. These three aggregation methods are abbreviated as sum, concat,
and neigh, respectively.

Figure 4. Extraction of topological features.

2.3. Drug–Drug Interaction Prediction

We considered using GNN to obtain the drug topological features on the KG and fuse
drug structural features into the model to study the influence of drug structural features on
DDI prediction. Hence, we propose the novel model of SmileGNN, as shown in Figure 5.
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Figure 5. SmileGNN model.

For drugs, the structural features are the vectors that we obtain from SMILES structural
data using the method mentioned in Section 2.1 to indicate its structural characteristics. The
topological features refer to the vectors which record relationships between the drug and
other molecules in KG learned through GNN. The KG is established using the method in
Section 2.2. Comprehensive features refer to the vectors obtained by aggregating the struc-
tural features and topological features of the drug (see Section 3.4 for detailed aggregation
methods) to represent the drug.

The algorithm can be summarized as follows. The method SMILES2Vec mentioned
in Section 2.1 is used to calculate the structural features by using the data of SMILES.
The KGNN model is retained to calculate the drug topological features, in which the
graph neural network (GNN) is used to aggregate the entity information of the receptive
field within two hops of the entity to obtain the drug topological features. Then, the two
features of the drug are aggregated to obtain a comprehensive drug feature, including drug
topological features and drug structural features. Two algorithms are specifically designed
to aggregate drug structural features and drug topological features. See Section 3.4 for
detailed algorithms and a comparative analysis.

After obtaining the comprehensive features of the two drugs, we dotted and summed
the features. The drug pair score was obtained through sigmoid function and hence was
distributed in the interval of (0, 1). It is classified as the presence of DDI if the interaction
value exceeds 0.5 and otherwise as the absence of DDI.

It should be noted that the positive and negative samples in the experiment are not
the results of manual labeling but rather come from the existing data in the database. The
negative samples in this article are considered to be no DDI between the two drugs but the
possibility of existing DDI between the two drugs is not excluded. We can only say it has
not been clinically verified, thus it has not been recorded in the database.

This model uses the dichotomous cross-loss entropy as the loss function and its
calculation formula is shown in (2):

Loss = ∑(i,j)∈Y(i,j∈Nd ,j 6=i)−yi,jlogŷi,j −
(
1− yi,j

)
log
(
1− ŷi,j

)
(2)

where ˆyi,j represents the predicted value, yi,j represents the true value of drug pairs in the
data set, and Y represents the set of all drug pairs.
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3. Experiment
3.1. Experimental Settings

In this paper, the prediction of DDI is considered as a binary task. It does not necessar-
ily predict the specific type of DDI or what side effects the DDI may cause but only judges
whether there is a possible DDI between the drug pair.

Metrics. ACC (Accuracy) and AUC (Area Under Curve) are used as the main evalua-
tion metrics for a series of models. In some comparative experiments, the F1-Score is also
used as a metric.

Settings. The experiment was conducted on two datasets, namely KEGG and PDD.
Section 2.2 shows the construction and data features of the respective dataset. For the
two datasets, a parameter combination that achieves the highest AUC value was adopted
through parameter tuning based on grid search. The final parameters to be used are shown
in Table 2.

Table 2. Experimental parameters.

KEGG PDD

Batch size 2048 1024
Learning rate 2 × 10−2 1 × 10−2

GNN embed dimension 32 64

Baselines. In addition to KGNN, two classic models, namely DeepDDI and Decagon,
were compared with the new model proposed in this paper. See Section 1 for a detailed
introduction of the models.

DeepDDI [4]: The DeepDDI model is based on the drug structural feature method and
is the first to use a deep neural network to predict DDI. The model was put forward in 2017
and established the Gold Standard Database (Gold Standard Database) of DDIs. DeepDDI
is considered a benchmark among structural feature methods.

Decagon [7]: The Decagon model is the first model using a graph neural network
among graph-based methods. This model was proposed in 2018 and is a model with great
influence among graph-based methods in recent years.

KGNN [9]: The usage of KG and GNN to predict DDI can mine the potential correla-
tions between drugs and other entities.

3.2. Results and Analysis

The experimental results of these models were compared and analyzed, as shown
in Table 3.

Table 3. Comparative analysis of the new model and several classical models.

Model The Data Source ACC AUC

DeepDDI KEGG 0.8217 0.8987
Decagon STITCH, etc. – 0.8720
KGNN KEGG 0.8834 0.9422

SmileGNN KEGG 0.8936 0.9521

SmileGNN achieved the best performance among all the models. Compared to the
classic DeepDDI and Decagon models, there was a 5.3% and 8.0% improvement in AUC
values, respectively. Compared with the KGNN model using drug topological features
alone, it also has a certain performance improvement.

Although both the DeepDDI model and Decagon model are the pioneer models in the
field of DDI prediction, the model designs still need to be improved and their prediction
performance is relatively poor. Though both are graph-based methods, the Decagon model
only uses the topological features of the drug, while the KGNN model considers the
topological features of both the current node and the nodes in the neighborhood of the drug
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within a certain range, thus more information can be learned from the graph. This results in
an improved performance compared with the Decagon model. The new model SmileGNN
proposed in this paper combines the topological features and structural features of the
drug, and performs better in terms of the DDI prediction than the Decagon and KGNN
models that extract topological features alone or the DeepDDI model that uses structural
features alone.

The SmileGNN model retains the method of the KGNN model in learning drug
topological features and has an excellent performance. However, in terms of the learning of
drug structural features, the model proposed in this paper deals with SMILES in a relatively
independent and rough way. Future research can further optimize the feature expression
algorithm of drug structural features to improve the prediction ability of the model.

3.3. Ablation Study

SmileGNN adds the use of drug structural features to KGNN and integrates multi-
source information to predict new DDIs. An ablation experiment was conducted to compare
and analyze the influence of the new drug structural features with the performance of the
original KGNN model [9].

Experiments were carried out in the KEGG and PDD datasets on the three drug
topological feature aggregation types of sum, concat, and neigh. The aggregator mentioned
here was used to combine the feature of the current node and the nodes in the neighborhood
of the drug within a certain range. The experimental results are shown in Table 4.

Table 4. Comparison of the performance of SmileGNN and KGNN on datasets.

Dataset Model Aggregator Type Average
Accuracy

Average
AUC

Average
F1-Score

KEGG

KGNN

sum 0.8801 0.9390 0.8851
concat 0.8834 0.9422 0.8881
neigh 0.8642 0.9267 0.8690

Average 0.8759 0.9360 0.8807

SmileGNN

sum 0.8888 0.9467 0.8943
concat 0.8936 0.9521 0.8957
neigh 0.8744 0.9329 0.8788

Average 0.8856 0.9439 0.8896

PDD

KGNN

sum 0.8920 0.9542 0.8947
concat 0.8970 0.9576 0.8995
neigh 0.8896 0.9518 0.8919

Average 0.8929 0.9545 0.8954

SmileGNN

sum 0.9040 0.9618 0.9056
concat 0.9065 0.9642 0.9084
neigh 0.9000 0.9613 0.9018

Average 0.9035 0.9624 0.9053

For both the KEGG and PDD datasets, the performance of SmileGNN, which ad-
ditionally uses drug structural features, was better than that of KGNN in all the three
kinds of aggregation methods of drug topological features. Consistent with the KGNN
model, SmileGNN achieved the best effect when using concat for obtaining drug topo-
logical features, with the AUC value reaching 0.9521 and 0.9642 in the KEGG and PDD
dataset, respectively. This proves that the newly added drug structural features can steadily
improve the performance of the model.

Table 4 reveals that the performance of both the KGNN and SmileGNN models on
the PDD dataset is better than that using the KEGG dataset. As for the improvement of
model performance after adding SMILES, it obtained the same degree of improvement on
the PDD dataset, with about a 1% improvement in the ACC, AUC, and F1 value.
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Based on the comparison of the KEGG and PDD datasets in Section 2.2, the following
conclusions can be basically drawn:

1. On the denser graph, the drug topology information learned from the model is richer
and can better represent the drug topological features.

2. In PDD data, there is a higher proportion of drugs that have corresponding drug
structures. Even with a higher start, the performance of using the PDD dataset still
improved by about 1% by adding structural features. Thus, drug structural features
have a great positive influence on the model, which is positive.

Due to the limitations of the dataset, that is, the fact that drug pairs classified as without
DDIs may actually have DDIs, the predicted results of the model cannot be infinitely close
to 1 and the excellent performance obtained in both the training and cross-validation does
not explain everything. In Section 4, special attention is paid to drug pairs that are classified
“incorrectly”, i.e., those that the datasets recorded as non-DDIs but that the model predicted
as DDIs.

3.4. Case Study

• Influence of the drug feature aggregation method

Referring to the ways that KGNN was designed to aggregate the topological features
of multiple nodes together, methods sum and concat are designed to aggregate the struc-
tural features and topological features of drugs together by corresponding superposition
operation and concatenate operation.

We have two matrices as input: drug topological feature matrix A, whose shape is
BatchSize ∗ EmbedDimensionA, and drug structural feature matrix B, whose shape is
BatchSize ∗ EmbedDimensionB. For the sum method, the weight matrix W of the shape
EmbedDimensionA ∗ EmbedDimensionA is designed and the bias vector is b. Notice that the
matrices A and B have to have the same shape. Output is shown in Formula (3). For the concat
method, the weight matrix W of the shape (EmbedDimensionA + EmbedDimensionB)
∗ EmbedDimensionA is designed and the bias vector is b. Output is shown in Formula (4).

tan h([ A + B] ∗W + b) (3)

tan h([ A + B ] ∗W + b) (4)

For the PDD dataset, when other parameters are unchanged, the drug topological
feature dimension is set as 64 dimensions. So is the drug structural feature dimension. The
two aggregation methods were used to obtain drug comprehensive features and the other
parameters were consistent. The experimental results are shown in Table 5.

Table 5. Different aggregation methods on the PDD dataset.

ACC AUC F1-Score

sum 0.9095 0.9647 0.9070
concat 0.9056 0.9618 0.9040

As can be seen from Table 5, when sum and concat are used to aggregate drug
topological features and drug structural features, the performance of the sum method is
slightly better than that of the concat method, but the difference is not significant. In view
of the fact that the concat method is more flexible and has no requirement on the feature
dimension, subsequent experiments all adopted the concat method.

• Influence of the drug structural feature dimension

To measure the influence of the drug structural feature dimension on the result of
the model training and to study the loss of the PCA dimension reduction method, we
conducted the following experiment. The concat method was used to connect drugs’
topological features and structural features using the PDD dataset. Set the PCA dimension
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reduction of the drug structural feature dimension as 32 d, 64 d, and 96 d. Other parameters
remain the same.

Among them, three methods of sum, concat, and neigh are used to obtain drug
topological features in order to observe whether the influence of drug structural feature
dimensions is stable and consistent. Figure 6 shows the experiment result, in which (a)
(b) and (c) indicates ACC, AUC and F1-Score respectively. As shown in Figure 6, with the
increasing of the drug structure feature dimension from 32 d to 64 d, the performances of
the three aggregators were all improved, indicating a stable and consistent influence of the
drug structural feature dimension on the model performance. Note that when the drug
structural dimension was increased from 64 d to 96 d, the performance of the model was
not significantly improved.

Figure 6. Influence of the drug structure characteristic dimension on model performance. (a) Influence
of different dimension on ACC. ACC increases with the increasement of drug structural feature
dimension. (b) Influence of different dimension on AUC. AUC reaches the highest when drug
structural feature dimension is 64. (c) Influence of different dimension on F1-Score. F1-Score increases
with the increasement of drug structural feature dimension.
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In conclusion, when PCA is used to reduce the dimension of drug structural features,
the effect of the dimension reduction is better and the information loss is smaller in the
process of decreasing from 251 d to 64 d. When the dimension is further reduced, the
representation of the drug structural features may be greatly lost and the performance of
the final model will be affected. Considering when using 64 d drug structural features, the
model has already had a relatively good performance, while the use of a higher dimension
of drug structural features will occupy more computing resources and storage space, and
the performance improvement is not obvious, thus the experiments uniformly used 64 d
drug structural features.

4. Discussion

Instead of sending the score of the drug pairs into the threshold category of 0.5, the
drug pairs with a score over 0.9 were directly printed and ranked from highest to lowest.
To obtain a better result, we used the PDD dataset to have drug pairs classified as DDIs and
to eliminate pairs which were recorded with DDIs in PDD. We then obtained the highest
score of the top ten new predictions of DDIs and sent the results to the latest DrugBank
database query. The ones that were recorded as DDI in DrugBank were marked as 1 and
otherwise marked as 0, as shown in Table 6. Table 7 shows the corresponding drug names
to the DB numbers from DrugBank.

Table 6. New DDIs.

Drug1 Drug2 Score Whether You Can Query DDI
in DrugBank

DB00437 DB09322 0.999964 0
DB00450 DB00768 0.999917 0
DB00437 DB00959 0.999854 0
DB00660 DB01656 0.999831 1
DB00722 DB01039 0.999817 1
DB00437 DB00633 0.999764 1
DB00346 DB01173 0.999618 1
DB04908 DB05521 0.999571 1
DB00475 DB00820 0.999542 0
DB00040 DB00564 0.999236 0

Table 7. The corresponding drug names of drugs in new DDIs.

Drug1 Drug1 Name Drug2 Drug2 Name

DB00437 Allopurinol DB09322 Zinc sulfate
DB00450 Droperidol DB00768 Olopatadine
DB00437 Allopurinol DB00959 Methylprednisolone
DB00660 Metaxalone DB01656 Roflumilast
DB00722 Lisinopril DB01039 Fenofibrate
DB00437 Allopurinol DB00633 Dexmedetomidine
DB00346 Alfuzosin DB01173 Orphenadrine
DB04908 Flibanserin DB05521 Telaprevir
DB00475 Chlordiazepoxide DB00820 Tadalafil
DB00040 Glucagon DB00564 Carbamazepine

The PDD dataset was updated to version 1.3 and uploaded in October 2018. The DDIs
in the PDD dataset were extracted from version 5.1.1 of DrugBank, which was uploaded in
July 2018. The latest DrugBank database is version 5.1.8, uploaded in January 2021. Thus,
there is a 2.5-year gap during which many new DDIs were discovered and verified.

It can be seen that the five new DDIs shown in Table 6 have been clinically verified and
included in the DrugBank database in the recent two years, while the remaining five DDIs
have not been experimentally verified yet. The model proposed in this paper is reliable
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for the prediction of novel DDIs and the experimental results are of great supporting
significance for clinical trials of novel DDIs.

In the following paragraphs, two drug pairs were studied separately and the influence
of the drug structural features and drug topological features on drug pair interaction
prediction is discussed. It can be seen that drug pairs [DB00437, DB00959] and [DB00437,
DB00633] have high scores above 0.99 and both contain drug DB00437.

According to the SSP calculated in DeepDDI [4], it is known that the structural simi-
larity between drug DB00959 and drug DB00633 is only about 35.19%, which is not high.
However, only 72% of the drugs in the PDD dataset have SMILES data. Thus, for about 48%
of the drug pairs, their structural similarity cannot be directly calculated. In the context of
sparse data, a 35.19% similarity also has a great impact on the results.

In the drug targeting data, it was found that both drug DB00959 and drug DB00633
acted on the Cytochromes P450 group protein enzymes. Due to the similar pathway of
action, the model was more inclined to believe that drug DB00959 and drug DB00437 also
have DDIs. The DDI records in the DrugBank database show that the adverse drug event of
drug combination [DB00437, DB00633] is due to competition for the excretory pathway of
the kidney [26]. Based on the relevant information in literature and on a series of databases,
it is believed that the interaction mechanism of this drug pair is not obviously related to
the protein enzymes of the Cytochromes P450 group [27,28].

Through the study of this example, it is realized that SmileGNN can make good use of
the known drug structural information and drug topological information to predict DDIs.
However, due to limitations caused by the insufficient information of the drug structure
and the relatively blind and random nature embedded in the learning of the topological
information in KG, the SmileGNN model still has much room for improvement in learning
drug features.

5. Conclusions

In this paper, the new model SmileGNN (model based on SMILES and the graph
neural network) was proposed to predict drug–drug interactions by comprehensively using
drug structural features and drug topological features. We implemented the proposed
method and conducted experimental comparisons on two datasets. The results verified
that SmileGNN has better performance than the classic models and KGNN. Based on the
latest database, SmileGNN’s prediction results are also credible.
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