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Abstract: The coronavirus disease (COVID-19) caused by the novel severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) is characterized by a wide spectrum of clinical phenotypes ranging from
asymptomatic to symptomatic with mild or moderate presentation and severe disease. COVID-19
susceptibility, severity and recovery have demonstrated high variability worldwide. Variances in
the host genetic architecture may underlie the inter-individual and population-scale differences in
COVID-19 presentation. We performed a genome-wide association analysis employing the genotyp-
ing data from AncestryDNA for COVID-19 patients of European descent and used asymptomatic
subjects as the control group. We identified 621 genetic variants that were significantly distinct
between asymptomatic and acutely symptomatic COVID-19 patients (multiple-testing corrected
p-value < 0.001). These variants were found to be associated with pathways governing host immunity,
such as interferon, interleukin and cytokine signalling, and known COVID-19 comorbidities, such
as obesity and cholesterol metabolism. Further, our ancestry analysis revealed that the asymp-
tomatic COVID-19 patients possess discernibly higher proportions of the Ancestral North Eurasian
(ANE) and Eastern Hunter-Gatherer (EHG) ancestry, which was introduced to Europe through Bell
Beaker culture (Yamnaya related) and lower fractions of Western Hunter-Gatherer (WHG) ancestry,
while severely symptomatic patients have higher fractions of WHG and lower ANE/EHG ancestral
components, thereby delineating the likely ancestral differences between the two groups.

Keywords: ancestral genetic variation in COVID-19 patients; genome-wide association study for
COVID-19 patients; asymptomatic COVID-19 patients as control; ANE and WHG ancestries in
COVID-19; multiple regression with ancestral fractions

1. Introduction

Since its outbreak in December 2019 in Wuhan, China, the coronavirus disease (COVID-
19) has ravaged the world, causing 217,901,675 infections and 4,523,766 deaths worldwide
(https://covid19.who.int, assessed on 31 August 2021). It is caused by the novel severe
acute respiratory syndrome coronavirus 2 (SARS-CoV-2) [1,2] and has a broad spectrum
of clinical manifestations among patients ranging from asymptomatic, symptomatic with
mild or moderate respiratory disease, severe alveolar damage, pneumonia and respiratory
failure [3–5]. More than 35% of infected individuals display neurological symptoms
ranging from headache, loss of smell (anosmia), loss of taste (ageusia), dizziness and
cerebrovascular disease [6]. Gastrointestinal, cardiac, kidney and vascular abnormalities
are also observed in COVID-19 patients [7]. Overall mortality upon hospitalization is
15–20% but increases to ~40% for patients requiring intensive care [8]. Long-term effects of
COVID-19 infection may involve significant sequelae, especially for grievously affected
individuals, including microstructural and functional brain anomalies in more than 50%
of cases [9].
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Strikingly COVID-19 susceptibility, severity and recovery have shown high vari-
ability worldwide. Older adults ≥ 60 years [10] and those with pre-existing comorbidi-
ties (e.g., hypertension, cardiovascular disease and diabetes) [11–13] or habits (e.g., smok-
ing) [14] are likely to be more vulnerable to severe SARS-CoV-2 infection. However, poor
disease prognosis has also been observed in middle-aged individuals (40–59 years) with no
apparent underlying health conditions [15]. Differences in disease prognosis and outcomes
in worldwide populations may be attributed to variable degrees of testing and screening,
different thresholds for hospitalization, differences in availability of good quality clinical
care and compliance to public health measures for containing infection spread. In addition,
existing studies suggest that variability in the host genetic constitution may modulate
the inter-individual and population-scale differences in COVID-19 severity and clinical
outcomes. These include the identification of two genetic susceptibility loci associated
with respiratory failure in COVID-19, including the ABO locus in chromosome 9 and
a gene cluster at chromosome 3 [16], population-specific variation of the coding variants of
Angiotensin-converting enzyme 2 (ACE2), the SARS-CoV-2 receptor for host cell entry [17–19]
and that of the COVID-19 risk haplotype originating from Neanderthal genomes [20].

So far, results from several genome-wide association studies (GWAS) have identified
potential genomic loci associated with the severity of COVID-19. The GWAS conducted by
the Genetics Of Mortality In Critical Care (GenOMICC) assessed critically ill COVID-19
patients from UK intensive care units (ICUs) and identified 2′-5′-Oligoadenylate Synthetase
(OAS) gene cluster on chromosome 12 (OAS1, OAS2 and OAS3), a single nucleotide
variant (SNV) each in Tyrosine Kinase 2 (TYK2) and Dipeptidyl Peptidase 9 (DPP9) genes on
chromosome 19 and a single nucleotide polymorphism (SNP) in the interferon receptor gene
Interferon Alpha and Beta receptor subunit 2 (IFNAR2) on chromosome 21. While DPP9 and
TYK2 are thought to be associated with host-driven inflammatory lung injury linked to life-
threatening COVID-19, IFNAR2 and OAS genes have been associated with innate antiviral
defences [21]. Consistent with the findings of Ellinghaus et al. (2020) [16], Shelton et al.
(2021) reported a strong association between ABO locus on chromosome 9 and another gene-
rich locus on chromosome 3 that includes Leucine zipper transcription factor-like 1 (LZTFL1)
and Solute Carrier Family 6 Member 20 (SLC6A20) with the acuteness of COVID-19 using data
from more than a billion participants obtained from 23andMe [22]. An association study
based on ~50,000 COVID-19 patients further supported the association of genetic variants
in ABO, TYK2, DPP9, IFNAR2, SLC6A20 and Protein Phosphatase 1 Regulatory Subunit 15A
(PPP1R15A) with the severity of COVID-19 [23]. Finally, the AncestryDNA COVID-19 host
genetic study identified COVID-19 genetic associations with SLC6A20, LZTFL1 variants on
the chromosome, ABO locus on chromosome 9 and a novel association on chromosome 11
that includes Polypeptide N-Acetylgalactosaminyltransferase 18 (GALNT18) [24].

While the existing GWAS reports have been extremely insightful, their choice of
individuals selected as controls might not be optimal. Largely, these studies have recruited
healthy individuals who had tested negative for COVID-19 by reverse transcription PCR
(RT-PCR) test in the control group or employed population controls [16,21–24]. Accordingly,
the individuals considered in the control set had no known history of COVID-19 at the
time of their recruitment, but the possibility of subsequent SARS-CoV-2 infections and their
severity in them remained unaccounted. Consequently, we argue that these individuals are
likely not suitable controls for predicting the underlying genetic variants associated with
severe COVID-19.

Here, we utilized the genotyping dataset generated by the AncestryDNA COVID-19
host genetic study corresponding to 11,759 healthy control individuals who tested negative
for COVID-19 using swab tests and 3241 COVID-19 positive individuals, encompassing
675,370 SNVs [24]. This dataset comprises ~75% of individuals with European ances-
try. We categorized the SARS-CoV-2 infected patient group into five categories denoting
the acuteness of manifestation, namely, asymptomatic, mild, moderate, severe and un-
known, based on self-reported responses that were collected as described before [24].
We sought to identify and annotate SNVs that show significant frequency variation be-
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tween asymptomatic versus severely affected COVID-19 patients. We further compared
the ancestral affiliations of asymptomatic and mildly symptomatic patients to those pre-
senting with severe disease by combining the genetic data from COVID-19 patients with
10,215 ancient and modern genomes across the globe, assessing 597,573 SNVs from the
personal database of Dr. David Reich, Harvard Medical School, USA, Available online
(https://reich.hms.harvard.edu/datasets, accessed on 25 March 2020). Our findings reveal
discernible genomic variation between asymptomatic/mildly symptomatic and acutely
affected COVID-19 patients of European ancestry.

2. Materials and Methods
2.1. Dataset

COVID-19 patient genomic data was obtained from the AncestryDNA COVID-19 host
genetic study [24], through The European Genome-phenome Archive (EGA) (Accession
no. EGAD00010002012) with kind permission from the AncestryDNA group (https://
www.ancestry.com/dna/, last accessed on 1 August 2021). This dataset was comprised
of genotyping data that included 675,370 SNVs corresponding to 11,759 healthy controls
who were COVID-19 negative, and 3241 COVID-19 patients with various degrees of
disease manifestations. Of the individuals included in this dataset, ~75% belonged to
European ancestry [24]. The 3241 COVID-19 patient group was further categorized into
asymptomatic, mild, moderate, severe and unknown based on the self-reported phenotype
questionnaire (Accession no. EGAD00010002011). The methodology for data collection
used to determine SARS-CoV-2 infection severity in patients has been described before [24].
To note, the patient data employed in this study came from the first wave of the pandemic.
Symptoms reported by respondents include fever, shortness of breath, dry cough, nasal
congestion, fatigue, headache, nausea/vomiting, diarrhoea, altered sense of taste or smell,
abdominal pain, cough producing phlegm, sore throat, runny nose, chills and body ache.
Based on the participant responses, we used the criteria described in Table 1 and grouped
249 individuals as asymptomatic, 283 as mild, 455 as moderate, 1907 as severe and 347 as
unknown. All patients who progressed to being affected with pneumonia were included in
the severe category.

Table 1. Classification of COVID-19 patients based on self-reported questionnaire (EGA Accession
no. EGAD00010002011).

Category Criteria

Asymptomatic individuals reported experiencing no perceptible symptoms

Mild (a) All symptoms were reported as mild
(b) One of the symptoms was reported as moderate, and the rest were mild

Moderate (a) Two or more symptoms were reported as moderate
(b) One of the symptoms was reported as severe,* and the rest are listed as moderate

Severe (a) Two or more severe symptoms reported
(b) Pneumonia

Unknown symptom responses are unavailable
* Excludes Pneumonia. All pneumonia patients were considered as severe.

2.2. Generation of Genomic Datasets

The COVID-19 genomic dataset from AncestryDNA was subsequently merged with
one of the most recent genome datasets (v42.4.1240K_HO) obtained from the publicly
available database of Dr. David Reich’s at Harvard Medical School, USA, at https://reich.
hms.harvard.edu/datasets (accessed on 25 March 2020). The Reich lab data is comprised
of 10,215 ancient and modern genomes from across the globe, assessing 597,573 SNVs.
The final merged dataset (COVID+Ancient+Modern) comprised 133,829 SNVs that are
common between the two datasets, assessing 25,198 individuals. All file conversions and
manipulations were performed using EIGENSTRAT (EIG) v7.2 [25] and PLINK v1.9 [26].

Fine population structure within COVID-19 patient genomes present in COVID+
Ancient+Modern dataset was delineated using Principal Component Analysis (PCA) im-
plemented in PLINK v1.9 using –pca command. The two most informative PCs are

https://reich.hms.harvard.edu/datasets
https://www.ancestry.com/dna/
https://www.ancestry.com/dna/
https://reich.hms.harvard.edu/datasets
https://reich.hms.harvard.edu/datasets
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discussed and plotted in R v3.5.1 (Figure 1). To control for population stratification and
to avoid genetic structure in the sample, we only selected COVID-19 patients that cluster
with individuals of European ancestry. We identified the PC coordinates for the COVID-19
patients based on a European cluster formed by CEU, FIN, GBR, IBS and ITU individuals
from the 1000 Genomes Project, present in our dataset. COVID-19 patient genomes lying
within the European cluster were selected (PC1 ranging from−0.0042 to 0 and PC2 ranging
from −0.0025 to 0.0067) for downstream analysis (Figure 1 inset), and those outside it were
removed from downstream analysis.
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Figure 1. Principal Component Analysis (PCA) of COVID-19 patient genomes. PCA plot showing genetic differentiation
among COVID-19 patient genomes. COVID-19 patients (asymptomatic, mild, moderate and severe) were designated in
various shades of grey, and patients whose symptoms were unknown have been denoted in lavender. East Asian, European,
African, South Asian and Native American populations were designated with various shades of green, blue, red, pink and
yellow, respectively. To avoid cluttering, only notable populations have been plotted. We selected COVID-19 patients that
cluster with individuals of European ancestry (PC1 ranging from −0.0042 to 0 and PC2 ranging from −0.0025 to 0.0067) for
downstream analysis. PCA was performed in PLINK v1.9, and the top four principal components (PCs) were extracted. Top
two PCs (PC1 and PC2), explaining the highest variance of the data were plotted in R v3.5.1.

We selected 2528 COVID-19 patients of European descent, based on PCA, among
which 197 were asymptomatic, and 217,355 and 1492 patients had mild, moderate and
severe symptoms, respectively. The symptomatic status of 267 individuals was unknown
(Figure 2). Data pertaining to healthy individuals were excluded from further analysis
because while they were not affected with COVID-19 at the time of data collection, this does
not preclude the possibility of SARS-CoV-2 infection in them at subsequent time-points.
Accordingly, a new dataset was generated (COVID+Ancient+Modern_mod), comprising
10,215 ancient and modern genomes from across the globe, and 2528 COVID-19 patients of
European descent (N = 12,743), assessing 133,829 SNVs for ancestry analysis.

2.3. Genome-Wide Association Analyses (GWAS)

GWAS was performed using the original AncestryDNA COVID-19 genotyping dataset
(EGA Accession no. EGAD00010002012) with 675,370 SNVs to identify genetic variants
that show significant frequency variation between asymptomatic versus severely infected
COVID-19 patients. Accordingly, the genomes of the asymptomatic individuals (N = 197)
(controls) were compared against those with severe disease presentation (N = 1492) (cases).
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Figure 2. Number of samples from AncestryDNA that belong to five categories: asymptomatic,
mild, moderate, severe and unknown based on self-reported severity of COVID-19. The number of
COVID-19 patients in each category from the AncestryDNA dataset was compared to the number of
COVID-19 patients of European descent selected by PCA for the same categories.

As quality control (QC) measures, SNVs and individuals with high levels of data
missingness (>20%) were filtered out using –geno 0.2 and –mind 0.2 flags in PLINK v1.9.
Further, to filter out the rare SNVs with low minor allele frequencies (MAF) that may
reduce the power for detecting SNV-phenotype association, we employed a MAF threshold
of 0.01. While no individual was removed during filtering, 14 and 74,787 SNVs were
removed due to missing genotype data and the MAF threshold. The final dataset consisted
of 1689 individuals (197 controls + 1492 cases) encompassing 600,569 SNVs.

Standard case-control-based association analyses were performed in PLINK v1.9
using –assoc command. Multiple-testing corrected p-values were obtained from –adjust
flag alongside –assoc command. Chi-square test, implemented in PLINK –assoc command,
was performed separately for all 600,569 SNVs to statistically assess their significance, and
multiple-testing corrected p-value < 0.001 was considered significant.

Since age has been considered as an important risk factor associated with the severity
of COVID-19, a separate age-adjusted GWAS was performed in PLINK v1.9 using –mh flag
alongside –adjust and –assoc commands, wherein the asymptomatic and severely affected
patients were divided into two groups: above and below 50 years of age, respectively.

Manhattan plots were generated in ‘qqman’ package in R v3.5.2 [27] by plotting
-Log10 p-values of all assessed SNVs in both non-age-adjusted and age-adjusted GWAS
outputs. Significant SNVs (multiple-testing corrected p-value <0.001) were annotated using
SNPnexus web-based server for GRCh38/hg38 [28].

2.4. Population Clustering and Ancestry Determination

The genomic ancestry of 12,743 individuals, present in the COVID+Ancient+ Mod-
ern_mod dataset, assessing 133,829 SNVs, was estimated using the model-based clustering
algorithm ADMIXTURE v1.3 [29]. The optimum number of ancestral components (K)
was determined by minimizing the cross-validation error (CVE) using a –cv flag to the
admixture command line. The lowest CVE was estimated for K = 17 (Figure S1).
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Further, various ancestry fractions of 2261 COVID-19 patients with known symp-
tomatic status (asymptomatic, mild, moderate or severe) of European ancestry were
compared using One-way ANOVA, implemented in GraphPad Prism v9 (https://www.
graphpad.com, accessed on 1 August 2021).

We further developed several multiple linear regression models with different com-
binations of various European ancestry fractions obtained from ADMIXTURE, alongside
demographic and healthcare information pertaining to age, gender, body mass index
(BMI) and comorbidities based on the self-reported phenotype questionnaire (Accession
no. EGAD00010002011) for 2261 COVID-19 patients of European descent with known
symptomatic status, in order to statistically evaluate their impact on the severity of COVID-
19 presentation. SARS-CoV-2 infected individuals were graded according to the degree
of the clinical manifestation; for example, asymptomatic patients were graded as 1, and
symptomatic patients with mild, moderate and severe disease were graded as 2, 3 and
4, respectively. Additionally, a multiple logistic regression model was developed based
on the demographic and healthcare information pertaining to age (≥50 vs. <50 years),
gender (Male vs. Female), body mass index (BMI) (<25 vs. ≥25) and comorbidities (Present
vs. Absent), as mentioned in the self-reported phenotype questionnaire to assess which
demographic and physiological factor(s) potentially augment the severity of COVID-19.
Multiple regression analyses were performed in GraphPad Prism v9. Two-tailed tests were
performed considering the null hypothesis of no association of ancestral, demographic and
medical factors with the degree of severity of COVID-19 manifestation and p-value < 0.05
was considered statistically significant.

2.5. Ancestry Proportions among COVID-19 Patients of European Ancestry

The COVID+Ancient+Modern dataset (N = 25,198) was used here. The ancestry pro-
portions of 2,261 COVID-19 patients of European descent with various degrees of disease
presentation were assessed in this analysis. A total of 267 individuals with unknown
symptoms were excluded. We employed qpAdm [30] implemented in AdmixTools v5.1 [31]
to estimate ancestry proportions in the European genomes originating from a mixture of
‘reference’ populations by utilizing shared genetic drift with a set of ‘outgroup’ populations.
To note, in qpAdm, the target and source populations are referred to as “left” populations
and the reference populations are called “right” populations. Some 14 ancient genomes,
namely Luxembourg_Loschbour.DG, Luxembourg_Loschbour_published.DG, Luxem-
bourg_Loschbour, Iberia_HG (N = 5), Iberia_HG_lc, Iberia_HG_published, LaBrana1_publis
-hed.SG, Hungary_EN_HG_Koros (N = 2), Hungary_EN_HG_Koros_published. SG, were
grouped together as West European Hunter-Gatherers (WHGs); three ancient genomes,
namely Russia_EHG, Russia_HG_Samara and Russia_HG_Karelia (N = 2), were grouped
together as Mesolithic Hunter-Gatherers of Eastern Europe (EHGs); 11 ancient genomes,
namely Kazakhstan_MLBA_Alakul_Maitan_o (N = 2), Kazakhstan_MLBA_OyDzhaylau_o,
Russia_MLBA_Sintashta_o1 (N = 2), Russia_MLBA_Sintashta_o2 (N = 5), Russia_MLBA
_Sintashta_o3, were grouped together as Ancient North Eurasians (ANEs), two ancient
genomes: KK1.SG, SATP.SG, were grouped as Caucasus Hunter-Gatherers (CHGs), and
Sweden_HG_Motala (N = 8) were renamed as Scandinavian Hunter-Gatherers (SHGs) in
qpAdm analysis. We tried to model modern-day Europeans with different combinations of
Neolithic Near-East populations such as Neolithic Iranians (Iran_GanjDareh_N), Neolithic
Anatolians (Anatolia_N) and Natufians (Israel_Natufian) alongside various combinations
of ancient European Hunter-Gatherer populations (WHG, EHG, CHG, ANE and SHG)
as source populations as described before [32]. We inferred that COVID-19 patients of
European ancestry (target population) could be best modelled as a combination of three
source populations, namely ANEs, WHGs and Neolithic Iranians (Iran_GanjDareh_N) as
Left (WHG, ANE, Iran_GanjDareh_N). We used a mixture of eight ancient and modern-day
populations: Ust Ishim, MA1, Kostenki14, Han, Papuan, Chukchi, Karitiana, Mbuti as the
‘Right’ outgroup populations (O8).

https://www.graphpad.com
https://www.graphpad.com
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3. Results
3.1. Genome-Wide Association Analyses (GWAS)

We compared the genomes of asymptomatic COVID-19 patients (N = 197) (controls)
with that those characterized by severe disease (N = 1492) (cases). Out of 600,569 SNVs
employed in GWAS, 621 and 615 SNVs (~0.1%) revealed significant variation (multiple-
testing corrected p-value < 0.001) between the asymptomatic and severe categories of SARS-
CoV-2 infected individuals in non-age-adjusted (Figure 3) and age-adjusted (Figure S2)
association analyses, respectively. Among the significant SNVs, 612 were common between
the age-adjusted and non-adjusted cohorts. Nine SNVs were uniquely present in the
non-age-adjusted cohort, while three were uniquely present in the age-adjusted cohort.
We annotated the 621 SNVs, identified in the non-age-adjusted cohort using SNPnexus
web-based server [28].
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Figure 3. Manhattan Plot summarizing GWAS results for the age-no-adjusted cohort. X-axis repre-
sents chromosomes (chr 1 to chr MT). SNVs present in the chromosomes are designated with dots.
Negative log-transformed (−log10) multiple-testing corrected p-values are plotted in Y-axis. 1492
COVID-19 patient genomes with severe symptoms were compared against 197 asymptomatic patient
genomes. Out of 600,569 SNVs employed, 621 SNVs markers revealed highly significant variation
between asymptomatic and severe cases. The SNVs with p-value < 0.00001 are indicated with the
blue line, and those with p-value < 0.0000001 are indicated with the red line.

Among the 621 appreciably distinct SNVs, 18 were found to be significantly associated
(p-value < 0.05) with host immune system-related pathways, discerned using ‘pathway’
analysis implemented in SNPnexus. Our results indicate that genetic variants involved
in pathways governing host immunity, such as innate and adaptive immune system,
interferon (IFN) signalling, interleukin (IL) signalling, antigen processing by major his-
tocompatibility complex (MHC) and cytokine signalling, showed significant variation
between asymptomatic and severe COVID-19 patients (Table S1). Pathway analysis identi-
fied two SNVs, rs1042994 and rs4364309, that are significantly (p-values < 0.01) associated
with modulating infectious diseases, hinting at likely differential cellular responses be-
tween asymptomatic and severe COVID-19 hosts to the viral onslaught. It further identified
rs9427097 in ADAR gene, associated with mRNA editing: A to I conversion and interferon
signalling. ADAR has been speculated to be associated with SARS-COV-2 infection [33].

Further, out of the 621 SNVs, 30 were found to be significant (p-value < 0.01) in ‘gwas’
implemented in SNPnexus. Among these five (rs12423247, rs7318817, rs2923084, rs17808461
and rs10077875) were associated with high body-fat related traits, such as phospholipid
levels in blood plasma, high levels of high-density lipoprotein (HDL), obesity-related traits
and higher BMI (Table S2). Further, significant SNVs include rs1006609, associated with
cardiovascular disorders, rs4337252, associated with lung function or forced vital capacity
(FVC), rs9649546, associated with mean corpuscular volume (MCV) that is, the average
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volume of red blood cells and white blood cell count, rs3809566, associated with platelet
count, and rs10045413, associated with smoking.

We did not identify any specific genomic loci showing significant variation between the
asymptomatic and severe COVID-19 patient categories (Figure 3). However, the maximum
number of significantly variable SNVs (N = 375, multiple-testing corrected p-value < 0.01)
were present on chromosome 10. Pathway analysis performed with these SNVs revealed
them to be associated with traits such as lipid metabolism (e.g., sphingolipid metabolism)
and plasma lipoprotein assembly, underscoring a putative association between obesity and
the severity of COVID-19 (Figure 4) that has been suggested previously [22].
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Finally, out of the three SNVs uniquely present in the age-adjusted cohort, rs8014123 is
associated with thyroid carcinoma (THCA), while rs10268928 in PTTG1IP2 Family member
2 (PTTG1IP2) is associated with hepatitis B virus infection (Table S2).

3.2. ADMIXTURE Analysis

The genomic ancestry of 12,743 individuals was estimated using the model-based clus-
tering algorithm ADMIXTURE v1.3 [29]. The optimum number of ancestral components
(K) was determined by minimizing the cross-validation error (CVE). The lowest CVE was
estimated for K = 17.

At K = 17, Ancient Hominins (K = 1), Papuans (K = 2), indigenous Native American
tribes (Native Americans, K = 3), East and Southeast Asians (K = 4), Sub-Saharan Africans
(K5) and Ngnasans (K = 9) were assigned to distinct clusters (Figure 5). Distinct clusters of
Northern Africans/Near Easterners (dominated by K6), Neolithic Iranians (K7) and South
Asians (K8) were also assigned. ADMIXTURE revealed at least six clusters comprised of
ancient and modern-day Europeans, namely ANE and EHG (K10), Northwest Europeans
(K11), WHG (K12), Eskimos (K13), Neolithic Anatolians (K14), and Bronze and Iron Age
Europeans (example, Bell Beaker and Corded ware) (Figure 5). The 2261 COVID-19 patients
of European descent with various degrees of disease presentations (asymptomatic, mild,
moderate and severe) depicted discernible genetic admixture among K3, K10, K11, K12
and K14 ancestry fractions (Figure 5).

ANOVA revealed two distinct groups among the COVID-19 patients: while asymp-
tomatic and mildly symptomatic individuals formed one cluster, the moderately and
severely symptomatic individuals grouped separately. Although only marginally signifi-
cant (One-way ANOVA, p-value = 0.06), moderately and severely symptomatic COVID-19
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patients revealed larger WHG (K12) ancestry fractions compared to the asymptomatic and
mildly symptomatic individuals, and the difference between mildly and moderately symp-
tomatic individuals was statistically significant (Tukey’s multiple comparison, adjusted
p-value = 0.04) (Figure 6A). Further, moderately and severely affected patients depicted
significantly larger (One-way ANOVA, p-value = 0.04) Neolithic Anatolian ancestry frac-
tions (K14) compared to the asymptomatic and mildly symptomatic patients (Figure 6B).
However, the pair-wise difference among the four groups was not significant, likely be-
cause of the high variation in the dataset (Coefficient of variation >25%). In contrast,
asymptomatic and mildly symptomatic individuals revealed significantly larger fractions
of Bronze and Iron Age European ancestry, i.e., Bell Beaker ancestry fractions (One-way
ANOVA, p-value = 0.01) and Northwest European ancestry (K11) (One-way ANOVA, p-
value = 0.03) compared to the moderately and severely affected subjects (Figure 6C,D). The
Bell Beaker ancestry fraction was significantly different between the mildly and severely
symptomatic patients (Tukey’s multiple comparison, adjusted p-value = 0.05).
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Figure 5. Admixture analysis of COVID-19 patients. Admixture plot showing the ancestry components of COVID-19
patients of European descent with known symptomatic status (N = 2261). Admixture proportions were generated through an
unsupervised admixture analysis at K = 17 using ADMIXTURE v1.3 and plotted in R v3.5.1. Each individual is represented
by a vertical line partitioned into coloured segments whose lengths are proportional to the contributions of the ancestral
components to the genome of the individual.

3.3. Multiple Regression

Multiple logistic regression analysis revealed highly significant association between
the male gender and the severity of COVID-19 (Odd’s Ratio = 1.78 (95% CI: 1.39–2.28),
|Z| = 4.6, p-value < 0.0001) and significant association between comorbidities and COVID-
19 severity (Odd’s Ratio = 1.36 (95% CI: 1.05–1.75), |Z| = 2.33, p-value = 0.02). However, we
found only marginally significant association between age and the acuteness of COVID-19
pathology (Odd’s Ratio [Age < 50] = 0.79 (95% CI: 0.62–1.02), |Z| = 1.79, p-value = 0.07).
While this might be attributed to the smaller sample size of asymptomatic versus severely
symptomatic patients, it could still be biologically meaningful. We did not find any
association between BMI and the severity of COVID-19 (Odd’s Ratio [BMI < 25] = 0.91 (95%
CI: 0.69–1.2), |Z| = 0.66, p-value = 0.51). We attribute the lack of association between BMI
and the severity of COVID-19 to the age and gender variation in the dataset, both of which
have previously been linked to BMI [34].
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Figure 6. Comparison of the major admixture components among COVID-19 patients of European descent. ANOVA,
followed by Tukey’s pair-wise comparison, was performed in GraphPad Prism v9, and p-value < 0.05 was considered
significant. (A) Comparison of WHG (K12) ancestry. Moderately symptomatic individuals contained the highest fraction of
the WHG component compared to the rest, closely followed by the severely symptomatic individuals. (B) Comparison of
Neolithic Anatolian ancestry (K14). The lowest fraction of Neolithic Anatolian ancestry component was present among the
genomes of mildly symptomatic individuals, followed by the asymptomatic people. (C) Comparison of Bell Beaker ancestry.
Higher fractions of Bell Beaker related ancestry were present among the genomes of mildly symptomatic and asymptomatic
individuals. (D) Comparison of Northwest European ancestry (K11). Asymptomatic and mildly symptomatic individuals
depicted higher fractions of Northwest European ancestry compared to the rest. p-value < 0.05 is designated by ‘*’.

Congruent with the ADMIXTURE results, our multiple linear regression models
revealed highly significant positive association between the severity of COVID-19 disease
presentation with Neolithic Anatolian ancestry fraction (t = 2.921, p-value = 0.004) and
highly significant negative association between the severity of COVID-19 presentation
with Bronze and Iron Age European ancestry, i.e., Bell Beaker (t = −2.839, p-value = 0.005)
and Northwest European ancestry fractions (t = −2.711, p-value = 0.006). However, the
association between WHG (t = 1.564, p-value = 0.11) ancestry fraction and the severity
of COVID-19 was found to be marginal. Overall, our results indicate that males with
higher fractions of Neolithic Anatolian and WHG ancestry and underlying comorbidities
have a significantly greater propensity towards developing severe COVID-19. In contrast,
females and individuals without comorbidities who possess higher fractions of Bell Beaker
and Northwest European ancestries have a discernibly lower predisposition towards
developing severe COVID-19.

3.4. Ancestry Proportions in the European Genomes Present in COVID-19 Patient Dataset

We modelled all Europeans present in the dataset as a combination of three source
populations, namely WHGs, ANEs and Neolithic Iranians, in qpAdm analysis (see Meth-
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ods). Among the 2261 COVID-19 patients of European descent, individuals with severe
symptoms contained the highest WHG ancestry proportions (24%) and the lowest ANE
ancestry fractions (27.1%) (Table 2). On the contrary, asymptomatic individuals were found
to have low WHG ancestry proportions (22.9%) and the highest ANE ancestry fractions
(28.9%) (Table 2). Interestingly, we found a clinal variation in the ancestry proportions of the
symptomatic individuals, such that patients with mild and moderate symptoms depicted
WHG (22.5% and 23.5%, respectively) and ANE (28.7% and 27.9%, respectively) ancestry
fractions intermediate between the asymptomatic individuals and acutely ill COVID-19
patients (Table 2).

Table 2. West European Hunter-Gatherers (WHGs), Ancestral North European (ANE) and Neolithic
Iranian ancestry fractions among COVID-19 patients of European descents.

Patient Category WHG Ancestry ANE Ancestry Neolithic Iranian Ancestry

Asymptomatic 22.9% 28.9% 48.2%
Mild 22.5% 28.7% 48.7%

Moderate 23.5% 27.9% 48.6%
Severe 24.0% 27.1% 48.9%

To assess the robustness of these results, we further modelled these Europeans as
a combination of three source populations, namely WHGs, EHGs and Neolithic Iranians,
as performed previously [32]. We found similar clinal variation in the ancestry proportions
of the symptomatic individuals, such that the patients with mild and moderate symptoms
depicted WHG (19.6% and 20.9% respectively) and EHG (22.2% and 21.5% respectively)
ancestry fractions intermediate between that of the asymptomatic (WHG: 20.4% and EHG:
22.2%) and severe COVID-19 patients (WHG: 21.5% and EHG: 21.0%) (Table 3).

Table 3. West European Hunter-Gatherers (WHGs), European Hunter-Gatherer (EHG) and Neolithic
Iranian ancestry fractions among COVID-19 patients of European descents.

Patient Category WHG Ancestry EHG Ancestry Neolithic Iranian Ancestry

Asymptomatic 20.4% 22.2% 57.4%
Mild 19.6% 22.2% 58.3%

Moderate 20.9% 21.5% 57.7%
Severe 21.5% 21.0% 57.5%

4. Discussion

Genetic variability contributes to the observed disparities in many diseases, includ-
ing those with complex environmental and socio-economic determinants. For example,
prostate cancer is the second most prevalent cancer diagnosis and the fifth most common
cause of death in men worldwide; however, it disproportionately affects men of African
ancestry [35]. Similarly, cardiovascular disease is a leading health problem worldwide,
but its risk is governed by individual and population-scale variation in rare/Mendelian
as well as common genomic regions [36,37]. SARS-CoV-2 infection causes extensive dis-
parities in clinical manifestation among affected patients. We employed GWAS using
the AncestryDNA COVID-19 genotyping dataset corresponding to individuals of Euro-
pean ancestry to identify novel genetic variants that were significantly distinct between
asymptomatic and severely affected COVID-19 patients. We identified 621 and 615 SNVs
that revealed significant variation (multiple-testing corrected p-value < 0.001) between the
asymptomatic and severely symptomatic patients in non-age-adjusted (Figure 3) and age-
adjusted (Figure S2) cohorts, respectively. Among the significant SNVs, 612 were common
between the two categories. We could map the 621 SNVs to 265 genes among which, the
highest number of genes (N = 11) were associated with heteromeric G-protein signalling
pathway, which has been linked to COVID-19 in several studies. Hameid et al. (2021)
recently argued that SARS-CoV-2 could alter signalling cascades either by activating the
G protein-coupled receptors (GPCRs) or by directly modulating G protein signalling [38].



Life 2021, 11, 921 12 of 16

Vascular inflammation, associated with COVID-19, has also been linked to GPCRs [39].
Further, G protein subunit alpha 15 (GNA15), one of the 11 genes discerned here, is associated
with G-protein signalling and has enhanced expression in immune cells according to The
Human Protein Atlas (http://www.proteinatlas.org, last accessed on 1 August 2021) [40]
and therefore might play a role in the progression of COVID-19. The second greatest
number of genes (N = 6) were found to be associated with the Wnt signalling pathway,
which has also been linked to the pathological progression of COVID-19 [41].

Consistent with the importance of the host immune system in combating coronavirus
infections [42], we discerned significant differences in genetic variants involved in IFN, IL
and cytokine signalling pathways between asymptomatic and severe COVID-19 patients
(Table S1). All of the above-mentioned immune response pathways have been previously
linked to COVID-19 [43]. Notably, the hyperproduction of proinflammatory cytokines, such
as IL-1 preferentially targeting lung tissue, has been linked to necessitating ICU admission
in COVID-19 patients [44]. We also identified several variants associated with obesity and
blood cholesterol traits (e.g., HDL). It is noteworthy that the HDL scavenger receptor B
type 1 (SR-B1) has been shown to facilitate SARS-CoV-2 cellular attachment, entry and
infection and HDL promotes viral infection [45], likely exacerbating COVID-19 pathologies.
Finally, obesity has emerged as one of the most important risk factors of COVID-19 [22,46]
and is thought to account for doubling the risk of hospitalization [22]. We would like to
emphasize here that while our findings indicate that there is a conserved set of SNVs which
are independently predictive of both severe COVID-19 symptoms and risk factors, such as
obesity, higher cholesterol level and habits such as smoking, these SNVs themselves might
not be causative of severe COVID-19 symptoms.

We note that we did not find any association of genetic variants in ABO, TYK2, DPP9,
IFNAR2, PPP1R15A, LZTFL1, and SLC6A20 loci with the severity of COVID-19 that were
reported previously [16,21–24]. This is likely attributable to the choice of individuals em-
ployed as controls in the present versus earlier GWAS. All previous association studies
recruited healthy individuals who had tested negative for COVID-19 by RT-PCR in the
control group or employed population controls. While such individuals did not have
COVID-19 at the time of their recruitment, the possibility of subsequent SARS-CoV-2
infection and its severity in them remains unknown. As a result, these groups of healthy
controls may still contain underlying genetic signatures that could make them susceptible
to severe COVID-19 if infected by SARS-CoV-2 at future time points. Hence, we argue
that these individuals are likely not suitable controls for predicting genetic variants asso-
ciated with severe COVID-19. In contrast, in the present study, we have considered the
asymptomatic COVID-19 patients as controls. The absence of perceptible known disease
symptoms among the asymptomatic COVID-19 subjects makes them more valuable as
controls as it is suggestive of their genetic make-up, potentially playing a crucial protective
role in them from severe disease outcomes.

Our findings demonstrated stark variances in host genetic factors between asymptomatic
and seriously affected SARS-CoV-2 infected patients of European ancestry, outlining differences
in key pathways governing host immunity and COVID-19 comorbidity attributes.

Our ADMIXTURE analysis revealed two distinct clusters among the COVID-19 pa-
tients: one composed of the asymptomatic and mildly symptomatic individuals and the
other comprising the moderately and severely symptomatic patients. We found that the
asymptomatic and mildly affected individuals have significantly larger fractions of Bronze
and Iron Age European and Northwest European ancestries (Figure 6C,D) and lower pro-
portions of WHG and Neolithic Anatolian related ancestry fractions (Figure 6A,B). These
results were supported by the linear regression analysis, where various European ancestry
fractions were modelled alongside demographic attributes, for example, age, gender and
physiological factors, such as BMI and other COVID-19 comorbidities. We discerned that
the Northwest European ancestry fractions were composed of ancient Viking genomes
from Sweden alongside modern-day Icelandic and British genomes. The Bronze and
Iron Age European ancestry fractions largely included the ancient European Bell Beaker

http://www.proteinatlas.org
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and Corded Ware genomes. The Bell Beaker culture spread across Western and Central
Europe from 2750–2500 BC to 2200–1800 BC. This expansion of the Beaker complex to
Western Europe introduced high levels of Steppe-related ancestry to the British Isles and
Western Europe [47]. The Bell Beaker culture was an off-shoot of the Corded Ware com-
plex that spread across Germany and surrounding countries ~5000 years ago and shared
material culture with Steppe groups such as Yamnaya herders [30]. Notably, both Bell
Beaker and Corded Ware genomes had a smaller proportion of indigenous WHG ancestry
fractions [47]. Consistent with these findings, our qpAdm analysis revealed discernibly
lower fractions of WHG related ancestry among asymptomatic and mildly symptomatic
individuals compared to COVID-19 patients with severe disease (Table 2A). The asymp-
tomatic individuals also revealed higher fractions of ANE related ancestry, which was
introduced to Central and Western Europe through the Yamnaya culture (Table 2A) [30].
Repeating the qpAdm analysis by replacing ANEs with EHGs, who derive ~75% of their
ancestry from the former [30], led to uncovering discernibly higher proportions of EHG
related ancestry among the asymptomatic individuals and its lowest fractions among the
seriously ill COVID-19 patients (Table 2B). Overall, our studies suggest that asymptomatic
and mildly symptomatic individuals derived significantly larger proportions of their an-
cestry from ANEs/EHGs, which was introduced to Europe through Bell Beaker culture
(Yamnaya related), the severely symptomatic COVID-19 patients possess significantly
larger fractions of WHG related ancestry. It is noteworthy that the variation in ancestry or
admixture fractions (~2%) between severely symptomatic and asymptomatic COVID-19
patients observed here is higher than that among several genetically heterogenous and
endogamous populations across highly genetically diverse countries, such as India [48]
and hence cannot be considered as minuscule.

The findings in the current study may have been influenced by the limited availability
of genetic data for COVID-19 patients. Among the SARS-CoV-2 infected cohort, we sub-
categorized patients as asymptomatic, mild, moderate or severe and the rest as unknown
based on a self-reported questionnaire. Since the aforesaid categories were delineated
solely based on the questionnaire, we cannot exclude the likelihood of miscategorization,
which might have influenced our results. Further, the unavailability of the genomic data for
COVID19 patients in the ICU or those who may have succumbed might cause some discrep-
ancies in the final outcomes of our study. Finally, we note that, as in the case of previous
association studies, our GWAS findings may not be exclusively ascribed to SARS-CoV-2
infections alone. However, we surmise that utilizing asymptomatic COVID-19 patients as
controls improves the probability of the genetic variants identified herein to being asso-
ciated with the degree of COVID-19 manifestation specifically, as these are significantly
different between the severely symptomatic and asymptomatic COVID-19 subjects.

Overall, our findings elucidate the striking genetic differences between asymptomatic
and severely affected patients infected with SARS-CoV-2 infection. Expanding this ap-
proach to include whole-genome sequencing data and increasing the power of analysis by
employing a large number of individuals in various categories of SARS-CoV-2 infection
severity accentuates the potency for uncovering novel genetic variants that may be associ-
ated with severe COVID-19 in future, thereby likely identifying cellular pathways that may
be targeted to develop or improve therapeutics. Further, using a population genetics driven
approach such as ours in diverse ancestries will provide the opportunity to interrogate
population and ancestry specific genetic factors that may govern susceptibility to severe
COVID-19 and may uncover clinically actionable and more efficacious population-specific
drug targets.

5. Conclusions

The current study shines a light on the striking differences in the genetic architecture
between asymptomatic and severely affected COVID-19 patients of European descent.
While asymptomatic individuals contain significantly larger ANE/EHG ancestral fractions,
patients with severe clinical manifestations possess dominant WHG fractions. Host path-
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ways governing immunity such as innate and adaptive immune system, IFN, IL, cytokine
pathways, antigen processing and SNVs related to comorbidity attributes, such as obesity-
related traits, cardiovascular disorders, lung function and smoking, were discerned to vary
significantly between severe and asymptomatic COVID-19 patients.
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