
Online Supplement to

Estimating real-time qPCR amplification efficiency from single-reaction data

by

Joel Tellinghuisen, Department of Chemistry, Vanderbilt University

Nashville, Tennessee, USA 37235

 I provide here (1) LRE/EG comparison results for the datasets from Guescini, et al. [17],

Lievens, et al. [19], and Karlen, et al. [16]; and (2) listings for short FORTRAN routines for the

E(n) and Carr-Moore recursion methods. Reference numbers are for citations in the paper.

 The Guescini results are shown in Figure S1. As in other cases, the EG results are

systematically low for n2 = SDM but do agree better for smaller n2. The LRE fits with ymax fitted

rather than frozen give an order-of-magnitude smaller S and sy
2
, leading to smaller individual fit

SEs and also to tighter grouping of the 12 replicate estimates at each concentration. Freezing

ymax at the last yi value makes little difference for the red points, as the plateaus are flat, giving

values close to the LL4-fitted ymax values. The LREC method was also run on these data, with

fixed ymax, giving E0 values close to the green points in Figure S1.

Figure S1. E estimates for data from

[17] from the EG method (blue) and E0

from LRE with ymax fitted (green) and

fixed (red) at the value from a fit of 21

points centered on the FDM to the LL4

model of Eq. (4). The dashed lines

represent the 1-σ error band on E from

the quadratic calibration fit in [15].

Displayed EG values are obtained fitting

to n2 = SDM−2 to SDM+1, LRE from

FDM−1 to FDM+1. Error bars are

ensemble SDs. (FDMs are approximately

16, 19, 23, 26, 30, 34, and 37; SDMs fall

about 2 cycles lower.)

 -2-

 Results for the Lievens data [19] are shown in Figure S2. The dependence of Cq on

log(N0) is not linear, so calibration-based estimates are shown for representative fits of

comparable statistical quality [15]. The point is to indicate that the standard approach yields only

rough estimates in this case — ~1.65 for the AE at low concentrations, rising to ~1.9 at high.

None of the SR methods gives estimates that track this increasing trend, with the “blue” LREs

being arguably the poorest and the “red” LREs the best. As in Figure S1, freezing ymax led to an

order-of-magnitude increase in the fit variances. (To limit display congestion, estimates for

multiple adjacent n2 values are shown at only one concentration for each of the SR methods.)

Figure S2. E estimates for data from

[19] from the EG method (triangles) and

E0 from LRE with ymax fitted (red) and

fixed (blue) as in Figure S1. Three

calibration-based E estimates from [15]

are included. The LRE E0s are

displayed at the FDMs — n
2
 = 26, 28,

31, 33, 36 — and the EG Es at the

SDMs (about 3 cycles smaller). Values

for additional n
2
 differing by ±1 are

shown for LRE at the 3
rd

 and 4
th

concentrations, with 4 adjacent n
2
 values

for EG at the 2
nd

 concentration.

Figure S3. E estimates for data from

[16] from the EG method (blue) and E0

from LRE with ymax fitted (red) and

fixed (black) as in Figure S1. The

quadratic calibration E error bands from

[15] are for two Cq markers, SDM (red)

and relative threshold Cr. The diplayed

LRE points are for n
2
 = FDM ± 1, and

the EG points are centered at n
2
 = SDM.

(FDM ns are approximately 25, 29, 32,

34, 37, and the SDMs ~2 cycles

smaller.)

 -3-

 Figure S3 displays results obtained for the data from Karlen, et al. [16]. Here again the

standard Cq calibration approach fails to produce definitive results, with the two illustrated E

error bands coming from quadratic fits of Cq vs. log(N0) for two different Cq markers. Allowing

for this uncertainty, this dataset is the single case among the six investigated here where the EG

estimates are better than the LRE, with the Es at SDM−1 in essential agreement for all

concentrations.

 I show below in Figures S4 and S5 the function routines used in the CM and E-recursion

programs. Although these are in the “prehistoric” FORTRAN language, the operations are easy

to follow, so easily translated to other programming languages. Unfortunately, I have not been

able to determine a way to make them work in the KaleidaGraph General routine. It appears

possible to implement them there through a manual iterative process; but given the very large

number of iterations I have often found necessary to achieve convergence, this would be

extremely tedious.

 DOUBLE PRECISION FUNCTION FUNC(N,C,NV,X,KK)

 IMPLICIT REAL*8(A-H,O-Z)

 DIMENSION C(N),X(900,6)

 NOVAR = NV

 T = X(KK,1)

 NCYC = T + .1

 DK = 10.**C(2)

 A = 10.**C(3)

 D2 = 10.**C(1)

 DO 10 I = 1,NCYC

 D1 = D2

 TERM = C(7) - D1*(1./A + 1./(DK+D1))

C TERM = 2. - D1*(1./A + 1./(DK+D1))

 IF (TERM.LT.0.0) TERM = -TERM

 D2 = D1*TERM

C D2 = D1*TERM*C(7)/2.

 10 CONTINUE

 BASE = C(4) - C(5)*EXP(-C(6)*T)

C BASE = C(4) + C(5)*T + C(6)*T*T

 CALC = D2 + BASE

 FUNC = CALC - X(KK,2)

 RETURN

 END

 Figure S4. FORTRAN FUNCTION routine for the CM program. The data are passed

through the X(I,J) variable, with J=1 for cycle number and J=2 for fluorescence signal.

This routine is called from the main program pointwise, with I=KK. The first three

adjustable parameters are the log10 values of the quantities appearing in Eq. (10) in the paper,

with C(1) being log10(y0). E0 is C(7). Loop 10 does the recursion, from cycle 1 to

X(KK,1). It is set for Mode a, but can be converted to Mode b by moving the

“commenting” Cs to the lines just preceding them. Similarly, the saturation BASE can be

converted to a quadratic baseline.

 -4-

 DOUBLE PRECISION FUNCTION FUNC(N,C,NV,X,KK)

 IMPLICIT REAL*8(A-H,O-Z)

 DIMENSION C(N),X(900,6)

 NOVAR = NV

 T = X(KK,1)

 ICT = T + .1

 D2 = 10.**C(1)

 BB = C(2)

 CC = C(3)

 DD = C(7)

 DO 10 I = 1,ICT

 XX = I

 EFF = 1.0 + DD/(1. + EXP(BB*(XX-CC)))

 D1 = D2

 D2 = D1*EFF

 10 CONTINUE

 BASE = C(4) - C(5)*EXP(-C(6)*T)

C BASE = C(4) + C(5)*T + C(6)*T*T

 CALC = D2 + BASE

 FUNC = CALC - X(KK,2)

 RETURN

 END

 Figure S5. FORTRAN FUNCTION routine for E(n) recursion. E(n) is defined by the

logistic function in Loop 10. Accordingly, E0 = DD+1. The routine is otherwise the same as

given in Figure S4.

