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Abstract: Extracellular vesicles (EVs) represent membrane-enclosed structures that are likely to be
secreted by all living cell types in the animal organism, including cells of peripheral (PNS) and central
nervous systems (CNS). The ability to cross the blood-brain barrier (BBB) provides the possibility
not only for various EV-loaded molecules to be delivered to the brain tissues but also for the CNS-
to-periphery transmission of these molecules. Since neural EVs transfer proteins and RNAs are
both responsible for functional intercellular communication and involved in the pathogenesis of
neurodegenerative diseases, they represent attractive diagnostic and therapeutic targets. Here, we
discuss EVs’ role in maintaining the living organisms’ function and describe deviations in EVs’
structure and malfunctioning during various neurodegenerative diseases.

Keywords: extracellular vesicle; exosomes; microvesicles; EVs; EAE; biomarker; multiple sclerosis;
autoimmunity; CNS; miRNA

1. Introduction

Extracellular vesicles (EVs) are remarkable omnipresent particles responsible for
intercellular communication in various living organisms. The interest in this field is rapidly
growing, according to the mounting body of EV-associated publications. EVs contribute to
almost every possible metabolic reaction in our body. The major characteristics of EVs, such
as micro- or nano-scale size, high biocompatibility, and the ability to cross the blood-brain
barrier (BBB), make them ideal therapeutic tools. Naturally occurring EVs transfer nearly all
cellular components: they contain amino acids, proteins, including various transcriptional
factors, DNA fragments, various RNAs (siRNAs, mRNAs, miRNAs, non-coding RNAs)
or even carbohydrates and lipids incorporated into their membrane [1]. EVs are secreted
by all cell types and are present in all body fluids. Their composition and quantity may
change with the development of various diseases, implicating their role in the pathology
process [2]. Thus, uncovering these alterations has a huge diagnostic potential.

EVs are a highly heterogeneous group of bilayer nanoparticles of various origins,
incapable of replication [3]. According to MISEV2018 (The first Minimal Information for
Studies of Extracellular Vesicles) guide of the International Society for Extracellular Vesicles,
EVs should be described based on their (i) physical characteristics, such as size (“small
EVs”, “medium/large EVs”) or density (low, middle, high), (ii) biochemical composition,
or (iii) description of either conditions or the cell of origin [3]. Nonetheless, the historically
accepted classification based on EVs’ biogenesis is generally applied. According to this
classification, EVs are divided into two major classes, exosomes and ectosomes [4]. The
diameter of the smallest vesicles, exosomes, varies from 30–50 nm to 100–150 nm. They
originate from the multivesicular bodies and pass through complex endosomal machinery
during secretion. The exosome markers include tetraspanins (CD9, CD63, CD81) [5], the
endosomal protein tumor susceptibility gene 101 (TSG101), 70-kDa heat shock protein 70
(HSP70) [6], and ALG-2-interacting protein X (ALIX) [7]. Notably, accumulating studies
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have demonstrated that integrins can be identified in exosomes not only under pathophys-
iological conditions [8] but should be considered commonly identified exosome-related
proteins [9]. Another class of vesicles with a diameter in the range of 50–1000 nm, ectosomes
or microvesicles, is released by the cell self-membrane budding [10,11]; it is rarely charac-
terized by any specific markers present. Several studies noted the presence of CD40 [12],
selectins, tetraspanins, and integrins [13] in ectosomes. Their membrane may also contain
some host cell proteins and lipids [14,15] (Figure 1). However, this classification is likely
to be further revised due to new classes of EVs-like nanoparticles still emerging. For
example, exomeres, recently discovered non-membranous nanoparticles (<50 nm), have
not been described in detail yet [16]. Moreover, ultracentrifugation of the supernatant of
exomeres revealed novel nanoparticles, termed supermeres [17]. However, there is no con-
sensus regarding whether they can be considered true EVs or not. Of note, a distinct class
comprises the supramolecular complexes produced by T cells during the immunological
synapse development: polarized exosomes [18] and synaptic ectosomes [19], EVs formed
in a trans-synaptic vesicle [20], as well as supramolecular attack particles (SMAPs), lacking
the phospholipid membrane and assembled from the thrombospondin-1 shell [21].
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In the nervous system, EVs are essential in signal transmission both in the central
nervous system (CNS) and in the peripheral nervous system (PNS). Vesicles produced by
astrocytes, neurons, oligodendrocytes, microglia, and Schwann cells have been already
described in substantial detail [22–24]. According to the classification, based on biochemical
composition, EVs are distinguished from synaptic vesicles (SVs), released at chemical
synapses and predominantly containing the classical neurotransmitters. Apart from their
role in a normal physiological response such as non-synaptic neural and vascular-neural
communication through BBB, EVs produced by neural cells provide unique information
regarding the state of the nervous system in general. As EV cargoes, including proteins
or RNAs, may differ in healthy and pathological states [25], their content might serve as a
predictor of pathological conditions and neuroinflammation.

Recent studies have obtained some important pieces of the puzzle on how EVs function
during autoimmune states, their nature, and biogenesis. Here, we overview the prospects
of harnessing EVs as novel therapeutic targets and potential biomarkers of autoimmune
neurodegenerative diseases. We also highlight the advantages and limitations of using EVs
as next-generation molecular tools.

2. The Role of EVs in the Nervous System

Both CNS and PNS comprise a vast number of neuronal and neuroglial cell types. The
homeostasis of the nervous system significantly relies on intercellular communications [26].
In the nervous system, cells communicate via gap junctions, cell adhesion, and EVs loaded
with neurotransmitters and growth factors. EVs exhibit the potential to regulate cell
proliferation in developing neural cultures [27]. In addition to their ability to support
neuronal cells in glial-to-neuron communication, EVs can also address the target cells
outside the CNS [28,29].

2.1. EVs from Oligodendrocytes

There are multiple sources of EVs in the CNS since all types of neural cells secrete them
(Figure 2). One of the CNS EVs sources is oligodendrocytes [30], the myelin-forming cells.
Myelin sheath plays an important role in nerve signal transmission protecting nerves and
increasing the conduction speed by an order of magnitude [31]. EVs produced by myelinat-
ing cells via several delivery mechanisms help to perform the following functions in the
nervous system: storage of myelin components, transport of trophic and survival factors
into axons, and maintenance of myelin sheath [32]. The exosomes secreted by oligoden-
drocytes contain myelin-specific lipids and all major myelin components, which constitute
up to 70% of the total myelin protein: myelin basic protein (MBP), proteolipid protein
(PLP), and myelin oligodendrocyte glycoprotein (MOG) [32]. Oligodendrocyte-derived EVs
possess neuroprotective properties providing metabolic support for neurons [33]. These
EVs contribute to axonal homeostasis being critical factors for their long-term mainte-
nance and are involved in the regulation of synaptic release [34]. The recently discovered
oligodendrocyte-derived EVs loaded with the Ferritin heavy chain have been shown to
protect neurons from iron-mediated cytotoxicity [35].
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Figure 2. The role of Extracellular Vesicles in the Central Nervous System. Neuron-derived vesicles
(grey cells and particles) stimulate myelin sheath growth and modulate the astrocytes’ activity.
Oligodendrocyte-derived vesicles (light blue cells and particles) are involved in myelin maintenance,
provide neuroprotection and restrict axonal growth. Astrocyte-derived vesicles (purple cells and
particles) regulate dendritic complexity, perform neuroprotection functions, and the promotion of
axonal growth. Microglia-derived vesicles (blue cells and particles) are a source of energy for neurons
and perform activation of astrocytes. Under stress conditions, astrocytes release vesicles loaded
with pro-inflammatory proteins (IL1R, NLRP3, NFkB-p65) and miRNAs (miR-146a, miR-182, miR-
200b) which could enhance the neuroinflammatory response. Pathological vesicles, released during
prion diseases and neurodegeneration can contain amyloid proteins, alpha-synuclein, or even prions
and are designated in light red. AEA—N-arachidonoyl ethanolamine; Apo D—apolipoprotein D;
FGF-2—fibroblast growth factor 2; IL1R—interleukin-1 receptor; MBP—myelin basic protein; MCT-
1—monocarboxylate transporter 1; miR—micro-RNA; MOG—myelin oligodendrocyte glycoprotein;
NFkB-p65—nuclear factor kappa-light-chain-enhancer; NLRP3—nucleotide-binding domain-like
receptor protein 3; PLP – myelin proteolipid protein; VEGF—vascular endothelial growth factors.

2.2. EVs from Neurons

Neurons serve as another source of vesicles in the CNS [36]. Meanwhile, most vesicles
produced by neurons are SVs with a diameter of ~40 nm, delivering classical neurotransmit-
ters (glutamate, acetylcholine, GABA, and glycine) and mainly activating the ion channels
in the postsynaptic terminals. Another type of neuron-produced EVs—are the so-called
large dense-core vesicles (LDCVs) with a diameter in the range of 100–500 nm amounting
to only 1~2% when compared to SVs in the CNS [37,38]. They contain a variety of RNAs,
proteins, and peptides, including neuropeptides and hormones, which activate G protein-
coupled receptors and are involved in the modulation of synaptic activity [39]. LDCVs also
store most monoamine transmitters (serotonin, adrenaline, and dopamine) [37], which are
responsible for the control of physiological and behavioral functions. It was shown, that
EVs from the primary neurons contain Ephs and ephrins, capable of triggering neuronal
growth cone collapse [40]. In turn, in addition to synaptic neural communication SVs
released by neurons in the CNS help to control synaptic plasticity and promote myelin
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sheath growth as well as stability in neuron-glial communications [41,42]. Blocking the
release of neuronal SVs by toxins makes the oligodendrocytes form shorter sheaths on
axons [41] and reduces the sheath number per oligodendrocyte [42] disrupting adequate
signal transmission along the nerves. Neurons can also modulate astrocyte activity re-
leasing the exosomes containing miR-124a [43] or miR-124-3p [22], which regulates the
expression of the glutamate transporter-1, ultimately contributing to neurotransmitter
homeostasis.

2.3. EVs from Astrocytes

Astrocytes are another major type of glial cells in the CNS, which produce EVs that
deliver miR-26a-5p in the opposite direction—to neurons, thereby regulating dendritic
complexity [44]. In general, EVs secreted by astrocytes are considered to be responsible
for most of the observed neuroprotective effects [45]. One of the neuroprotective mech-
anisms is mediated by the transfer of EVs containing Apolipoprotein D to neurons [46].
Apolipoprotein D controls the level of lipid peroxides formed during aging or pathologi-
cal conditions [47]. Another vesicular cargo specific for astrocytes is vimentin [45]. This
intermediate filament protein was shown to promote axonal growth and ameliorate motor
dysfunction in a mice model [48]. Astrocyte-derived EVs of the nervous system can contain
angiogenic factors such as fibroblast growth factor-2 (FGF-2) and vascular endothelial
growth factor (VEGF) [49] which function as the strongest angiogenesis activators [50]
and possess neuroprotective properties [51,52]. Small EVs secreted by astrocytes enhance
the dendritic spine and synapse formation by primary cortical neurons via TGF-beta sig-
naling [53]. Under stress conditions, astrocyte cells also release EVs containing HSP70
promoting cell survival, preserving normal synaptic transmission, and reducing neuron
loss after a traumatic injury. These EVs can also contain synapsin I, involved in synaptic
extracellular signaling, and even functional glutamate transporters (EAAT-1/2) playing a
crucial role for nervous homeostasis [54]. Thus, astrocytes represent the secretory cell type
of the CNS that modulates synapses and ensures neuroprotection.

2.4. EVs from Microglia

Microglia are the resident immune cells of the CNS arising from myeloid cells [55].
These cells not only contribute to CNS development and homeostasis but also support
and modulate neuronal activity [56]. It was shown, that under IL-4 and IL-13 stimulation,
microglia express anti-inflammatory cytokines and factors stimulating tissue repair and
extracellular matrix reconstitution [57]. However, microglia also contribute to neuroin-
flammatory processes [58]; for example, activated microglia release inflammatory factors
(IL-1beta, IL-6, TNF-alpha), promoting neuroinflammation [59]. Thus, microglial cells
produce a wide range of molecules, including pro- and anti-inflammatory cytokines and
interferons [60]. The protein profile of microglial EVs was found to be similar to the
protein content of EVs secreted from the antigen-presenting cells—B cells and dendritic
cells [61]. The shared proteins embraced MHC (major histocompatibility complex) class
II molecules, MHC II-associated chaperone, and cathepsin S. Furthermore, the microglia-
derived exosomes contained lactate which serves as an energy source for neurons, express-
ing isoform 1 of lactate dehydrogenase. These vesicles also contain specific microglial
markers-aminopeptidase CD13 and the lactate transporter MCT-1 [61]. Microglia-derived
vesicles can regulate synapse development and homeostasis through the delivery of N-
arachidonoyl ethanolamine to the surface. This molecule suppresses spontaneous inhibitory
transmission in gamma-aminobutyric acid (GABA) neurons via stimulating type-1 cannabi-
noid receptors [62]. Microglial cells, activated upon TRPV1 stimulation, start shedding
microvesicles which promote the metabolism of sphingosine in neurons and elevate the
probability of presynaptic release [63]. A more typical stimulus that triggers EV production
by microglia is adenosine triphosphate (ATP) mediated by activation of the purinergic
receptor P2 × 2R [64]. Meanwhile, the EVs released upon ATP stimulation differ from the
constitutively produced EVs and contain proteins implicated in cell adhesion/extracellular
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matrix organization, autophagy-lysosomal pathway, and cellular metabolism [65]. Such
vesicles have a stronger impact on recipient astrocytes than the constitutive EVs. ATP-
stimulated EVs dramatically upregulate the production of IL-1beta, IL-6, and TNF-alpha
by recipient astrocytes [65].

2.5. EVs from Schwann Cells

In the PNS, EVs contribute to axonal growth and regeneration [66]. Peripheral glial
cells called Schwann cells regulate axon organization at the molecular level and supply
axons with protein synthesis machinery and growth factors via EVs [67]. The exosomes re-
leased by Schwann cells were shown to promote the activity of neurons [68]. Schwann-cell-
derived exosomes were characterized on the morphological and proteomic level only a few
years ago [69]. Currently, the detailed mechanisms of the EV-mediated regulation are not
yet fully elucidated; however, proteomic analysis revealed several proteins related to axon
regeneration (carboxypeptidase E (CPE), fatty acid-binding protein (FABP5), fibronectin,
flotillin-2, major vault protein (MVP), monocarboxylate transporter 1 (MCT1), neuropilin-2
(NRP2), septin-7 (SEPT7), protein disulfide-isomerase A3 (PDIA3), and syntenin-1), which
might explain a higher regeneration level in the PNS after injury [69].

2.6. Pathogenic EVs

The role of EVs in the nervous system is not confined to a palette of beneficial ef-
fects. Exosomes were shown to deliver conventional proteins associated with common
neurodegenerative diseases as well as abnormally folded proteins, inducing such a rare
and ultimately fatal pathology as prion diseases [66]. Prion disease development caused by
microscopic infectious agents is mediated by a fine-tuned system of intercellular interaction.
The system efficiently operating under normal conditions can spread the abnormally folded
proteins, contributing to clumping the other normal forms of prions in the brain and thus
the disease development. Although the role of EVs in the active spreading of prions is
still unknown, the presence of prions in the vesicles indicates the importance of thorough
research on CNS intercellular communications.

Manifold normally folded proteins, involved in the development of various diseases,
are transmitted by EVs as well. Along with EVs that provide trophic support to neuronal
cells in glial-to-neuron communication, glial cells can also secrete pathogenic vesicles [28].
Microglia-originated EVs were found to exert pathogenic actions during the development
of Alzheimer’s Disease. EVs from patients with Alzheimer’s disease were shown to contain
tau protein and to be enriched with innate immune response proteins, neuron-specific
proteins, and regulators of amyloid precursor protein (APP) metabolism [70]. Another
pathogenic cargo of microglia-derived EVs is α-synuclein, involved in the development of
Parkinson’s disease. Studying BV2 cells (a type of microglial cell derived from C57/BL6
murine) provides solid evidence that these cells internalize the pathological exosomal
α-synuclein and secrete them inversely owing to exosomes [71]; therefore, promoting the
accumulation and transmission of α-synuclein. Upon traumatic brain injury, the levels
of microglial EVs increase, and these particles are sufficient to initiate the progressive
neuroinflammatory response [72].

Oligodendrocytes have been shown to produce Nogo-A and release the 24 kDa frag-
ment of this axonal growth inhibitor via EVs [73]. The membrane protein Nogo-A is
an important factor restricting axonal regeneration and plasticity [74], and its depletion
improves vascular repair [75].

Certain EVs produced by astrocyte vesicles play a pathologic role in neuroinflam-
mation. For example, TLR4-mediated astrocyte-derived EVs contain a variety of pro-
inflammatory proteins (IL1R, NLRP3, NFkB-p65) and miRNAs (miR-146a, miR-182, miR-
200b), which could enhance the neuroinflammatory response [76]. Of note, the negative
implications of certain neuroinflammatory processes may be reconsidered, as functional
CNS recovery and regular communication between the brain and immune system are
maintained by a subtle equilibrium of inflammatory and repair processes [77].



Life 2022, 12, 1943 7 of 22

3. EVs in Autoimmune Disorders of the Nervous System

Autoimmune disorders can affect the PNS as well as the CNS. The most common CNS
autoimmune disorders include multiple sclerosis (MS), acute disseminated encephalomyeli-
tis (ADEM), neuromyelitis optica spectrum disorder (NMOSD), autoimmune encephalitis,
etc. In the PNS, autoimmune aggression may affect the peripheral nerves and neuro-
muscular junction leading to immune-mediated polyneuropathies. Immune-mediated
polyneuropathies represent a highly heterogeneous group of diseases and include both
acute forms (Guillain-Barre syndrome (GBS), classified into several demyelinating and
axonal subtypes) and chronic disorders (multifocal motor neuropathy (MMN), chronic
inflammatory demyelinating polyradiculoneuropathy (CIDP)) [78]. These PNS autoim-
mune disorders are typically treated by plasma exchange, administration of intravenous
immunoglobulin, and corticosteroids [79]. Peripheral nerve injuries lead to sensory and
motor dysfunction in the respective parts of the body, but in contrast to the CNS, the PNS
has a high regenerative capacity [80]. As many autoimmune neurological disorders are
quite rare, the exact role of EVs in their development is still to be pinpointed. Currently,
there are no known approved sensitive EVs-based biomarkers or characteristics of EV
available for monitoring the onset, progression, or therapeutic response for the majority
of autoimmune pathologies. Below, we confine our attention only to the autoimmune
neurological pathologies that are evidenced to involve EVs.

3.1. EVs in MS Diagnostics

MS is an inflammatory autoimmune demyelinating disorder of the CNS. It mostly
strikes young and middle-aged people and leads to a gradual disability. MS is a highly
heterogeneous disease with unknown etiology; it is manifested with characteristic white
matter lesions, breakdown of the BBB, loss of oligodendrocytes, and degeneration of axons
and neurons [81]. MS progression is believed to arise from malfunction both of B- and T-cell
compartments and is associated with auto-reactive antibodies [82–84], auto-aggressive
B cells [85,86], auto-aggressive T cells [87], and predominance of the certain MHC II
alleles [88]. MS can only be diagnosed after the first manifestation, often years later after
its original onset [89]. Therefore, the development of novel diagnostic markers is of great
interest and importance, since early treatment allows for better control and suppression of
the disease. To date, there are several approved strategies for MS treatment, but all of them
aim at reducing clinical symptoms and do not lead to a complete recovery.

Recent studies imply that in the future, employing EVs might resolve some of the
limitations of MS treatment and diagnosis. EVs in CSF of MS patients were first observed
by Scolding et al. in 1989 [90]. Later an increase in the amount of EVs was found both in
CSF and in the serum of MS patients compared with the healthy donors [91]. It was shown,
that EVs from CSF or serum of MS patients may be present upon neuroinflammation, BBB
damage, and other pathophysiological reactions [91]. For example, circulating neuron-
originated and astrocyte-originated EVs from the serum of MS patients indicate synaptic
loss [92]. There was a statistically significant difference in the levels of synaptopodin
(post-synaptic protein) and synaptophysin (pre-synaptic protein) from the neuronal EVs
between MS patients and healthy donors. Meanwhile, astrocyte-derived EVs from MS
patients contained higher levels of the complement components (C1q, C3, C3b/iC3b, C5,
C5a, and Factor H) as compared with control samples [92]. EVs can also be used to evaluate
the MS clinical status of the patient since elevated CD31+ EVs were associated with the
relapse of the disease [93]. Another useful source of information is miRNA profiling, as
they are involved both in immune regulation and myelination. As EVs are enriched with
miRNAs and ensure their stability compared to the blood serum, EV-derived miRNAs
can serve as potential biomarkers for various diseases [94]. In MS patients, miRNAs from
EVs were shown to provide information on the status of the CNS. Cuomo-Haymour and
colleagues showed the association of the miR-451a and miR-25-3p up-regulation in EVs
with the RRMS course [95].
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The BBB damage occurs at an early stage of MS development. It is associated with the
destruction of endothelial cells and the development of the pro-inflammatory microenvi-
ronment. Thus, enhanced EVs release from the endothelial cells is associated with their
stimulation or injury, such EVs could serve as a biomarker of the BBB damage during
MS [96]. The CNS-endothelial EVs contain a combination of pan-endothelial markers
(CD31, CD105, or CD144) with myelin and lymphocyte protein (MAL). The population
of specific CNS-endothelial EVs is considered a biomarker of BBB permeability and the
acute phase of disease in patients with the active form compared to healthy donors and
stable MS patients [96]. Applying CD31-positive EVs as a potential biomarker for MS is
limited by their partial specificity as they are also produced in type 2 diabetes mellitus [97]
and cardiovascular diseases as well [96]. Platelet-derived EVs are also increased in the
blood serum of MS patients [98] and may serve as MS diagnostic markers after further
research. Of note, the number of certain vesicles may decline during disease progression.
For example, a reduced level of CD19+/CD200+ (the marker of immature B cells) EVs from
CSF was observed in MS patients. The authors also linked an increase in the CCR3+/CCR5+
(a subset of CD8 memory T cells), CD4+/CCR3+ (Th2 cells), and CD4+/CCR5+ (Th1 cells)
EVs from CSF with the presence of lesions in the brain and spinal cord [99]. Current
candidates for future EV biomarkers of MS are summarized in Figure 3. Further describing
EVs in CSF might shed more light on intercellular interactions in the CNS.
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3.2. EVs in NMOSD Diagnostics

NMOSD, also known as the Devic syndrome, is a chronic inflammatory autoimmune
disease, characterized by severe attacks of acute optic neuritis and transverse myelitis [100].
The first manifestation of this pathology is autoimmune astrocytopathy followed by the
secondary damage of oligodendrocytes and neurons [101]. Non-treated NMOSD can lead
to visual and motor dysfunction [102]. In 80% of cases, NMOSD is caused by autoreac-
tive autoantibodies to Aquaporin-4 [102,103], the most abundant water channel in the
CNS [104], but in some cases, the antibodies against MOG have also been suggested to
induce NMOSD [105].

There are quite a few animal models of NMOSD [106], however, the existence of
a representative model is controversial. Correct and prompt diagnosis of NMOSD is
very important because acute and severe damage of the optic nerve ultimately results in
complete vision loss. EVs might help to detect tissue and cell damage in the CNS during
NMOSD. Exosomal proteome analysis of the samples from MS and NMOSD patients
revealed a panel of NMOSD-specific proteins comprising GFAP, C4b-binding protein, and
haptoglobin-related protein. Two of these proteins (C4b-binding protein, haptoglobin-
related protein) were present in EVs-enriched fraction, but not in total CSF [107].

EVs containing Aquaporin-4 might serve as more specific markers of NMOSD. Aquaporin-
4 positive EVs can induce widespread neuroinflammation and production of autoantibodies.
An increased amount of EVs with Aquaporin-4 in CSF may be used for early diagnosis of
NMOSD [108]. Another study identified specific exosomal miRNAs pattern in NMOSD
patients with absence in healthy donors. Notably, some of them (hsa-miR-122-3p and
hsa-miR-200a-5p) were upregulated in acute NMOSD, while remaining unchanged during
NMOSD remission [109].

3.3. EVs in Diagnostics of Autoimmune Encephalitis

Autoimmune encephalitis is a non-infectious form of brain inflammation character-
ized by the development of auto-aggressive antibodies against the neuronal cell surface or
synaptic proteins [110]. Earlier, infectious encephalitis was considered to be the most com-
mon type of encephalitis that impeded the diagnostic criteria for autoimmune encephalitis
to be developed [110]. Yet, the study by Dubey et al. showed that the autoimmune
form of encephalitis occurred at the same rate as the infectious one [111]. The most fre-
quently identified antigen targets in this disease are MOG and GAD65 (glutamic acid
decarboxylase-65), while certain types are caused by the autoantibodies against other
antigens like gamma-aminobutyric acid-B receptor (GABABR), Aquaporin-4, glial fibril-
lary acidic protein, leucine-rich glioma-inactivated-protein-1, collapsin response-mediator
protein-5, N-methyl-D-aspartate receptor (NMDAR), contactin-associated protein-like 2
(CASPR2) and glial fibrillary acidic protein-α [111]. Autoaggression leads to localized
inflammation in various CNS structures, resulting in significant variability of clinical fea-
tures including acute or subacute epileptic seizures, cognitive impairment, and mental
symptoms [112]. The inflammation in autoimmune encephalitis mainly affects the limbic
system, but extensive changes in the temporal cortex, basal ganglia, brain stem, frontal and
parietal cortex are also not unusual and may be involved in the inflammation based on the
unique antibodies pattern in each case [113]. Autoimmune encephalitis is considered to be
a paraneoplastic disease, that is, it is commonly accompanied by the presence of an occult
tumor that can stimulate autoantibody production.

It is well established that CSF in patients with autoimmune encephalitis is charac-
terized by elevated lymphocyte and protein levels, including the presence of oligoclonal
bands [114]. Wherein, only at the end of 2020, EVs bearing neuronal autoantigen aggregates
were found to be enriched during autoimmune encephalitis [115]. CSF and the serum of
patients with autoimmune encephalitis contained the antigens targeted by the antibodies
developed in a corresponding patient. The exosomes containing NMDAR, GABABR1, LGI1,
CASPR2, or GluR1/2 subunits of AMPAR were detected in the patient samples. Moreover,
the antibodies against the mentioned antigens were present in the sera of C57BL/6 J mice,
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immunized with exosomes isolated from antibody-positive autoimmune encephalitis pa-
tients. Later the same authors identified a panel of ten miRNAs (especially miR-301a-5p,
miR21-5p, miR-128-5p, miR-155-5p, miR-34a-5p, miR-326-5p, miR132-5p, miR-29b-5p) with
enhanced and eight miRNAs (especially miR-20a-5p) with reduced expression level during
autoimmune encephalitis [116]. It should be noted that despite the evidence of EVs appear-
ing during autoimmune encephalitis, Herpes Simplex Encephalitis evokes significantly
higher EVs levels in CSF. Therefore, the contribution of EVs to the manifestation of clinical
symptoms in autoimmune encephalitis has yet to be elucidated.

3.4. EVs in GBS Diagnostics

GBS is an immune-mediated inflammatory disease of the PNS, which is supposedly
triggered by bacterial or viral infections [117,118]. It is a rare, but potentially fatal disorder,
especially in the absence of timely treatment; GBS occurs predominantly in males (Leonhard
et al., 2019). It is characterized by rapidly progressing, symmetrical weakness in legs and
arms, resulting in acute areflexic paralysis [119]. Disease development is accompanied by
massive lymphocytic infiltration and degradation of the myelin sheath of the peripheral
nerves. GBS is a highly heterogeneous disease with several clinical outcomes. The most
frequent subtypes are acute inflammatory demyelinating polyneuropathy (AIDP) and
acute motor axonal neuropathy (AMAN) [120]. The other rarer subtypes of GBS are
acute motor and sensory axonal neuropathy (AMSAN) and Miller Fisher syndrome (MFS)
observed only in about 1–5% of GBS patients in the Western populations and up to 25% in
Asians [121]. Autoantibodies against components of peripheral nerves (gangliosides) are
strongly associated with AMAN and Miller–Fisher syndrome, but not with AIDP [122]. The
localization of these four ganglioside autoantigens—GM1, GD1a, GT1a, and GQ1b—has
been associated with distinct clinical patterns of GBS [122].

Although the GBS etiology is poorly understood, the role of CD4+ T cells and
macrophages in disease initiation and development is well documented [123]. The ex-
osomes derived from M1 and M2 macrophages have opposing impacts on the development
of experimental autoimmune neuritis (EAN), a well-accepted animal model of GBS mim-
icking the AIDP subtype [124]. The exosomes released by M1 macrophages were shown to
promote EAN development and can directly stimulate IFN-γ expression in the Th1 effector
cells. Wherein, the exosomes from M2 macrophages were able to attenuate EAN, although
unable to completely suppress Th1 response.

3.5. EVs in Amyotrophic Lateral Sclerosis Diagnostics

Amyotrophic lateral sclerosis (ALS), also called Lou Gehrig’s disease, is a fatal neu-
rodegenerative disorder characterized by progressive muscle paralysis reflecting the death
of both upper and lower motor neurons in the primary motor cortex, corticospinal tract,
brainstem, and spinal cord [125]. The disease, which manifests itself commonly in middle
age, has an incidence of 2.31–2.35 per 100,000 persons per year in Europe and North Amer-
ica [126]. Typically, patients die of respiratory failure after 2–5 years from the onset due to
the lack of effective treatment. The causes of ALS and the actual mechanisms of neuronal
death are currently unknown. Environmental factors, older age, male gender, and a family
history of ALS have been proposed as the main risk factors. ALS cannot be unequivocally
called an autoimmune disease, however, the evidence of the contribution of autoimmune
mechanisms to its development [127,128] compelled us to review this disease in more
detail. ALS is characterized by the infiltration of T-lymphocytes and macrophages in the
CNS [129–131], immunoglobulins from ALS patients cause the degeneration of mice motor
neurons [132–134]; the role of the autoimmune inflammation in ALS is further supported
by the increased CSF and serum levels of IL-17 and IL-23 produced predominantly by
Th17 [135].

Remarkable research efforts have been recently directed toward studying the differ-
ential gene expression as well as the changes in non-coding RNA production by neuronal
and glial cells during normal brain development and pathological states. Unfortunately,
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to date, there are no effective tests for ALS diagnosis and classification. Therefore, using
CNS-derived EVs as novel biomarkers for ALS diagnosis is highly feasible. The microvesi-
cles derived from the plasma of ALS patients were enriched in pathological proteins SOD1,
TDP-43, and FUS compared to healthy donors [136]. Herewith, the mean size of microvesi-
cles and exosomes was increased in ALS patients. Moreover, EV-encapsulated TDP-43
was shown to stimulate monocytic activation [137] and exert higher toxicity than free
TDP-43 [138]. On the contrary, the inhibition of exosome secretion by the inactivation of
neutral sphingomyelinase 2 with GW4869, provoked TDP-43 aggregation in Neuro2a cells
and exacerbated the disease phenotypes of human TDP-43A315T transgenic mice [139].
Notably, the dipeptide repeat proteins (DRPs) capable to form aggregates in the CNS of
ALS patients, can spread between cells via exosomes [140]. With regard to non-coding RNA,
about 20 differentially expressed miRNAs in EVs have been identified in ALS patients [141],
among which reduced miR-27a-3p [142] and miR-9-5p [143] levels in serum exosomes can
be specifically emphasized.

3.6. Therapy of Experimental Autoimmune Encephalomyelitis

Apart from various diagnostic applications, EVs are endowed with enormous thera-
peutic potential (Table 1). Considering the novelty of EV-based drug development, currently,
only preclinical studies are being conducted. Experimental autoimmune encephalomyelitis
(EAE) is the most used versatile experimental animal model of MS [144], which allowed the
development of several first-line disease-modifying therapies approved by the FDA [145].
One of the promising areas of experimental MS therapy is harnessing the vesicles derived
from mesenchymal stem cells (MSCs). Cell-free MSC-based therapy is safer than MSC
transplantation but retains all the benefits of MSCs [146]. As MSCs can secrete a large
number of EVs acting in a paracrine manner [147], this therapy can be a novel promising
approach with high potential to treat various diseases [148,149]. Studying the function of
EVs derived from the IFN-gamma-activated MSC on the EAE model showed the potential
of these EVs to suppress PBMC proliferation, reduce the expression of pro-inflammatory
cytokines, and enhance regulatory T cell induction [150]. These EVs were demonstrated to
reduce neuroinflammation and demyelination in EAE mice. EVs from bone marrow MSCs
exerted neuroprotective immunoregulatory functions and promoted the polarization of
microglia from M1 toward M2 phenotypes in the brain and spinal cord of the rats with
EAE. Treatment with MSCs-derived EVs stimulated IL-10 and TGF-beta secretion and
reduced the TNF-alpha production in the rats [151]. Bone marrow MSC exosomes also ele-
vated the number of oligodendrocytes and promoted remyelination in EAE models [152].
Guinti et al. [153] demonstrated the impact of miRNA delivered by MSC-derived EVs.
Eight miRNAs (miR-467f, miR-466q, miR-466m-5p, miR-466i-3p, miR-466i-5p, miR-467g,
miR-3082-5p, and miR-669c-3p) targeted to genes encoding inflammatory molecules were
found to reduce the expression of neuroinflammation markers in EAE-induced mice after
administration of MSC-derived EVs. Another source of stem-derived EVs is the placenta.
Unlike bone marrow-derived MSCs, placenta-derived MSCs express human leukocyte
antigen-G molecules on their surface, which may be useful in inhibiting the cytotoxicity of
Natural Killer cells and CD8+ T cells [154]. The in vitro study demonstrated the promoted
maturation of oligodendrocyte precursor cells treated with EVs from placenta-derived
MSCs, and further, the in vivo study showed a decrease in myelin loss in the spinal cord of
EAE mice [155]. EVs from adipose-derived MSCs can be used in MS therapy as well. The
intravenous administration of these EVs attenuated EAE in mice by reducing the prolif-
erative activity of T cells, leukocyte infiltration, and demyelination [156]. Another study
showed the preventive effects of the administration of such EVs to MOG35-55-immunized
mice before the manifestation of the EAE clinical signs. Mice treated with adipose-derived
MCS EVs prior to the disease onset showed a reduced clinical score as well as reduced de-
myelinating areas and a declined number of CD3+ infiltrating T cells in the CNS, according
to the neuropathological studies [157].
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Table 1. Efficacy of EVs-based therapy of EAE.

Ref. EVs Source EVs Isolation Animal Model of
Demyelination EVs Administration Main Outcomes

[148]

Human bone-
marrow-derived

MSCs activated with
10 ng/mL of IFNγ

(1) Culture media were
centrifuged at 300× g for

10 min. ↓ (S)
(2) 16,000× g for 20 min. ↓

(S)
(3) 120,000× g for 2.5 h at

4 ◦C. ↓ (S)
(4) Pellet was reconstituted

in PBS

EAE induction with
MOG35-55 in 6–8

weeks old female
C57BL/6J mice.

150 µg (1.06 × 109 ±
9.6 × 107 particles
per NTA) of EVs

were injected
intravenously (i.v.) at
the peak of the EAE

(15–20 days).

(1) The suppression of
PBMC cell proliferation,

reduction of
proinflammatory cytokines
and enhanced induction of

Tregs in vitro.
(2) The reduction of

neuroinflammation and
demyelination and

improvement in functional
outcomes in chronic EAE.

[149]
Rat bone-marrow-

derived
MSCs

(1) Culture media were
centrifuged at 300× g for

10 min. ↓ (S)
(2) 2000× g for 20 min. ↓ (S)
(3) 10,000× g for 30 min. ↓

(S)
(4) 100,000× g for 70

min-twice.

EAE induction with
guinea pig spinal

cord homogenate in
female Sprague

Dawley (SD) rats.

100 µg (low dose) or
400 µg (high dose) of
EVs were injected i.v.

24h after EAE
induction.

(1) The improvement in
neurobehavior score and
prevention of weight loss.

(2) The reduction of
TNF-alpha and the

enhancement in IL-10 and
TGF-beta secretion.

(3) Polarization of microglia
from an M1 phenotype to

an M2 phenotype.
(4) High doses of EVs

attenuated the infiltration
of inflammatory cells and
demyelination in spinal

cords of EAE rats.

[150]
Monkey bone-

marrow-derived
MSCs

(1) Culture media were
centrifuged at 250× g for

5 min. ↓ (S)
(2) 3000× g for 30 min. ↓ (S)
(3) 0.22 µm filtration. ↓ (F)

(4) 100,000× g for 2 h at
4 ◦C

(5) Pellet was reconstituted
in PBS

(1) EAE induction
with MOG35-55 in 6–8

weeks old female
C57BL/6 mice.

(2) White matter
toxicity

demyelination model
induced by CPZ in
male 8 weeks old
C57BL/6 J mice

(1) 5 × 1010 of EVs
were injected i.v.

twice a week initiated
on day 10 post EAE

induction for 4 weeks.
(2) 5 × 1010 of EVs

were injected i.v.
once a week initiated

on the day of the
CPZ diet withdrawal

for 2 weeks

(1) The improvement in
neurological and cognitive

functional recovery.
(2) The increased

myelination and new
generation of

oligodendrocytes in the
spinal cord of EAE mice.

(3) The decrease of
neuroinflammation and
polarization of microglia

from M1 to M2 phenotype.
(4) Inhibited the Toll-like

receptor 2
(TLR2)/interleukin-1

receptor-associated kinase 1
(IRAK1)/NF-κB signaling

pathway in spinal cord
tissues.

[151]

Murine bone-
marrow-derived

MSCs activated with
IFNγ and stimulated

with 1 mM ATP

(1) Culture media were
centrifuged at 2000× g for

20 min at 4 ◦C. ↓ (S)
(2) O/n incubation with 0.5
volume of Total Exosome

Isolation Kit (Invitrogen) at
4 ◦C.

(3) 10,000× g of o/n
incubated sample for 1 h at

4 ◦C.
(4) Pellet was reconstituted

in PBS.

EAE induction with
MOG35-55 in 6–8

weeks old female
C57BL/6J mice.

EVs (yield from 3–10
× 106) were injected
i.v., on alternate days

for 8 days or
intraperitoneally

daily for 6 days from
the onset of clinical

symptoms.

(1) The downregulation of
pro-inflammatory markers
(TNF, IL-1beta, IL-6, and

Nos2) in spinal cord tissue.
(2) No effect on disease

course, independently of
the administration route.
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Table 1. Cont.

Ref. EVs Source EVs Isolation Animal Model of
Demyelination EVs Administration Main Outcomes

[153]

Human
placenta-derived

MSCs cultured with
FGF and EGF

(1) Culture media were
centrifuged at 4 ◦C at 300×

g for 10 min. ↓ (S)
(2) 2000× g for 30 min. ↓ (S)
(3) 0.22 µm filtration. ↓ (F)
(4) Concentration through
Amicon Centrifugal Filter
Units with a 100 kDa MW
cutoff (Millipore Sigma)

(5) 8836× g ↓ (S)
(6) 112,700× g for 90 min.

(7) Pellet was reconstituted
in PBS.

EAE induction with
MOG35-55 in

3-month-old female
and male C57BL/6J

mice.

1 × 107 (low dose) or
1 × 1010 (high dose)
of EVs were injected
i.v., on day 19 post

EAE induction.

(1) The improvement in
motor functions.

(2) The reduction of
oligodendrocyte damage in

spinal cords of EAE mice.
(3) The decrease in myelin

loss.

[154] Human
adipose-derived MSC

(1) Culture media were
centrifuged at 4 ◦C at 500×

g for 20 min. ↓ (S)
(2) 18,000× g for 30 min. ↓

(S)
(3) 0.22 µm filtration. ↓ (F)
(4) 120,000× g for 90 min.

(5) Pellet was reconstituted
in PBS.

EAE induction with
MOG35-55 in 6–8

weeks old female
C57BL/6 mice.

60 µg of EVs were
injected i.v. on day 10
postimmunization.

(1) The decrease of
maximum mean clinical
score in EV-treated mice.
(2) Reduced splenocyte

proliferation
(3) The significant reduction
in the demyelination areas
and inflammatory infiltrate

cells.

[155]

Murine
adipose-derived

MSC cultured with
HB-EGF

(1) Culture media were
centrifuged at 4 ◦C at 80× g

for 5 min. ↓ (S)
(2) 1300× g for 10 min. ↓ (S)
(3) 0.22 µm filtration. ↓ (F)
(4) Concentration through

membrane concentrator
(MWCO 5K, Corning

Spin-X) at 3200× g for 90
min at 4 ◦C.

(5) 100,000× g for 60 min at
4 ◦C-twice.

EAE induction with
MOG35-55 in 6–8

weeks old female
C57BL/6 mice.

5 µg of nanovesicles
were injected i.v. on

days 3, 8, and 13
postimmunization

(preventive protocol)
or were injected i.v.
on days 12, 16, and

20 postimmunization
(therapeutic protocol)

(1) Amelioration of clinical
score in EAE mice then

utilizing preventive
protocol of EVs injection.

(2) The reduction of spinal
cord inflammation and

demyelination (preventive
protocol).

(3) No change in the clinical
course of EAE when

injected after the disease
onset.

[158] Mouse neutrophil
cell line

(1) Serial extrusion
(1000 nm, 400 nm, 200 nm

pore sizes) of the cell
suspension.

(2) Obtained nanovesicles
were subjected to density

gradient (10% to 50%
OptiPrep)

ultracentrifugation at
100,000× g for 2 h at 4 ◦C.

EAE induction with
MOG35-55 in 6–8

weeks old female
C57BL/6 mice.

50 µg of nanovesicles
were administered

daily from day 3 after
immunization.

(1) Modulation of
neuroinflammation in mice.

(2) Regulation of white
matter loss.

(3) Gene ontology showed
decreased

neuroinflammation-related
pathways.

(4) Promotion of myelin
debris clearance of

microglia with subsequent
cellular inflammation

resolution.

CPZ-Cuprizone; EAE-Experimental autoimmune encephalomyelitis; EGF-Epidermal growth factor; FGF-
Fibroblast growth factor; HB-Heparin-binding EGF-like growth factor; i.v.-intravenously; IFN-Interferon; IL-
Interleukin; MOG-Myelin oligodendrocyte glycoprotein; MSC-Mesenchymal stem cells; o/n-overnight; PBMC-
Peripheral blood mononuclear cell; PBS-Phosphate buffered saline; TGF-Tumor growth factor; TNF-Tumor
necrosis factor; ↓ (S)-the supernatant from this step was used for further EVs isolation step; ↓ (F)-the filtrate from
this step was used for further EVs isolation step.

Stem cells are not the only source of therapeutic EVs. Oligodendrocyte-derived
EVs have been reported as effective antigen-specific therapeutics. On the one hand, EVs
preparations (both exosomes and microvesicles) containing major MS autoantigens (PLP,
MOG, MBP) suppressed neuroinflammation in an antigen-dependent manner. In this
case, immune tolerance was achieved by inducing the immunosuppressive monocytes and
apoptosis of the autoreactive CD4+ T cells [158]. On the other hand, EVs with fibrinogen
isolated from human blood were found to cause a unique spontaneous relapsing-remitting
disease phenotype and deteriorate the EAE pattern in MOG35-55 immunized mice. These
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EVs induced CD8+ T cells which are not common in the EAE model [159]. Shen et al. [160]
demonstrated the ability of neutrophil-derived nanovesicles to affect white matter loss
and modulate neuroinflammation in mice with EAE. These effects are mediated by the
scavenging of myelin debris by microglia, induced by upregulated expression of nuclear
factor E2-related factor 2 (NRF2).

Engineered EVs could be promising tools for MS treatment as well. Casella and
co-authors designed the microglial cell line, releasing vesicles targeting phagocytes and
containing the anti-inflammatory cytokine IL-4 with multifunctional glycoprotein Lactad-
herin on its surface [161]. A single injection of these EVs into the brain (cisterna magna)
mitigated neuroinflammation and alleviated clinical signs in the EAE mice. The group
of Xing Li utilized modified neural stem cells with highly expressed ligand PDGF-A as
a source of EVs (EVPs) for targeted delivery to oligodendrocytes [162]. Moreover, they
demonstrated that analyzed EVPs were able to embed triiodothyronine, a thyroid hormone
that is critical for oligodendrocyte development but induces serious side effects upon
systemic and excessive administration. Injecting the EVPs loaded with low dosages of
triiodothyronine significantly reduced EAE symptoms, enhanced oligodendrocyte survival,
suppressed myelin damage, and promoted myelin regeneration. Later in 2022, the same
group used EVPs as a targeted carrier for encapsulating Bryostatin-1, a natural compound
with anti-inflammation properties [163]. Its administration also significantly ameliorated
EAE, reduced the infiltration of pro-inflammatory cells, protected BBB integrity, and abro-
gated myelin loss and astrogliosis. Although the authors did not compare the efficiency of
EVPs loaded with triiodothyronine or Bryostatin-1, they showed the ability of stem cells-
derived engineered EVs for highly specific drug delivery to oligodendrocytes, providing
powerful therapeutic effects for the EAE treatment. Another study aimed at designing EVs
with therapeutic proteins exposed on the membrane surface [164]. Different EV-loading
moieties were screened to obtain EVs with cytokine-binding domains derived from the
tumor necrosis factor receptor 1 (TNFR1) and IL-6 signal transducer (IL-6ST) that lack their
signaling domains. These domains inhibited TNF-alpha and the IL-6/sIL-6R complexes
acting as decoys for these pro-inflammatory cytokines (TNF-alpha and IL-6, respectively).
The engineered EVs decreased cytokine levels in the spinal cord of EAE mice and reduced
the clinical score [164]. Utilizing engineered EVs can elevate the loading limit of the vesi-
cles, improve delivery specificity, and minimize possible off-target molecules. In recent
work, engineered EVs were shown to deliver proteins specifically to the antigen-presenting
cells [165] and facilitate the loading of the target protein [166]. Such EVs can prove a
promising tool for delivering protein cargo to the immune cells and thus provide solid
ground for future MS therapeutics.

4. Conclusions

EVs are promising molecular tools, which have demonstrated excellent results in a
range of animal studies as biomarkers, therapeutic agents, and even efficient drug delivery
carriers [167]. They have been actively studied in cancer [168], cardiology [169], aging [170],
acute injuries [171], and infectious diseases [172].

Although there are significant advances in the use of EVs, utilizing EVs in diagnosis
and therapy still has certain limitations arising from the knowledge gaps in their composi-
tion. Studying EV proteome and possible off-target molecules is essential as they may have
yet unpredictable side effects [159].

Unfortunately, emerging approaches employing EVs as potential biomarkers for au-
toimmune diseases are limited by the exceptional heterogeneity of EV subpopulations and
the complicated purification process of EVs from body fluids. Quite a few studies showed
their promising diagnostic potential, however, only a few of them made it to the clinic. The
number of studies devoted to EVs is growing, but some of them employ different methods
of purification, which makes it difficult to compare them with each other and this calls for
a systematic review. Owing to that it is important to report and standardize all protocol
details applied in EVs studies. It is also important to provide full information about the
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specifics of biofluid collection or EVs-releasing cell culture and harvesting conditions ac-
cording to minimal information for studies of extracellular vesicle guidelines approved
by the international society for extracellular vesicles [3]. To date, it is well known that
vesicles are involved in the onset and progression of various diseases, but so far, the list of
potential EV markers is relatively short and can be applied to a limited range of diseases.
It is important to bear in mind that quite a few publications, analyzing EVs in the serum
or CSF of patients utilize ultracentrifugation for EV purification, therefore, it is not clear
whether the identified components represented the ultimately vesicular components or
were just co-isolated from free serum or CSF. Thus, further use of the vesicles in clinical
practice requires more thorough research of their biogenesis, protein and RNA composition,
purity, the content of non-target molecules, and their possible influence on the cells.
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