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Abstract: One of the leading theories for the origin of life includes the hypothesis according to
which life would have evolved as cooperative networks of molecules. Explaining cooperation—and
particularly, its emergence in favoring the evolution of life-bearing molecules—is thus a key element
in describing the transition from nonlife to life. Using agent-based modeling of the iterated prisoner’s
dilemma, we investigate the emergence of cooperative behavior in a stochastic and spatially extended
setting and characterize the effects of inheritance and variability. We demonstrate that there is
a mutation threshold above which cooperation is—counterintuitively—selected, which drives a
dramatic and robust cooperative takeover of the whole system sustained consistently up to the
error catastrophe, in a manner reminiscent of typical phase transition phenomena in statistical
physics. Moreover, our results also imply that one of the simplest conditional cooperative strategies,
“Tit-for-Tat”, plays a key role in the emergence of cooperative behavior required for the origin of life.
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1. Introduction

Attempts to explain the sequence of events leading to the origin of life have elicited
much research over the years [1–10]. One of the leading theories includes the hypothesis
according to which life would have evolved as cooperative networks of molecules [11–13].
In the context of this theory, two main elements however remain to be adequately described:
a concrete specification of the physicochemical reality of such networks, and the means
by which those would have evolved. Specifically, if we consider that life arose through
the cooperation of life-bearing molecules, then explaining the dynamics that led to the
evolution of such networks is a priority [14].

While Darwinism explains how macro-complexity derives from micro-complexity, it
does not explain how the latter appears in the first place [15]. It is thus thought that the
RNA world may not have been the earliest genetic system, favoring instead a system of
simpler units having the capacity to encode and generate information through selection
without formal replication—where candidates include polypeptides, RNA-like polymers,
and lipids [14]. This begs the question of the origin of evolution: when does chemical
kinetics become evolutionary dynamics [16]? In other words, a necessary explanans of origin
of life theories lies in this chemical phase [15], a gray zone between non-life and simple
life which required kinetic competition between information units prior to the advent of
Darwinian evolution [17].

Many observations also suggest that Darwinian behavior is rooted in chemistry. Since
it was observed in 1960 that the Qβ bacteriophage displayed Darwinian behavior, many
other in vitro procedures have shown that other nucleic acid systems are also Darwinian [15].
Voytek and Joyce, for instance, noted that the biological phenomenon of competitive
exclusion also applies at the chemical level to RNA enzymes [18], while Adamala and
Szostak have investigated how changes in the composition of the membrane of protocell
vesicles caused by a simple catalyst enable the origin of selection and competition between
protocells [19]. More recently, it has been suggested that both prebiotic evolution and
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the evolution of biological systems follow similar equations, and Yeates et al. made this
connection explicit [20]. It is thought that this “pre-life” phase would have taken the form
of active monomers generative of information, and that the replication rate exceeding
a threshold value would have elicited a transition sharing characteristics with phase
transition phenomena [16].

Building on the concept of cooperating networks, Damer and Deamer has proposed
that protocells undergo a primitive version of Darwinian selection for stability, termed
combinatorial selection, and are solely driven by physical and chemical forces at the molec-
ular level. Gel aggregates subjected to wet-dry cycles would enable protocell-to-protocell
interaction, leading to a form of network selection [21,22], and would thus constitute the
unit that Woese and Fox anticipated to be the ancestor of procaryotes and eucaryotes,
termed the progenote [23]. Laboratory studies also support this view of a collectivist origin
of biology presumed to give rise to autocatalyzed metabolic cycles: previous work on the
interaction between RNA and lipid membranes reveal that oligomers bind stably to the
liposome surface—a property that isn’t shared by individual RNA molecules [24,25]. Those
results suggest that selection processes in the prebiotic world might yield RNA consortia,
thereby accounting for the colocalization of proteins, RNA, and membrane as a single unit.
These collective phenomena can all be viewed as instances of cooperative behavior at the
chemical level.

Game theory provides the framework of choice to study how cooperation can emerge
in competitive environments, and has inspired much theoretical and experimental work on
this question. It has been used successfully in a wide array of problems [26–28], from ecol-
ogy [29] to computational neuroscience [30], and is increasingly being applied in the context
of prebiotic chemistry. If Eigen already considered prebiotic evolution to have properties of
games, it has become recently even more evident that game theory is relevant for biophysics
and biochemistry [31]. Evolution is almost always the co-evolution of the organisms and
their environment [31] over dynamic fitness landscapes [32], which makes game theory is
the appropriate framework for an analysis of such processes.

Examples of applications of game theory at the molecular level include multiple anal-
yses where viruses are considered as players [33] and subsequent work on the Φ6 virus
model system, HLSV, and TMV viruses, and on sets of phages [34]. Recent observations
have also been made of RNA and autocatalytic sets that display competition, inheritance,
and cooperative behavior [35–37]. It is thought that RNA polymers could thus meet the
criteria for behavioral chemistry, make “choices” based on their environment and self-
contained information [38] and more generally that macromolecules—RNA, DNA, and
proteins altogether—could be regarded as players where strategies derive from their state
and properties [34]. Partially unfolded molecules [38] and chemical networks [14] would
possess a type of “memory” and respond to environmental conditions, subsequently adopt-
ing different conformations leading to differentiated behavior that would be subjected to
natural selection, possibly through the use of “signals”—a feature distinguishing biochem-
istry from abiotic chemistry [39]. Formation of protein complexes have identically been
studied as games [40] and genes considered as players [34]. Recent laboratory experiments
have also contributed to establishing that game theory applies at the chemical level in
systems where de novo synthesis takes place (i.e., reproduction instead of replication),
and where kinetic selective forces apply [20].

It is thus becoming increasingly clear that a chemical game theory can shed some light on
the dynamics of macromolecular interactions, and provide insight on the early emergence
of cooperation, the latter being one key idea in understanding how individual entities
can be spontaneously brought together into the formation of more complex structures
where the interaction of the components with each other promotes the sustenance of the
latter. While in biology cooperation is often explained away using references to concepts
such as kin selection [41], this process cannot be correspondingly applied to cases where
individuals possess no agency. Origin of life theories, insofar as they seek to provide
a detailed explanans of the phenomenon, must adequately conceptualize how individ-
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ual components subject to Darwinian principles can cooperate into forming autocatalytic
sets [11,12,42], replicating another ribozyme without repayment [3,8,43], or forming what-
ever early proto-metabolism is required to jump-start the emergence of more complex
lifeforms [44]. Cooperation is so interweaved into the fabric of complex life—from cell-
cell communication and biofilm formation in microbes [45] to countless examples in the
ecological and social sciences [46–51]—that it seems unthinkable to even consider putting
forward a theory of the origin of life that wouldn’t account for the emergence of cooperative
behavior in the first place. As Frick and Schuster eloquently put it: clearly, cells belonging
to the same organism should not compete against one another [52].

There is thus a renewed interest in the importance of cooperation for the origin of
life problem [17] and more generally, as Queller has suggested [53], in the context of
major evolutionary transitions [54], which have involved increases in complexity and the
establishment of new cooperative relationships [39]. There is notably ample evidence that
cooperative molecular behavior, in general, constitutes an evolutionary advantage [15],
thus being selected by evolution under the right circumstances. Specifically for the origin
of life, cooperation stands as one of the three advantages of prebiotic networks put forward
by Nghe et al., thus sparking the transition from chemistry to biology [14]. This view
is also supported by laboratory experiments [55] and observations of RNA cooperative
networks [14]. Explaining cooperation—and particularly, its emergence in the context of the
origin of life—is clearly a required element in the description of the transition from non-life
to life, and while much work has been done in explaining the origin of cooperation in
high-order organisms, a convincing description of the way by which cooperative behavior
emerges at the molecular level has yet to be elaborated.

2. The Prisoner’s Dilemma

The prisoner’s dilemma (PD) is precisely used in game theory to analyze the tension
between rational, selfish behavior and altruistic cooperation [56–58] and has been put
forth in the analysis of cooperative behavior in various natural and artificial systems. Two
players each have the opportunity to either cooperate (C) or defect (D), without knowing
in advance which strategy will be adopted by their opponent. Depending on the different
combinations of moves chosen by each player, players will be rewarded with a score
(Table 1). While mutual cooperation yields the maximum mean reward for the two players,
exploitation (i.e., defecting when the opponent chooses to cooperate) leads to the maximum
reward for the exploiting party and nil for the exploited player—mutual defection thereafter
leading to the worst mean reward for both. This scoring scheme highlights the tension
between selfish behavior that either leads to an immediate advantage or a poor outcome,
on one hand, and cooperation as a compromise that leads to a reasonable outcome for both
players on the other. Generalizing this principle leads to the formal constraint

T > R > P > S, (1)

with R being the reward, T the tentative payoff, S the sucker’s payoff, and P the punish-
ment [59]. The PD as studied in game theory also applies to contexts where the players
possess no capacity for rational reasoning, and is thus a useful framework in analyzing
biochemical cooperation phenomena in the context of prebiotic chemistry.

A temporal extension of the PD known as the iterated prisoner’s dilemma (IPD) is the
canonical model used to study the interaction between players. The game is played for
several rounds, either for a definite number of times known to the players or by stopping
the game with some finite probability. The players then follow a strategy that defines in
advance their next move, taking—or not—into account the information available to them
through the game at that time (e.g., their previous moves and those of the opponent).
Basic strategies include the case where a player always cooperates (hereafter ALLC), always
defects (ALLD), shows mutual reciprocation by mirroring the opponent’s previous move (TFT,
for “Tit-for-Tat”), or acts randomly (RND).
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Table 1. Score matrix of the Prisoner’s dilemma (PD). Numbers refer to the PD’s score matrix as
traditionally defined [57], indicating the reward of the player adopting the strategy in the leftmost
column. Mutual cooperation leads to the best possible mean outcome, while defection either leads
to the absolute maximum or the absolute minimum reward. Letters refer to the general form of the
score matrix for the PD: mutual cooperation leads to the reward payoff (R), while mutual defection
leads to the punishment (P). Exploitation—with one player defecting while the opponent chooses
to cooperate—leads to the temptation payoff (T) and sucker’s payoff (S). The game satisfies the PD
constraint when T > R > P > S.

Cooperate Defect

Cooperate 3
R

0
S

Defect 5
T

1
P

Using agent-based modeling of the iterated prisoner’s dilemma, we investigate the
emergence of cooperative behavior in a spatially extended setting and characterize the
effects of inheritance and variability. We demonstrate that there is a mutation threshold
above which cooperation is—counterintuitively—selected, which drives a dramatic and
robust cooperative takeover of the whole system. Moreover, our results also imply that
one of the simplest conditional cooperative strategies, “Tit-for-Tat”, plays a key role in the
emergence of cooperative behavior required for the origin of life.

Rather than being considered a lattice-based simplified representation of a specific
system, our simulations are best viewed in the context of constructive biology which
seeks to identify universal patterns and mechanisms that are independent of specific
physical/chemical contexts and substrates [10,60,61]. A cooperative takeover, by which
we mean the rise to a predominance of reactive cooperating strategies in our simulations
represents a prime example of emergent dynamics: namely, the appearance of novel
features where cooperation is preeminent on global (“macroscopic”) scales that cannot
be directly inferred or predicted, even from a complete knowledge of system behavior
and interaction rules at small (“microscopic”) scales, with clear Darwinian dynamics that
should, by all means, favor selfish behaviors. Furthermore, the emergence of cooperation
as an emergent phenomenon witnessed in our simulations—and the wide range of the
parameter space over which it occurs—suggests that the results obtained here are not
strictly dependent on the specific implementation of the model.

3. Simulation Design and Methods

Spatial aspects of prebiotic settings are thought to have played a significant role in
life’s early chemistry. Examples include montmorillonite clay and other mineral surfaces,
which may have promoted the polymerization of activated mononucleotides [22]. Spatial
games have likewise been the subject of much interest in the past decades (e.g., [62–67]).
Our model implements IPD games on a 128× 128 Cartesian lattice with periodic boundary
conditions where each site is occupied by a player adopting one of the four strategies
consisting of ALLC, ALLD, TFT, and RND. Strategies are first distributed on the lattice ran-
domly in equal proportions (Figure 1A). At each new iteration of the model, every player
plays IPD games of M rounds against every other player inside their Moore neighborhood,
i.e., the eight sites surrounding them, and record their score (Figure 1B). In a second step,
the strategy of every player of the lattice is replaced by the highest scoring strategy in their
Moore neighborhood, if applicable (Figure 1C). This evaluation of the Moore neighborhood
is randomized as not to introduce any spatial bias in the simulation: comparing scores
between each strategy and its neighbors was done in a random order as not to favor a spe-
cific spatial pattern if two players obtained an even score. This process is then repeated for
T iterations, which leads to fluctuations in strategy frequencies and the emergence of spatial
self-organization dynamics. Simulations were carried out for T = 500 iterations, which
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allowed a relaxation of the initial conditions sufficient for population dynamics specific to
simulations parameters to materialize independently of the initial conditions. Finally, IPD
game lengths of M = 2000 moves were chosen to allow meaningful behavior in cases of
very low error rates.

A B C
460

575

290

393

393

522

655

845

190

Figure 1. Evolution algorithm. (A) At the beginning of each simulation, strategies ALLC (“always
cooperate”, green), ALLD (“always defect”, red), and TFT (“mutual reciprocation”, blue) are placed
randomly on the lattice. Then the following process is repeated at each lattice site: strategies play M
PD games against every neighbor in their neighborhood, and the scores of each player are recorded.
(B) In a second step, the score of each strategy is compared against their neighbor’s score, and (C)
the highest scoring strategy (boxed in yellow) is assigned to the site being examined. This process is
repeated for each of the T iterations of the model.

Figure 2 shows snapshots for the first fourteen iterations of the model for a simulation
that includes ALLC, ALLD, TFT, and RND. In the vast majority of simulations carried
out, including deterministic simulations initialized with the parameters specified above,
the RND strategy is promptly evacuated from the lattice most of the time and was thus
not further included in the initial strategy distribution. Deterministic simulations quickly
(i.e., in a few tens iterations) reach a stationary state where TFT largely dominates. This is
consistent with the known success of TFT [57,59].

Figure 2. First fourteen iterations of the model for a deterministic simulation (i.e., p = 0): strategies
ALLC (green), ALLD (red), TFT (blue), and RND (“play randomly”, pink) are initially placed
randomly on the lattice, then IPD games are played and the highest scoring strategies are propagated.
For such a simulation where no stochasticity is included—each move is determined by the assigned
strategy and the players make no mistake playing the PD—a very brief invasion by ALLD precedes
an eventual predominance of TFT. RND is quickly eliminated from the lattice, as in most of the
simulations over the parameter space of the model. The majority of such deterministic simulations
become stationary after only a few tens iterations.
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The influence of stochasticity has also been discussed at length not only in relations to
the origin of life problem and microbial life [68–70], but also in the context of game theory
and the PD itself [67,71–79]. In the prebiotic context, it is generally agreed upon that an
external supply of energy is required to drive non-equilibrium chemical reactions leading
to the buildup of catalytic cycles and complex biomolecules [80–86]. However, strong
external energy fluxes generally also imply strong thermodynamical fluctuations, which
may be detrimental to the autonomous self-organization of complex prebiotic or early-life
chemistry. Such fluctuations translate into either higher error rates in the interaction of early
replicators, higher mutation rates, or both. For example, in an analysis of UV transmission
in a prebiotic setting, the conclusions of Ranjan et al. are unambiguous: insofar as prebiotic
chemistries are shown to be affected by UV irradiation, they must be demonstrated to
either invoke a UV-shielded milieu or be so productive as to outpace UV degradation [87].
TFT’s success however notably relies on being placed in an environment where interactions
are reliable—that is, where no “mistakes” are made by the players. Noisy environments,
therefore, destroy any ongoing mutual cooperation between TFT strategies: as soon as a
defection happens in the game, two TFT strategies playing against one another will enter a
perpetual cycle of mutual defection.

If TFT’s success in error-free environments has now been known for some time, a cen-
tral question relevant to the origin of life scenarios concerns the emergence of cooperative
behavior in stochastic (i.e., noisy) environments. We have therefore implemented an error
rate according to which the players will sometimes diverge from their strategy. For each
IPD game, both players will thus play according to their assigned strategy, but will make
mistakes (e.g., defect instead of cooperating with the other player) with a probability p.
Varying this error rate impacts system behavior globally, both in terms of populations
dynamics and in terms of the spatial structures produced. Error rates have been sam-
pled from a lognormal distribution of mode p̂, with logarithmic mean m and variance
s2 (Equation (A1) in the Appendix A). Values of p ∈ [10−6, 5× 10−1] have been sampled,
which represent values of the same order than presumed error rates in early replication
mechanisms [88–90]. A detailed description of the procedure used for evolving the systems
and the implementation of stochastic elements is also included (see Algorithm A1 of the
Appendix A).

In the context of the RNA world hypothesis, autocatalytic systems are thought to
have evolved through the selection of both heritable and variable components. In a
minimal model of early replicators, the error rate can thus be both subject to heritability
and variability. We hence tested the impact on simulation dynamics of the heritability of
error rates by including, for a subset of simulations, the heritability of the winning player’s
error rate. We also introduced a mutation probability according to which a mutation,
corresponding to a correction proportional to s, can occur when a player inherits another
player’s error rate (c.f. Equation (A3) of the Appendix A). Mutation rates µ ∈

[
10−4, 1

]
were sampled, which correspond to a few mutations per simulation up to some critical
value typical of an error catastrophe [68]—a characteristic of replicating systems that has
been compared to phase transition phenomena in statistical physics with replication error
rate acting as the order parameter [91–96]. The presence of an error catastrophe is indeed
predicted by the quasispecies theory: above the error threshold value, replication errors
lead to populations being submerged by unfit individuals that decrease the overall fitness
until the species goes extinct [68].

4. Results
4.1. Spatiality and Population Dynamics

Simulations evolved with strategies making mistakes (i.e., p > 0) lead to a wide
range of system behavior reflected in the spatial organization of strategies on the lattice.
Two notable examples of such spatial configurations include regimes with time-varying
fractal distributions of strategies (population evolution and final lattice state shown on
Figure 3A,B) and clustering patterns (Figure 3C,D). While the evolution of the population
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reaches a dynamical equilibrium in the first case, the equilibrium becomes static in the
second. In the latter case, the system’s dynamics leads to the formation of isolated domains
of ALLC, which otherwise would not survive in exploitative environments, that can be
sustained while surrounded by ALLD players. Likewise, ALLD strategies can persist
in environments where TFT is present by preying on ALLC players. Spatiality is thus a
required condition for such dynamics to emerge, and the score of surrounding parasites
(e.g., ALLD players) cannot, in this case, exceed that of the central cooperator [59]. This
has been observed when the duration of the interaction between players is long enough—
i.e., game length M & 2000 PD moves—as to supersede the temporal dynamics of the
simulation itself, hence this parameter value was conserved for all simulations.

0 100 200 300 400 500
t

0.00

0.25

0.50

0.75

1.00

f

p = 3.16 × 10 5

0 100 200 300 400 500
t

0.00

0.25

0.50

0.75

1.00

f

p = 3.16 × 10 2

ALLC
ALLD
TFT

(A)

(C)

(B)

(D)

Figure 3. Population evolution and final lattice state for two simulations with p̂ ' 3.16× 10−5

(A,B) and p̂ ' 3.16× 10−2 (C,D). Simulations were carried out on a Cartesian lattice of size L = 128
with periodic boundaries over T = 500 iterations of the model, with iterated prisoner’s dilemma
(IPD) games of M = 2000 moves. In the second lattice (D), formations of ALLC cooperating together
successfully survive while being surrounded by defectors. An animation of the two simulations is
available in the Supplementary Material of the online version of this article.

In contrast, randomizing the players’ neighborhoods over the whole lattice—i.e.,
evolving environments that are “fully mixed”—prevents the formation of such organized
spatial structures. Spatiality is thus an important determinant of population dynamics by
allowing the survival of cooperative entities in adverse conditions by means of structure
formation [97–100].

The final states of the lattice are in this sense completely independent of the (random-
ized) initial conditions. The trajectory of the system in phase space end up in the majority
of cases on attractors, leading to spatial structures such as the ones shown in Figure 3D,
or in limit cycles where emerges cyclical variations of the populations of each species



Life 2022, 12, 254 8 of 19

(e.g., Figure 3A). The state of the lattice can thus either become fixed, as in the former case,
or remain in dynamic equilibrium as in the latter.

4.2. Influence of the Error Rate

Many of these features associated with spatiality depend on the precise value of the
strategies’ error rate: final population frequencies for ALLC, ALLD, and TFT relative to the
most probable value of the initial error rate distribution p̂ are shown on Figure 4A. An ini-
tial error rate was assigned to every player, drawn from a lognormal distribution (see
Equation (A1) in the Appendix A) with most probable value p̂ shown in abscissa and shape
parameter s = 5× 10−1. Final population fractions are averaged over an ensemble of
20 simulations per sampled value of the error rate, and shaded areas indicate the standard
deviation of the final population fractions. As p̂ is varied from one simulation to the next,
sharp transitions occur repeatedly in the population frequencies and their patterns of
spatial distributions.

10 6 10 5 10 4 10 3 10 2 10 1 100

p

0.0

0.2

0.4

0.6

0.8

1.0

f i

10 6 10 5 10 4 10 3 10 2 10 1 100

p

ALLC ALLD TFT

10 6 10 5 10 4 10 3 10 2 10 1 100

p

(A) (B) (C)

Figure 4. Final populations fractions for error rates that are immutable, heritable, and subject to
mutations. Relative population frequencies with respect to the total population of strategies following
either a strategy of unconditional cooperation (ALLC), unconditional defection (ALLD), or mutual
reciprocity (TFT), as a function of the most probable error rate of the initial distribution p̂. Final
population fractions are averaged over samples of 20 simulations with random initial conditions,
with shaded areas proportional to the standard deviation of final populations. Simulations were
all carried out on a 2D periodic lattice of side length L = 128 sites over T = 500 iterations of
the model, with IPD games of M = 2000 moves. Error rates were initially set according to a
lognormal distribution with the most probable values in abscissa and a fixed shape parameter
s = 0.5. (A) Error rates are immutable over the duration of the simulation. (B) Error rates become
heritable (i.e., the player losing the game adopts its opponent’s error rate in addition to its strategy).
(C) Introduction of a mutation probability µ = 10−4. While heritability readily contributes to an
increase in cooperative behavior—mostly at lower (.10−3) error rates—the introduction of mutations
(C) is the primary driver of the dominance of cooperative behavior, allowing TFT to invade the lattice
on a much larger region of the system’s parameter space.

At very low error rates (p ∼ 10−6) cooperators have the upper hand: TFT quickly
eliminates ALLD but can still become trapped in a mutual defection process with a nonzero
probability when playing against itself, hence the final domination by ALLC. In contrast,
at very high error rates (p ∼ 0.5) TFT performs poorly against ALLD (i.e., it starts with
cooperation, then follows ALLD’s moves—a rather poor behavior). Nothing then further
prevents ALLD from eliminating ALLC and invading the whole lattice.

4.3. Heritability and Mutations of the Error Rate

Introducing heritability of error rates—i.e., the player losing the PD game adopting
not only the opponent strategy but also its error rate—leads to increased variability in
the outcome of simulations (Figure 4B). At very low error rates, TFT can now decrease
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its mean error rate through the successive selections of winning strategies; this allows an
increase in TFT’s relative population frequency and a corresponding decrease in ALLC’s.
Similarly, at very high error rates TFT’s decreased mean error rate allows it to be much
more successful against ALLD. However, by also making error rates subject to mutations
the system’s behavior again undergoes significant changes. Keeping all other parameters
identical, a mutation probability µ = 10−4 player−1 t−1 is introduced (Figure 4C) which,
when fulfilled, applies a multiplicative correction to a player’s error rate proportional
to the shape parameter s of the initial error rates distribution (see Equation (A3) in the
Appendix A). While system behavior at p̂ . 10−3 does not differ significantly from previous
simulations, when p̂ increases above this value there is a sharp transition in the relative
frequency of TFT populations. This is explained by the fact that the extent to which TFT
represents a successful strategy is inversely correlated with the error rate—that is, TFT
lacks any error correction mechanism; if TFT plays against itself, the first error introduced
in the game is bound to send both players into a spiral of mutual defection until the game
ends [101]. Error rates are thus driven towards lower values when mutations are allowed,
which ultimately leads to the complete invasion of the lattice by TFT.

This process was repeated while varying the mutation probability itself. For a fixed
error rate initial distribution with p̂ = 10−4 and shape parameter s = 5× 10−1, Figure 5A
displays another statistical ensemble of simulations where the final populations again repre-
sent the average over 20 simulations with distinct random initial conditions. Increasing the
mutation probability progressively (note the logarithmic horizontal axis) increases TFT’s
final relative population, with the lattice being completely invaded at µ & 10−2, until a
breakdown of cooperative behavior occurs in the vicinity of µ & 0.8, which is reminiscent
of the error threshold that replicating systems can sustain as was shown by Eigen [68].
The transition towards domination by TFT depends on both the mutation rate µ and the
shape parameter s, while mutation rates exceeding a critical threshold (µ > 0.8) further
prevent generalized cooperation from emerging for a wide range of error rates.

Transition in the system behavior towards an invasion by TFT is however not only
dependent on mutation probability but also on the magnitude of the correction ∆p being
applied. An increase in both parameters leads to an overall increase in the effect of
mutations. Statistical ensembles were therefore analyzed while varying both parameters,
for several different modes of the initial error rate (p̂ ∈ {10−1, 10−2, 10−3, 10−4}), again
averaged over 20 simulations for each parameter value. A similar behavior was seen
regardless of p̂: when a threshold that depends on both s and µ is reached, a transition
occurs after which TFT’s relative population fraction fTFT → 1 (Figure 5B). As log10[µ]→ 0
(i.e., µ → 1, inset of Figure 5A) there is a significant decrease in cooperative behavior.
There is therefore an optimum region in µ-s space that reliably leads to the emergence
of cooperative behavior: further increase of the mutation rate past a critical threshold
instead leads to this marked decrease in population fitness of cooperators. Remarkably,
TFT nonetheless maintains complete dominance all the way up to this error threshold.

The final lattice state for five simulations taken at regular logarithmic intervals through
the transition is shown in Figure 5C. Mean error distributions are shown in Figure 5D,
where the dotted curve indicates the initial distribution of error rates for all species at
t = 0, and grey bars refer to the final distribution averaged over the last 25 iterations of
the model. Colored curves denote the distribution specifics for ALLC, ALLD, and TFT.
The transition towards an invasion of the lattice by TFT is concurrent with a marked
decrease of its mean error rate as µ increases, while that of the other species remains
mostly unchanged. Finally, Figure 5E shows population (colored curves) and stationarity
(black curve) evolution—the fraction of lattice sites that changed strategies at each iteration
(Equation (A4) in the Appendix A)—for all species, while Figure 5F shows the mean error
rate. Near the transition (µ ∼ 10−2), large fluctuations both in population dynamics and
mean error rates can be seen and are reminiscent of behavior at the critical point of phase
transitions [102].
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Figure 5. Transition towards TFT-mediated cooperation. (A) Relative population frequency for each
strategy as a function of the mutation rate µ. Simulation parameters are identical as in Figure 4, and the
data presented here refers to simulations initialized with an initial distribution of error rates having
p̂ = 10−4 and s = 0.5. Final populations are averaged on ensembles of 20 simulations with random
initial distributions of strategies, with shaded areas proportional to the standard deviation in final
population fractions. Increasing the mutation probability µ drives a continuous transition of the final
population fractions towards invasion by TFT until a breakdown of cooperative behavior occurs at very
high error rates (inset). (B) RGB-coding for relative population frequency of mutual cooperative behavior
(TFT) as a function of mutation rate µ and shape parameter s of the error rate distribution. Measures are
derived from 100 samples of s and µ combinations, and the results for each parameter configuration
pair are averaged over 10 simulations with random initial conditions. (C–F) Final lattice state, error
rates distributions, and temporal population, stationarity index, and mean error rate evolutions of five
representative simulations taken from the statistical ensemble shown on panel (A). The initial distribution
of error rates is shown as a dotted curve on (D), grey bars indicate the error rates distribution for all
strategies, while colored curves indicate the ones specific for each strategy. Panel (E) shows population
evolution with colored curves, while the black curve indicates the stationarity of the simulation. Panel
(F) displays the mean of the error rate for each strategy.



Life 2022, 12, 254 11 of 19

5. Discussion

Origin of life theories must be able to explain, from a Darwinian perspective, the emer-
gence of cooperation between unrelated agents to achieve an exhaustive description of
the transition from non-living matter to biological complexity. We have shown that on a
spatially extended system subject to stochastic perturbations, cooperation can definitely be
favored against defectors when selection is coupled with heritability and variability. More-
over, this sudden invasion of the system in which the reciprocal strategy TFT dominates
the system notwithstanding stochastic perturbations, which we term cooperative takeover,
represents a prime example of emergent collective phenomena. Those results are consistent
with the view put forth by Damer and Deamer that the emergence of life presupposes
novel emergent functions relying on “network effects” [22]. Cooperative takeover also
shares many characteristics of traditional phase transition phenomena such as a dramatic
spatial reorganization on a scale comparable to the size of the system and the presence
of large fluctuations in the neighborhood of the critical point (Figure 5). As has been
frequently suggested, major evolutionary transitions, and in particular (the emergence of)
life also presents many characteristics of critical phenomena [103–107]. Life thus appears
as a spontaneous symmetry breaking, with the order parameter of the phase transition
being suggested to be alternately organic molecules chirality [10], replication fidelity [16],
or information exchanged [106].

Many important features of our results are directly dependent on the spatial medium
onto which the IPD games are played. Formations of ALLC strategies being able to resist
invasion by predatory ALLD are prime examples. In fact, even in a dynamic scenario
the spatial grouping of strategies into multiple colonies, propagating through traveling
wavefronts, allows cooperators to evade complete eradication by defectors against which
they have no other defense mechanism (see Figure 6 for an example of such traveling
waves in our simulations). Correspondingly, diverse models of hypercycles and RNA
cooperators have been shown to survive more easily in two-dimensional spatial settings
compared to well-mixed systems [43]. In our model, randomizing the neighborhood of the
strategies—thus evolving the systems precisely in “well-mixed” environments—prevents
this takeover of TFT altogether.

Figure 6. Temporal snapshots from a simulation including ALLC (green), ALLD (red) and TFT (blue)
with initial error rate distribution parameters p̂ = 10−6 and s = 1, and for which µ = 10−4, taken
at regular intervals of 25 iterations each. In this regime ALLC and TFT coexist while ALLD is a
predator for ALLC. Traveling wavefronts of ALLC propagate through time on the lattice, although the
fragmentation of ALLC populations into spatially distinct colonies acts as a barrier guarding against
complete and immediate invasion by ALLD. The dynamics of the three strategies is reminiscent of a
forest-fire model where there is an accumulation of trees (ALLC) according to a growth rate dictated
by simulation parameters, which is conducive to dramatic reorganizations of the lattice following
ignition (ALLD mutants).
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A recurrent characteristic in many of these prebiotic scenarios is the importance of
thresholds delimiting transitions between different levels of organizations. Their presence is
well-known in biology—a prime example being Eigen’s error threshold discussed above.
In the context of the origin of life theory, the transition towards the living state has indeed
often been interpreted in terms of critical phenomena [10,16,106,107], while the concept
of catalytic closure in autocatalytic sets [11,42] is rooted in that of critical transitions ob-
served in random graph theory [108]. Specifically, in the prebiotic context, many other
examples of thresholds have furthermore been suggested [96] such as that of spontaneous
polymerization [109] or self-assembly of compartments [110]. In addition to the behavior
expected at the error threshold for high values of the error rate µ included in our model,
the results we have presented here clearly imply the presence of such a transition driven by
an increase of the mutation rate past a critical value (c.f. Figure 5A), which ultimately leads
to a predominance of the cooperation behavior assumed to be an essential characteristic of
various scenarios for the transition towards the living state. While a precise characterization
of this transition—namely to determine if it represents a true phase transition—remains to
be established, it shares many of the common features associated with critical phenomena
typically seen in physics.

Relatedly, information theory has often been invoked in explaining complexity [111–113].
Specifically, it has been hypothesized that major evolutionary transitions involve changes
in the way information is stored and transmitted [103], and communication of information
is a prerequisite for the emergence of cooperation [54]. The emergence of TFT as one of the
simplest conditional strategies to encode also contributes to laying out the foundations for
theories of life that, in the spirit of determining which features are universal in every possible
living form, consider that its fundamental character lies in its capacity to process informational
content [114–116]. If life is defined as “information that copies itself” then the origin of life
problem becomes one of the origins of this information. Likewise, the problem that ought to be
solved concerning the transition from the abiotic to fully-functional replicators encoding their
own replication mechanism, in the context of models of the emergence of life on Earth such as
the RNA world hypothesis, is an informational one. It is precisely this gap in the evolutionary
history of the information content of early replicators that a minimal information-processing
strategy such as TFT—whatever its precise physico-chemical implementation in a given early
lifeform— could bridge.

6. Conclusions

Analyzing the origin of life problem, recent work has emphasized determining what
elements could be considered universal in our definition of life, as opposed to contingent
ones such as the specific substrate or precise evolutionary history of life on Earth [10].
The presence of abiotic cooperation that preceded and subsequently allowed more complex
biological organisms to evolve is most likely one of those universal elements.

Using agent-based modeling of the iterated prisoner’s dilemma, we investigated
the emergence of cooperative behavior in a stochastic and spatially extended setting and
characterized the effects of inheritance and variability. Our results demonstrate that there
is a mutation threshold above which a dramatic and robust cooperative takeover of the
system takes place in a manner reminiscent of a phase transition, and that the simplest
conditional strategy “Tit-for-Tat” plays a key role in the process.

Generally speaking, one would tend to expect that the emergence and sustenance
of cooperation in an evolutionary context would require a reasonable level of stability
regarding the environment in which interaction between cooperating entities should take
place. Stability here may refer, among other factors, both to a sufficient level of fidelity as
to the mutual interactions between replicators, whatever the exact nature of these early
interactions may be, and to a reliable inheritability of the features favoring cooperative
behavior, whatever the mechanisms of early replication involved.

Our simulations results paint an altogether different picture with regard to the impact
of stochastic perturbations. Despite the presence of high error rates in interaction and the
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contribution of stochastic processes in the dynamics of heritability, the emergence and
predominance of cooperators are sustained all the way up to the Eigen error catastrophe.
Placed in the context of current origin-of-life ideas and taken at face value under the as-
sumption that cooperation is an essential building block of complexity, our simulations
generally support the idea that the emergence of life—or at the very least of biochemical
complexity—is a robust phenomenon that is not so easily disrupted by external perturba-
tions, a result in agreement with the suggestion by Damer and Deamer that progenotes
would have been selected for their stability [22]. Specifically, environments incurring high
fluxes of ionizing radiation from very active host stars or exoplanetary surfaces subjected
to strong environmental perturbations from tectonic or volcanic activity may not pose such
strong constraints on the emergence of life—which is likewise qualitatively consistent with
the early appearance of life on Earth.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/life12020254/s1, Video S1: Animation of the simulation shown on Figure 3A,B, Video S2:
Animation of the simulation shown on Figure 3C,D.
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ALLC Always cooperate
ALLD Always defect
TFT Tit-for-Tat
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Appendix A

Appendix A.1. Details of the Implementation

Simulations were implemented on a 128× 128 Cartesian lattice with periodic bound-
aries. An analysis of diverse lattice sizes was conducted to assess the convergence and
stability of simulation dynamics, and the chosen lattice size represents a minimum at which
the finite population size ceases to generate instabilities (i.e., stochastic extinctions of entire
species) due to the limited size of the system. We sought to reduce to a minimum small
size effects, i.e., by modeling the system size at least one order of magnitude larger than
the characteristic scale of structures emerging in the simulations.

Three distinct series of simulations were conducted. For the first one, error rates were
assigned at the same time as the initial conditions for every site, and remained fixed for the
whole temporal evolution of the system. Strategies thus executed their respective moves at
every turn of the PD against each opponent in their Moore neighborhood for the M rounds of

https://www.mdpi.com/article/10.3390/life12020254/s1
https://www.mdpi.com/article/10.3390/life12020254/s1
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IPD games, and each move was reversed with an error probability p setting the error rate. In a
second series of simulations, error rates became heritable at the same time as the strategies;
when a higher-scoring strategy replaced another site’s strategy, the latter also adopted the
winner’s error rate. In those simulations, the error rates were distributed at the same time
as the initial distribution of strategies on the lattice. By sampling the logarithm of the error
probability from a normal distribution with mean m and standard deviation s, i.e.,

f (log10 p) =
1

s
√

2π
exp

[
−1

2

(
(log10 p)−m

s

)2
]

(A1)

we thus obtained a lognormal distribution of error rates with most probable value p̂ (see
Figure A1A).

Different values of the mean m of error rate logarithms (and resulting mode p̂ of the
error rate distribution) were sampled in the interval

[
10−6, 10−1], which was chosen so that

near the lower bound errors had a negligible impact on simulation dynamics. Different
values of the shape parameter s were also sampled and control the extent of the fat tail of
high error rates (Figure A1B).
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Figure A1. Distribution of error rates. (A) Probability density functions for three distributions of the
error rate with most probable value p̂ = 10−3 and shape parameter log10 s = −0.75,−0.50,−0.25
from which the error rates are drawn, where the logarithm of the error rates follows a normal distribu-
tion. Initial distributions of error rates are drawn from the distribution, while mutations correspond
to corrections that are parametrized from a similar distribution with m = 0. The lognormal distri-
bution was chosen so that mutations increase or decrease the error rates with the same distribution
probability, regardless of the value of the error rates (note the logarithmic horizontal axis while the
vertical axis is linear). The value of m thus specifies the mode p̂ of the distribution, and the shape
parameter s the extent of mutations. (B) Probability density functions for the same three distributions
of error rates, shown this time with axis scaling reversed with respect to panel (A), highlighting the
effect of varying parameter s. While increasing the value of the shape parameter has a minimal effect
on the mode of the distribution, it extends the tail of the distribution to include higher values of the
error rate.
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In a third series of simulations, error rates were finally not only heritable but also
subject to mutations. When a strategy thus replaced a lower-scoring strategy, if the mutation
probability µ was fulfilled a correction ∆p was drawn from a normal distribution identical
to that of Equation (A1) but with logarithmic mean zero,

f (log10 ∆p) =
1

s
√

2π
exp

[
−1

2

(
(log10 ∆p)

s

)2
]

. (A2)

This correction was applied to the error rate at iteration t to obtain the strategy’s error
rate at the next iteration, i.e.,

log10

(
pt+1

)
= log10

(
pt + ∆p

)
, (A3)

as described in Algorithm A1.
Error rates were upper-bounded at pi < 0.5 (implying that the strategy’s behavior was

identical to the random strategy RND) but no lower boundary was enforced—i.e., error
rates were allowed to become as small as directed by the evolution of the system.

Algorithm A1: Strategy replacement procedure.

Given the set Gt of strategies on the lattice at time t,
the set Σt of Moore neighborhoods,

Input : scores S of the players after M IPD rounds
Output : error rate pt

i of the player with the lowest score

foreach player i on lattice do
max_score← Si
foreach player j ⊂ Σt

i do
if Sj > max_score then

max_score← Sj

ind_max← j

Gt
i ← Gt

ind_max

if heritability of error rates then
pt

i ← pind_max
if variability of error rates then

if probability µ is fulfilled then
Apply a mutation ∆p,i on pt

i

After the initial distribution of strategies on the lattice and error rates with a logarithm
drawn from a normal distribution of mean m and variance s2, each strategy plays against
every other strategy in its Moore neighborhood IPD games of length M rounds, and scores
of both opponents are compared. Players adopt the strategy of the opponent with the
highest score (or keep theirs if they possess the highest or an equal score). For simulations
with heritable error rates, the player adopting their opponent’s strategy also adopt their
error rate. If error rates are moreover subject to mutations, a correction proportional to the
initial distribution is also applied on the new error rate with a probability µ. This process is
repeated for the T iterations of the model.

Appendix A.2. Evaluation of Quantitative Data

In order to control the effects of stochastic fluctuations in the resulting analysis, we
have averaged the derived quantities on statistical ensembles (e.g., Figures 4 and 5A) over
the last 5% iterations of each simulation. Statistical ensembles comprised ten to twenty
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realizations of the simulation evolved with randomized initial conditions. Shaded areas in
the figures represent the standard deviation over mean values in those statistical ensembles.

The stationnarity index n shown on Figure 5E (black curve) represents the fraction of
sites whose strategy has been replaced since the last iteration. Let Gt be the matrix defining
the strategies on the lattice at iteration t and gt

ij its values, then the stationnarity index at
time t is the number of sites where a strategy replacement has been made since the last
iteration, normalized by the size of the lattice,

nt =
1
L2 ∑

Gt

[
1− δ

(
gt

ij, gt−1
ij

)]
, (A4)

where δij is the Kronecker delta.
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108. Erdős, P.; Rényi, A. On the Evolution of Random Graphs. Publ. Math. Inst. Hung. Acad. Sci. 1960, 5, 17–61.
109. Monnard, P.A.; Kanavarioti, A.; Deamer, D.W. Eutectic Phase Polymerization of Activated Ribonucleotide Mixtures Yields

Quasi-Equimolar Incorporation of Purine and Pyrimidine Nucleobases. J. Am. Chem. Soc. 2003, 125, 13734–13740. [CrossRef]
[PubMed]

110. Bachmann, P.A.; Luisi, P.L.; Lang, J. Autocatalytic Self-Replicating Micelles as Models for Prebiotic Structures. Nature 1992,
357, 57–59. [CrossRef]

111. Solé, R.V.; Valverde, S. Information Theory of Complex Networks: On Evolution and Architectural Constraints. In Complex
Networks; Ben-Naim, E., Frauenfelder, H., Toroczkai, Z., Eds.; Springer: Berlin/Heidelberg, Germany, 2004; Volume 650,
pp. 189–207. [CrossRef]

112. Tononi, G.; Boly, M.; Massimini, M.; Koch, C. Integrated Information Theory: From Consciousness to Its Physical Substrate. Nat.
Rev. Neurosci. 2016, 17, 450–461. [CrossRef]

113. Thurner, S.; Corominas-Murtra, B.; Hanel, R. Three Faces of Entropy for Complex Systems: Information, Thermodynamics, and
the Maximum Entropy Principle. Phys. Rev. E 2017, 96. [CrossRef]

114. Walker, S.I.; Callahan, B.J.; Arya, G.; Barry, J.D.; Bhattacharya, T.; Grigoryev, S.; Pellegrini, M.; Rippe, K.; Rosenberg, S.M.
Evolutionary Dynamics and Information Hierarchies in Biological Systems: Evolutionary Dynamics and Information Hierarchies.
Ann. N. Y. Acad. Sci. 2013, 1305, 1–17. [CrossRef] [PubMed]

115. Walker, S.I. Top-Down Causation and the Rise of Information in the Emergence of Life. Information 2014, 5, 424–439. [CrossRef]
116. Seoane, L.F.; Solé, R.V. Information Theory, Predictability and the Emergence of Complex Life. R. Soc. Open Sci. 2018, 5, 172221.

[CrossRef] [PubMed]

http://dx.doi.org/10.1098/rsos.210441
http://dx.doi.org/10.1126/science.7466396
http://www.ncbi.nlm.nih.gov/pubmed/7466396
http://dx.doi.org/10.1007/s11084-012-9307-0
http://www.ncbi.nlm.nih.gov/pubmed/23096220
http://dx.doi.org/10.1162/978-0-262-31050-5-ch038
http://dx.doi.org/10.1089/ast.2016.1481
http://www.ncbi.nlm.nih.gov/pubmed/28323481
http://dx.doi.org/10.1103/PhysRevLett.121.138102
http://www.ncbi.nlm.nih.gov/pubmed/30312104
http://dx.doi.org/10.1021/ja036465h
http://www.ncbi.nlm.nih.gov/pubmed/14599212
http://dx.doi.org/10.1038/357057a0
http://dx.doi.org/10.1007/978-3-540-44485-5_9
http://dx.doi.org/10.1038/nrn.2016.44
http://dx.doi.org/10.1103/PhysRevE.96.032124
http://dx.doi.org/10.1111/nyas.12140
http://www.ncbi.nlm.nih.gov/pubmed/23691975
http://dx.doi.org/10.3390/info5030424
http://dx.doi.org/10.1098/rsos.172221
http://www.ncbi.nlm.nih.gov/pubmed/29515907

	Introduction
	The Prisoner’s Dilemma
	Simulation Design and Methods
	Results
	Spatiality and Population Dynamics
	Influence of the Error Rate
	Heritability and Mutations of the Error Rate

	Discussion
	Conclusions
	
	Details of the Implementation
	Evaluation of Quantitative Data

	References

