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 I provide here (1) LRE/EG comparison results for the datasets from Guescini, et al. [17], 

Lievens, et al. [19], and Karlen, et al. [16]; and (2) listings for short FORTRAN routines for the 

E(n) and Carr-Moore recursion methods.  Reference numbers are for citations in the paper. 

 The Guescini results are shown in Figure S1.  As in other cases, the EG results are 

systematically low for n2 = SDM but do agree better for smaller n2.  The LRE fits with ymax fitted 

rather than frozen give an order-of-magnitude smaller S and sy
2
, leading to smaller individual fit 

SEs and also to tighter grouping of the 12 replicate estimates at each concentration.  Freezing 

ymax at the last yi value makes little difference for the red points, as the plateaus are flat, giving 

values close to the LL4-fitted ymax values.  The LREC method was also run on these data, with 

fixed ymax, giving E0 values close to the green points in Figure S1. 

 

Figure S1.  E estimates for data from 

[17] from the EG method (blue) and E0 

from LRE with ymax fitted (green) and 

fixed (red) at the value from a fit of 21 

points centered on the FDM to the LL4 

model of Eq. (4).  The dashed lines 

represent the 1-σ error band on E from 

the quadratic calibration fit in [15].  

Displayed EG values are obtained fitting 

to n2 = SDM−2 to SDM+1, LRE from 

FDM−1 to FDM+1.  Error bars are 

ensemble SDs.  (FDMs are approximately 

16, 19, 23, 26, 30, 34, and 37; SDMs fall 

about 2 cycles lower.) 



 -2- 

 Results for the Lievens data [19] are shown in Figure S2.  The dependence of Cq on 

log(N0) is not linear, so calibration-based estimates are shown for representative fits of 

comparable statistical quality [15].  The point is to indicate that the standard approach yields only 

rough estimates in this case — ~1.65 for the AE at low concentrations, rising to ~1.9 at high.  

None of the SR methods gives estimates that track this increasing trend, with the “blue” LREs 

being arguably the poorest and the “red” LREs the best.  As in Figure S1, freezing ymax led to an 

order-of-magnitude increase in the fit variances.  (To limit display congestion, estimates for 

multiple adjacent n2 values are shown at only one concentration for each of the SR methods.) 

 

 
 

Figure S2.  E estimates for data from 

[19] from the EG method (triangles) and 

E0 from LRE with ymax fitted (red) and 

fixed (blue) as in Figure S1.  Three 

calibration-based E estimates from [15] 

are included.  The LRE E0s are 

displayed at the FDMs — n
2
 = 26, 28, 

31, 33, 36 — and the EG Es at the 

SDMs (about 3 cycles smaller).  Values 

for additional n
2
 differing by ±1 are 

shown for LRE at the 3
rd

 and 4
th

 

concentrations, with 4 adjacent n
2
 values 

for EG at the 2
nd

 concentration. 

Figure S3.  E estimates for data from 

[16] from the EG method (blue) and E0 

from LRE with ymax fitted (red) and 

fixed (black) as in Figure S1.  The 

quadratic calibration E error bands from 

[15] are for two Cq markers, SDM (red) 

and relative threshold Cr.  The diplayed 

LRE points are for n
2
 = FDM ± 1, and 

the EG points are centered at n
2
 = SDM.  

(FDM ns are approximately 25, 29, 32, 

34, 37, and the SDMs ~2 cycles 

smaller.) 
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 Figure S3 displays results obtained for the data from Karlen, et al. [16].  Here again the 

standard Cq calibration approach fails to produce definitive results, with the two illustrated E 

error bands coming from quadratic fits of Cq vs. log(N0) for two different Cq markers.  Allowing 

for this uncertainty, this dataset is the single case among the six investigated here where the EG 

estimates are better than the LRE, with the Es at SDM−1 in essential agreement for all 

concentrations. 

 I show below in Figures S4 and S5 the function routines used in the CM and E-recursion 

programs.  Although these are in the “prehistoric” FORTRAN language, the operations are easy 

to follow, so easily translated to other programming languages.  Unfortunately, I have not been 

able to determine a way to make them work in the KaleidaGraph General routine.  It appears 

possible to implement them there through a manual iterative process; but given the very large 

number of iterations I have often found necessary to achieve convergence, this would be 

extremely tedious. 
 

      DOUBLE PRECISION FUNCTION FUNC(N,C,NV,X,KK) 

      IMPLICIT REAL*8(A-H,O-Z)  

      DIMENSION  C(N),X(900,6) 

          NOVAR = NV 

          T = X(KK,1) 

          NCYC = T + .1 

          DK = 10.**C(2) 

          A = 10.**C(3) 

          D2 = 10.**C(1) 

      DO 10 I = 1,NCYC 

          D1 = D2 

          TERM = C(7) - D1*(1./A + 1./(DK+D1)) 

C          TERM = 2. - D1*(1./A + 1./(DK+D1)) 

        IF (TERM.LT.0.0) TERM = -TERM 

          D2 = D1*TERM 

C          D2 = D1*TERM*C(7)/2. 

   10 CONTINUE 

          BASE = C(4) - C(5)*EXP(-C(6)*T) 

C          BASE = C(4) + C(5)*T + C(6)*T*T 

          CALC = D2 + BASE 

      FUNC = CALC - X(KK,2) 

      RETURN  

      END  

 Figure S4.  FORTRAN FUNCTION routine for the CM program.  The data are passed 

through the X(I,J) variable, with J=1 for cycle number and J=2 for fluorescence signal.  

This routine is called from the main program pointwise, with I=KK.  The first three 

adjustable parameters are the log10 values of the quantities appearing in Eq. (10) in the paper, 

with C(1) being log10(y0).  E0 is C(7).  Loop 10 does the recursion, from cycle 1 to 

X(KK,1).  It is set for Mode a, but can be converted to Mode b by moving the 

“commenting” Cs to the lines just preceding them.  Similarly, the saturation BASE can be 

converted to a quadratic baseline. 
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      DOUBLE PRECISION FUNCTION FUNC(N,C,NV,X,KK)    

      IMPLICIT REAL*8(A-H,O-Z)  

      DIMENSION  C(N),X(900,6) 

          NOVAR = NV 

          T = X(KK,1) 

          ICT = T + .1 

          D2 = 10.**C(1) 

          BB = C(2) 

          CC = C(3) 

          DD = C(7) 

      DO 10 I = 1,ICT 

          XX = I 

          EFF = 1.0 + DD/(1. + EXP(BB*(XX-CC))) 

          D1 = D2 

          D2 = D1*EFF 

   10 CONTINUE 

          BASE = C(4) - C(5)*EXP(-C(6)*T) 

C          BASE = C(4) + C(5)*T + C(6)*T*T 

          CALC = D2 + BASE 

      FUNC = CALC - X(KK,2) 

      RETURN  

      END  

 Figure S5.  FORTRAN FUNCTION routine for E(n) recursion.  E(n) is defined by the 

logistic function in Loop 10.  Accordingly, E0 = DD+1.  The routine is otherwise the same as 

given in Figure S4. 

 


