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Abstract: Correct prediction of potential miRNA–disease pairs can considerably accelerate the
experimental process in biomedical research. However, many methods cannot effectively learn
the complex information contained in multisource data, limiting the performance of the prediction
model. A heterogeneous network prediction model (MEAHNE) is proposed to make full use of the
complex information contained in multisource data. To fully mine the potential relationship between
miRNA and disease, we collected multisource data and constructed a heterogeneous network. After
constructing the network, we mined potential associations in the network through a designed
heterogeneous network framework (MEAHNE). MEAHNE first learned the semantic information of
the metapath instances, then used the attention mechanism to encode the semantic information as
attention weights and aggregated nodes of the same type using the attention weights. The semantic
information was also integrated into the node. MEAHNE optimized parameters through end-to-
end training. MEAHNE was compared with other state-of-the-art heterogeneous graph neural
network methods. The values of the area under the precision–recall curve and the receiver operating
characteristic curve demonstrated the superiority of MEAHNE. In addition, MEAHNE predicted
20 miRNAs each for breast cancer and nasopharyngeal cancer and verified 18 miRNAs related to
breast cancer and 14 miRNAs related to nasopharyngeal cancer by consulting related databases.

Keywords: heterogeneous network; miRNA–disease association; semantic information; attention
aggregation

1. Introduction

miRNA is a type of noncoding RNA that plays an important role in the regulation
of gene expression in eukaryotes [1–3]. The important roles of miRNAs in the occurrence
and development of diseases have been revealed through the continuous improvement
of biological technology [4–6]. During the development of diseases, miRNA can inhibit
or promote disease by interacting with miRNA targets [7,8]. Identifying the miRNAs
related to a disease is of great help for prevention and diagnosis. However, the number of
elements in the existing miRNA set is much larger than the number of miRNAs associated
with diseases, representing a considerable challenge in biomedical research. Therefore,
computational methods are used to predict the links between miRNAs and diseases. The
computational research methods used to predict the association between miRNA and
disease can be divided into three categories: prediction based on similarity measures,
machine-learning-based methods, and graph-neural-network-based methods.

The central idea of the method based on similarity measures is that miRNAs with sim-
ilar functions may be associated with similar diseases. Jiang et al. [9] established an miRNA
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functional similarity matrix and an miRNA–disease adjacency matrix to form a network
and calculated the similarity score in the network. Chen et al. [10] designed a prediction
model that integrated miRNA functional similarity, disease semantic similarity, and Gaus-
sian interaction profile kernel similarity between disease and miRNA. After the multisource
matrices were fused, they calculated within-score and between-score differences between
miRNA and diseases to make predictions. Chen et al. [11] regarded disease-related miR-
NAs as seeds and used these seeds as starting points to perform a restarting random walk
on the miRNA functional similarity network. In order to alleviate the problem of sparse
connections in the similarity network, You et al. [12] enriched the edges of the network
by using matrix completion method. This method used a depth-first search algorithm to
obtain potential miRNA–disease associations while walking the network.

Since their development, machine learning methods have been widely used in biomed-
ical research [13–15]. Wu et al. [16] built and optimized an miRNA–disease adjacency
matrix and used the collaborative matrix decomposition method to obtain a representation
matrix of miRNA and disease. Chen et al. [17] combined miRNA functional similarity,
disease semantic similarity, and Gaussian interaction profile kernel similarity calculations
into the comprehensive similarity of miRNA and disease. They added the similarity into
the miRNA–disease adjacency matrix and decomposed the adjacency matrix. Xu et al. [18]
established an miRNA target regulatory network and input the miRNA features into a
support vector machine (SVM) for prediction. Xuan et al. [19] used family information as
an important factor for prediction and proposed that miRNAs in the same family may be
associated with the same disease. Pasquier et al. [20] fused miRNA-related information
and proposed a vector space model to predict miRNA–disease associations. Luo et al. [21]
recently proposed a model called KRLSM, which fuses multiple omics data sources and
used Kronecker RLS to make predictions.

In graph-neural-network-based methods, miRNAs and diseases are built into a graph
network, and a graph neural network (GNN) is used to extract structural information in
the network [22–25]. GCN [22] obtains the representation of nodes in space by aggregating
neighbor nodes in the spatial domain and using nonlinear activation functions. GAT [23]
proposes that different neighbor nodes in the spatial domain have different importance
to the target node, whereas the importance of different nodes is obtained by using the
attention mechanism. Simonovsky et al. [26] used a multilayer neural network to represent
nodes as low-dimensional vectors and a decoder to decode the low-dimensional vectors
into node representations. Li et al. [27] established an miRNA functional similarity matrix
and disease semantic similarity matrix into a graph and used GCN to learn the structural
information of the graph. Structural information was fed into a multilayer neural network
to obtain representations of nodes. To effectively integrate heterogenous miRNA and
disease information, Li et al. [28] designed a graph encoder that contains an aggregator
function and a multilayer perceptron that aggregates node neighborhood information to
generate a low-dimensional embedding of miRNAs and diseases.

Homogeneous graph neural networks ignore the semantic information contained
between different types of nodes. A heterogeneous graph neural network is able to learn
semantic information in the network very well. Metapath2vec [29] introduced the concept
of metapath into graph representation learning. Metapath2vec samples multiple sequences
composed of nodes from heterogeneous networks through the metapath setting. This
word representation learning model processes sequences into low-dimensional vector
representations. Wang et al. [30] processed a heterogeneous graph into multiple subgraphs
and used an attention mechanism to learn representation of nodes from each metapath.
They also used semantic-level attention to integrate the representations from multiple
metapaths. However, when selecting subgraphs according to the metapath, such models
ignore the intermediate nodes on the metapath, resulting in the loss of information. This
problem is also called the early-summarization problem [31]. Fu et al. [32] fused the node
vector on the metapath instances into the target node by spatial rotation. In this way, nodes
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can learn rich semantic information. However, indiscriminately aggregating different types
of nodes can make node embeddings too similar.

Here, we propose a new semantic-based attention mechanism for use on heteroge-
neous graphs; we applied the proposed mechanism to predict potential miRNA–disease
connections in heterogeneous networks. We first collected multisource data to form a het-
erogeneous network. We used metapaths to split the original graph into multiple subgraphs.
Then, a nonlinear neural network was used to mine the semantic information contained in
the metapath instances in the subgraphs, which learned the diverse semantic information
from different metapath modes. The obtained semantic information was encoded into
association weights through the attention mechanism. The target node aggregates the infor-
mation of its metapath neighbors through association weights. Finally, the representations
of target nodes under multiple metapaths are fused through a nonlinear neural network.
This model can make good use of metapaths to learn the complex association information
of multisource biological networks.

2. Materials and Method
2.1. Data Collection and Construction of Heterogeneous Networks

In this section, we introduce the data we used, which consist of three types of nodes,
namely miRNA, disease, and gene nodes, and four types kinds of relationships between
the three types of nodes. The four types of relationships are miRNA–disease relationships,
miRNA–gene relationships, disease–gene relationships, and protein–protein interaction
relationships (Tables 1 and 2).

Table 1. Nodes in the network.

Node Number Source Dataset

miRNA 1296 HMDD3.2/Circ2disease
Disease 11,783 DisGeNET/HMDD3.2

Gene 10,116 Circ2disease/DisGeNET

Table 2. Relationships in the network.

Relationship Number Source

miRNA–disease 17,972 HMDD3.2 [33]
miRNA–gene 4676 Circ2disease [34]
Disease–gene 84,038 DisGeNET [35]

Gene–gene 105,171 HerGePred [36]

We collected related links between miRNAs and diseases from the HMDD3.2 [33]
database. HMDD is a reliable database that specifically collects miRNA–disease associa-
tions. We collected 17,972 links between 1206 miRNAs and 893 diseases and integrated
miRNAs and diseases as nodes and miRNA–disease associations as edges into the hetero-
geneous network. We collected related links between miRNAs and target genes from the
Circ2disease [34] database. We selected 4676 links between 202 miRNAs and 1713 genes
and integrated miRNAs and target genes as nodes and the associations between them as
edges into the heterogeneous network. We collected the related links between diseases
and genes from DisGeNET [35]. We selected 84,038 links between 11,181 diseases and
9703 genes and integrated diseases and genes as nodes and the associations between them
as edges into the heterogenous network.

When constructing the PPI network, we used the PPI network data retrieved directly
from HerGePred [36]. We selected the genes that are related to miRNAs and disease. The
105,171 associations between these genes were integrated into the heterogeneous network as
edges. Finally, we established a heterogeneous network with 1296 miRNAs, 11,783 diseases,
10,116 genes, and 211,857 edges.
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2.2. Methods
2.2.1. Related Definitions

Heterogeneous networks have many types of nodes and many types of relationships.
The paths composed of different types of nodes and different types of instances contain
rich semantic information, which is not available in homogeneous graphs. To learn the
semantic information in heterogeneous graphs, the concept of a metapath is proposed. For
example, p1 = a1

r1
→a2

r3
→a3

r5
→a1 is a kind of metapath, and p2 = a2

r3
→a3

r4
→a2 is another

kind of metapath. In pi(pi ∈ P), pi represents a specific metapath, and P represents all
types of metapaths in the heterogeneous graph. For ai ∈ A and ri ∈ R, A represents the
collection of all node types in the heterogeneous graph, andR represents the collection of
all relationship types in the heterogeneous graph.

In this experiment, we used multiple metapaths to mine heterogeneous networks.
The original network was sampled under each metapath to obtain subgraphs. We called
all the node sequences on the subgraph that conformed to the metapath mode metapath
instances. For example,v1

a1
→ v5

a2
→ v3

a3
→ v2

a5
is a metapath instance under p1 in which

vi
ai

represents the ith node of type ai.
The sampling subgraph under each metapath contained the target node and the

metapath instance connected to the target node. We called the nodes on the subgraph that
are of the same type as the target node metapath neighbors.

2.2.2. Specific Steps

In this section, we introduce the main methods, ideas, and specific implementation
details of the MEAHNE model. The MEAHNE model is divided into six parts: A. node
conversion, B. subgraph extraction, C. metapath instances semantic extraction, D. node
aggregation method based on semantic attention, E. multisemantic information fusion, and
F. link prediction. Figure 1 shows the overall framework of MEAHNE.

A. Node conversion

If we want to learn representations of heterogeneous networks, we need to perform
interactive calculations on the nodes of the graph. However, heterogeneous graphs have
multiple types of nodes, and different types of nodes are located in different spaces. If the
nodes are not processed, interactive calculation between nodes becomes too difficult, so
we first converted all types of nodes into the same space to facilitate calculations between
nodes as follows.

A trainable linear transformation matrix was set for each type of node, and original
nodes of different types were projected into the same space, as shown in Formula (1):

hai = Mai ·xai (1)

where xai represents the original feature vector of node type ai; and Mai ∈ Rd′×dai , in which
d′ represents the feature space dimension after space conversion, and dai represents the
original feature dimension of node type ai.

B. Subgraph extraction

To mine heterogeneous graphs in multiple metapaths, the first step is to separate the
corresponding subgraphs based on specific metapaths.

We separated the subgraph (Gpi) according to the metapath (pi); Gpi represents the
subgraph mined in pi mode. The node sequence corresponding to pi mode in Gpi was
sampled and denoted as P(v, u), which connects the target node (v) and its metapath
neighbor (u).
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Figure 1. MEAHNE framework. A. Nodes of different types are projected into the same space.
B. The subgraph under each metapath and the metapath edges on subgraphs are extracted. C. We
encoded the semantic information into values as semantic weights to aggregate nodes of a single
type. D. The semantic information on metapath edges was aggregated to obtain a more powerful
node representation. E. Representations under all metapaths were fused to obtain the final node
embedding.

C. Metapath instances semantic extraction

When mining the information from the corresponding subgraph (Gpi ) under a single
metapath (pi), different types of nodes are transformed into the same space through space
conversion, which allows different types of nodes to represent each other. The metapath
instance is composed of different types of nodes connected to each other and contains
rich semantic information. Therefore, to learn the semantic information on the metapath
instance in the subgraph, we first integrated the information on the metapath instance. Each
metapath instance was represented as a vector that represents the semantic information on
the instance. All the nodes on the metapath instance were concatenated according to the
order of the metapath, as shown in Formula (2):

hP(v,u) =‖ (P(v, u)) =‖∀t∈{mP(v,u)} (ht) (2)

where P(v, u) represents the metapath instance from v to u, mP(v,u) represents the set of
nodes on the metapath instance, and hP(v,u) represents the vector obtained by concatenating
the vectors of the nodes on the metapath instance (P(v, u)).
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A nonlinear neural network was used to learn vector h, resulting in semantic informa-
tion of the metapath instance. A nonlinear neural network, which has strong information
extraction capabilities, is a network composed of multiple fully connected layers and
nonlinear activation functions, as shown in Formula (3):

φl
pi

= relu(W(l)
pi relu(· · · relu(W(1)

pi X + b1
pi
) · · ·) + bl

pi
) (3)

where W j
pi represents the weight matrix of the jth fully connected layer of the neural

network under metapath pi, the bias value of the kth layer of the neural network under
metapath pi is bk

pi
, X represents the input feature, and φl

pi
represents the vector represen-

tation of input vector X learned through l connection layers in the neural network under
metapath pi. We used vector hP(v,u) as the input of the nonlinear neural network to obtain
the semantic information of the metapath instance, as shown in Formula (4):

h′P(v,u) = φl
p

(
hP(v,u)

)
(4)

D. Node aggregation method based on semantic attention

After obtaining the semantic information from the metapath instances, we can aggre-
gate the semantic information into the target nodes connected to these metapath instances;
the semantic information is obtained by the fusion of different types of nodes. If the target
node only aggregates semantic information, each type of node contains information about
other types of nodes, causing different types of nodes to lose their distinction. To make the
node representation more complete based on the aggregation of semantic information, we
aggregated the same types of nodes, and the embeddings obtained for different types of
nodes were strongly distinguishable. For aggregating nodes of the same type, we designed
a method to encode semantic information into attention weights and used the obtained
attention coefficient to aggregate metapath neighbors. Finally, we fused the information
obtained by the aggregation of nodes of the same type and semantic information from
metapath instances as the final node representation.

The metapath subgraph retains only the nodes of the same type as the target node
to form a homogenous graph (G). Therefore, graph G only contains the target node
and metapath neighbor of the target node. We encoded the semantic information on
the instance using the attention mechanism as a weight value—the correlation strength
coefficient between the target node and the metapath neighbor, as shown in Figure 2 and
Equations (5) and (6).

evu
p = Leaky_relu(ap·h′P(v,u)) (5)

wvu
p = so f t_max(evu

p ) =
exp(evu

p )

∑s∈Np
v

exp(evs
p )

(6)

evu
p where represents the value encoded by the attention mechanism; Leaky_relu() is a

nonlinear activation function; ap represents the attention weight matrix under metapath
p; Np

v represents the set of metapath neighbors connected to the target node (v) on the
subgraph in mode p; and wvu

p represents the semantic weight between node v and node u,
where node u is the metapath neighbor of node v.

Next, the metapath neighbors of the same type were aggregated according to the
weight (wvu

p ). The semantic information was also integrated to ensure the integrity of the
node embedding.

To reasonably integrate semantic information during the node aggregation stage, we
performed secondary learning on semantic information by continuously adjusting the
proportion of semantic information through end-to-end optimization and by adaptively
learning the optimal semantic information. We designed a trainable matrix to optimize
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the weights of semantic information and added nonlinear activation operations to the
optimization results, as shown in Formula (7).

h′′P(v,u) = relu(bp·h′P(v,u)) (7)

where bp represents a learnable weight matrix under metapath p, and the content of
semantic information is continuously adjusted through end-to-end learning.

We used the learned metapath semantic weight to aggregate the metapath neighbors
and added the semantic information learned twice. Therefore, the target node could be
more comprehensively expressed, as shown in Formula (8):

hpv = h′′P(v,u) + ∑u∈Np
v
(wvu

p ·hu) (8)

In this way, the target node not only learned the semantic information on the metapath
instance but also learned the information obtained by the aggregation of nodes of the same
type. The nodes of different types remained distinct, making the representation of the
nodes more complete.
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E. Multisemantic information fusion

In the above steps, we only learned the graph under a single metapath. Our model
learned the graph in multiple metapath modes and generated the representation of the
target node in multiple metapath modes. We used neural network methods to integrate
node representations under multiple metapaths, as shown by Formula (9):

hv =‖∀pi∈p
(
hpi

t
)

(9)

where hpi
v represents the embedding obtained by aggregating the target node (v) under

metapath pi, and hv represents the result of concatenating the representation of the target
node (v) under all metapaths. Then, the embedding (hv) was input into the nonlinear neural
network to learn a low-dimensional embedding that fuses the target node representation
under multiple metapaths, as shown in Formula (10):

Hv = φ(hv) (10)
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After learning through a nonlinear neural network, Hv represented a low-dimensional
embedding that fused multiple metapath representation results as the final representation
of the target node.

F. Link prediction

The vector inner product was used as the score of the link strength of the two nodes.
If the two vectors are highly correlated, then the score of the node inner product will be
higher. We used this as the basis for link prediction, as shown in Formula (11):

scoremd = σ(< Hm,Hd >) (11)

Our link prediction was between miRNA and disease. The higher the prediction score,
the stronger the correlation, and the lower the prediction score, the weaker the correlation.
We used two-class cross entropy as the optimization target. Our optimization goal is shown
in Formula (12):

Loss = −∑(m,d)∈Φ
log(σ(< Hm,Hd >))−∑(m,d)∈Φ− log(σ(−< Hm,Hd >)) (12)

where Φ represents the set of miRNA and disease pairs that have been verified to be
associated, and Φ− represents the set of all miRNA–disease pairs that have not been
experimentally verified. The goal of optimization is to increase the score between verified
node pairs and decrease that between unverified node pairs. Because our model is an
end-to-end training model, the parameters in the model are continuously optimized during
the training process, and the continuously optimized parameters enable us to achieve the
optimization goal.

3. Results and Discussion
3.1. Experimental Data and Performance Evaluation

We built miRNAs, diseases, and genes into a network and conducted experiments
to compare our model with other comparative models on the network. The links that are
verified from the databases in our dataset are positive samples, and the others are negative
samples. We split the dataset into training (70%), validation (10%), and test (20%) sets using
a random sampling method without repetition. The ratio of positive-to-negative samples
in all sets is 1:1. Parameters of our model were set as follows: learning rate, 0.005; dropout
rate, 0.5; network node dimension, 90; number of layers for semantic extraction, 1; number
of neighbor samples, 60. To prevent the model from overfitting, we used an early stopping
mechanism and set the patience of the mechanism to 3. We compared our method with
other heterogeneous network embedding methods under three metrics: area under the
receiver operating characteristic curve (AUC), area under the precision–recall curve (AP),
and the prediction accuracy of the highest K in the prediction results (Precision@K).

3.2. Factors Influencing Model Performance

Two factors significantly affect model performance: the number of sampled neighbors
and the number of semantic extraction layers. The experimental results show that when
the number of sampled neighbors is 40 (Figure 3) and there is one semantic extraction
layer (Figure 4), the model achieved the best performance. In the experiment, we used the
control variable method to evaluate the effect of parameters on the model by changing one
parameter and keeping the other parameters fixed.
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3.2.1. Effect of the Number of Sampled Neighbors

Some nodes in the network have many neighbors, whereas others have few neighbors.
If a node aggregates all its neighbors, some nodes receive too much information and other
nodes receive too little information. This can considerably affect the predictive performance
of the model. To solve this problem, our model adopts a random sampling method. Each
node samples a fixed number of neighbors. In this way, the information of all nodes is
relatively balanced, which can considerably improve the effect of the model. We analyze
the effect of sampling number on the model by modifying the number of node-sampling
neighbors (Figure 3). Experimental results show that our model performed best when the
number of neighbors is 40 because sampling 40 neighbors can ensure that each node has
enough neighbors to be sampled. If too few neighbors are sampled, the performance of the
model will suffer from a lack of information.

3.2.2. Effect of Number of Semantic Extract Layers

Assigning semantic attention weights to nodes is a key feature of the model. Semantic
information directly affects the size of semantic attention weights. The number of layers
of semantic information extraction affects the performance of the model. If the number of
extraction layers is large, an overfitting effect is easily produced, resulting in partial loss
of semantic information. The experimental results confirmed this (Figure 4). The model
performs best with one extraction layer.

3.2.3. Comparison with Other Models

Comparison experiments have been conducted using the representative graph repre-
sentation method in recent years; the heterogeneous graph representation method metap-
ath2vec and the best performing matepath (miRNA–disease–gene–miRNA) are selected
after multiple experiments. Because GAT is a homogeneous network method, we used
metapaths to split the original network into homogeneous networks, used the GAT method
to extract the information of homogeneous networks, and selected the best result as the per-
formance of GAT model. HAN, MAGNN, HECO, and GAEMDA are all well-performing
heterogeneous graph neural network methods. For the sake of fairness, we adjusted these
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models to the best results as the model effects. Our model achieved the best performance
under both AUC and AP metrics (Table 3). The receiver operating characteristic (ROC)
and precision–recall (P-R) curves are shown in Figure 5. The confusion matrix is shown in
Figure 6.The codes of Metapath2vec, GAT, and HAN were derived from the open-source
graph representation learning framework OpenHINE. The rest of the comparative test
codes were retrieved from their official GitHub codes (Supplementary Materials).

Table 3. Model evaluation.

Model AUC AP P@500 P@1000 P@1500

Metapath2vec [29] 72.78 70.60 99.60 95.44 80.12
GAT [23] 91.96 92.30 96.53 94.25 90.31
HAN [30] 92.35 92.21 99.56 99.13 96.09

GAEMDA [28] 91.96 90.35 99.50 98.21 94.89
MAGNN [32] 92.93 93.06 99.32 98.10 94.28

HECO [37] 93.00 92.87 99.14 98.35 93.46
MEAHNE 95.20 95.82 99.65 98.85 96.45
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3.3. Case Study

In order to verify the effectiveness of our model, we selected two cancers in the
dataset to predict potential cancer-associated miRNAs. The model predicted 18 validated
breast-cancer-related miRNAs that were included in our dataset. The model predicted
14 validated nasopharyngeal-carcinoma-related miRNAs that were not included in our
dataset, as shown in Tables 4 and 5. “*” indicates that the miRNA predicted by the model
has been verified in the dbDEMC database [38].

Table 4. Breast cancer.

miRNA Breast Cancer miRNA Breast Cancer

hsa-mir-143 * hsa-mir-181b-2 *
hsa-mir-296 * hsa-mir-29b-1 *
hsa-mir-192 * hsa-mir-1-1

hsa-mir-133a-1 hsa-mir-196a *
hsa-mir-382 * hsa-mir-148b *
hsa-mir-34c * hsa-mir-26a-2 *
hsa-mir-224 * hsa-mir-18 *
hsa-mir-497 * hsa-mir-144 *
hsa-mir-149 * hsa-mir-30d *
hsa-mir-383 * hsa-mir-218-1 *

Table 5. Nasopharyngeal carcinoma (NPC).

miRNA NPC miRNA NPC

hsa-mir-126 * hsa-mir-182
hsa-mir-210 hsa-mir-196a
hsa-mir-17 * hsa-mir-34

hsa-mir-503 * hsa-mir-99a *
hsa-mir-20a * hsa-mir-29b-1 *
hsa-mir-18a * hsa-mir-192
hsa-mir-424 * hsa-mir-215
hsa-mir-221 * hsa-mir-335 *
hsa-mir-375 * hsa-mir-342 *
hsa-mir-150 * hsa-mir-100 *

3.4. Ablation Experiment

In order to demonstrate the effectiveness of the semantic attention mechanism of
our model, we removed the semantic attention module and replaced it with summation.
Accordingly, we designed a comparative experiment, changing the hidden layer dimensions
of the models and observing how the models performed. The experimental results are
shown in Figure 7. The performance of our model diminished significantly without the
use of a semantic attention module. The experimental results illustrate the effectiveness
of the semantic attention module. NS_MEAHNE means MEAHNE without semantic
attention module.
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4. Conclusions

In this paper, we propose a heterogeneous graph neural network model that can fully
learn a variety of information in a heterogeneous network. This model integrates the se-
mantic information and node type information into the node representation, which not only
avoids the early-summarization [25] problem but also avoids the problem of homogeniza-
tion of different types of nodes due to a large amount of aggregated semantic information
and maintains the distinction of nodes. We propose an attention mechanism based on the
semantics of the metapath instance. Under each metapath, the semantic information of the
learned metapath instance is encoded into attention weights to perform node aggregation,
and the semantic information is also integrated into the node representation so that nodes
retain comprehensive information. Finally, a multilayer neural network is used to fuse the
representation of multiple metapaths as the final node representation. Experimental results
show that our model performs better than other models.

However, there is still room for improvement with respect to our model. The semantic
information obtained through the semantic information extraction layer considerably
affects the allocation of attention weights, and we used a nonlinear neural network as the
extraction tool. Whether other graph neural network methods can be used for semantic
information extraction deserves further investigation.
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