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Abstract: Transposons are genomic elements that can relocate within a host genome using a ‘cut’-
or ‘copy-and-paste” mechanism. They make up a significant part of many genomes, serve as a
driving force for genome evolution, and are linked with Mendelian diseases and cancers. Interactions
between two specific retrotransposon types, autonomous (e.g., LINE1/L1) and nonautonomous
(e.g., Alu), may lead to fluctuations in the number of these transposons in the genome over multiple
cell generations. We developed and examined a simple model of retrotransposon dynamics under
conditions where transposon replication machinery competed for cellular resources: namely, free
ribosomes and available energy (i.e., ATP molecules). Such competition is likely to occur in stress
conditions that a malfunctioning cell may experience as a result of a malignant transformation. The
modeling revealed that the number of actively replicating LINE1 and Alu elements in a cell decreases
with the increasing competition for resources; however, stochastic effects interfere with this simple
trend. We stochastically simulated the transposon dynamics in a cell population and showed that
the population splits into pools with drastically different transposon behaviors. The early extinction
of active Alu elements resulted in a larger number of LINE1 copies occurring in the first pool, as
there was no competition between the two types of transposons in this pool. In the other pool, the
competition process remained and the number of L1 copies was kept small. As the level of available
resources reached a critical value, both types of dynamics demonstrated an increase in noise levels,
and both the period and the amplitude of predator-prey oscillations rose in one of the cell pools. We
hypothesized that the presented dynamical effects associated with the impact of the competition
for cellular resources inflicted on the dynamics of retrotransposable elements could be used as a
characteristic feature to assess a cell state, or to control the transposon activity.

Keywords: mobile genetic elements; retrotransposons; cellular resources; predator—prey model;
stochastic dynamics; Gillespie algorithm

1. Introduction

The ability of mobile genetic elements (transposons or jumping genes) to move
within a host genome makes them a powerful instrument to study and trace evolutionary
changes [1-3]. Approximately half of the human genome consists of transposable elements,
which were active during different periods of human evolution [4,5]. Apart from the
adaptive function utilized millions of years ago, the site-to-site movements of retroele-
ments within a host genome may perturb its integrity and lead to various genetic disorders
associated with a plethora of diseases [6,7]. To uncover the mechanisms involved in the
control of genomic rearrangements caused by the activity of transposons, it is important to
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understand the dynamical consequences of their relocations and their interactions with the
cellular environment.

There are two major classes of transposons, which differ by the mechanism used to
move within the host genome. DNA transposons utilize the ‘cut-and-paste’ mechanism,
excising themselves from the genome and inserting themselves into a different location [8].
Retrotransposons can copy themselves into new genomic locations, keeping their source se-
quences and thus exploiting the ‘copy-and-paste’ mechanism [2,9]. DNA transposon copies
currently present in the human genome are inactive, thus presenting fixed evidence of their
activity during the early primate evolution. Conversely, retrotransposable elements are
currently mobile in humans and are therefore of particular interest [4,5,10]. Thus, the type 1
long interspersed element (LINE-1, or L1) provides an excellent example of the autonomous
class, accounting for approximately 17% of the human genome [4,11]. Another difference
between the two types of mobile elements is the way in which transposons utilize cellular
molecular machinery for integration into the genome. Autonomous transposons encode
mRNA and the proteins needed for their transposition. Non-autonomous transposons do
not encode their own molecular machinery required for the integration into the genome,
but rather utilize the proteins encoded by the autonomous ones. A typical example of non-
autonomous retrotransposons is the Alu element, which belongs to a class of the so-called
short interspersed elements (SINEs) [12-14]. Alu, together with another non-autonomous
retrotransposable element—SVA—constitute about one-third of the human genome [2,4].

The dynamics of transposons in the genome is an attractive subject for mathemati-
cal modeling. One approach uses methods of population genetics to model the neutral
evolution and equilibrium distribution of transposons in a population [15,16]. In bacterial
genomes, the neutral evolution model adequately explains the dynamics of transposable
element abundance over large evolutionary scales, as transposons and their hosts tend to
maintain a dynamic equilibrium [17]. Other models use the genomic data and phylogenetic
trees to account for various selective forces affecting the long-term evolution of transpo-
son loads in eukaryotic genomes [18]. In addition to full-length copies of transposons,
there are truncated mobile elements, which may or may not utilize the transposition
machinery [19,20]. As non-autonomous transposons utilize the expression products of
autonomous elements for propagation and integration into genomes, predator—prey type
models appear as a good tool to describe a specific interaction between them [21-23].

Xue and Goldenfeld introduced a stochastic individual-level model and its determinis-
tic version to describe the dynamics of L1 and Alu, accounting for an interaction mechanism
between these elements [23]. Their model predicted the noise-induced oscillations of the
number of novel insertions of these transposons over several cell generations. Therefore,
we can regard the transposon abundance at any instance in time as the oscillator state
contained within a genome.

The potential deleterious effects induced by novel transposable-element insertions
are arguably negligible in healthy humans, due to the mechanisms restricting transposon
activity and ensuring low mobilization rates. Rough estimates for the transposition rate in
the human population range from 1 out of 20 live births for Alu, to 1 out of 20-200 births
for L1 [11]. However, these mechanisms may be significantly compromised in cancer. The
disease state ensues a rise in the number of novel insertions at which the transposon activity
becomes a dynamic variable in cancer genomes [7]. It may lead to genome size variations
induced by the stresses a host cell experiences in disease, which makes it important to
study the dynamical equilibrium between the host and the transposons in the context of
the bioenergetic balance of a cell [24,25]. Furthermore, during their lifecycle, transposable
elements may compete for the same pool of resources (energy, etc.) with other essential
cellular processes, which makes the cellular environment an important player in the
dynamics of retrotransposons. Here, we incorporate the competition for cellular resources
into a previously proposed simple predator—prey model of the stochastic dynamics of the
two autonomous and non-autonomous transposable elements, considering L1 and Alu
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as examples. Specifically, we show which dynamic effects may be expected when the
transposons compete for ribosomes and energy.

2. Methods
2.1. Basic Predator—Prey Model of Transposon Dynamics

We began with a previously published, simple predator-prey model, describing the
dynamics of L1 and Alu in a host genome, as represented by the following reactions [23]:

L — L+ Ry, withrate vg, (1a)

R;p — L, withrate by Ry, (1b)

Rp + S — 2S, withrate (bs/V)RLS, (1)
R; — @, withrate dgRy, (1d)

L — &, withrated;L, (le)

S — @, with rate dgS. (1f)

Here, L and S stand for the number of active L1 and Alu transposon copies, respec-
tively; Ry represents the number of protein complexes encoded by L1 and used by L and
S for integration into the genome; vy is the rate of Ry production as vg = brL in the basic
model; b; and d; are rate constants. Equation (1a) describes the production of R; from each
copy of active L1. R} consists of an endonuclease and reverse transcriptase; it binds the L1
mRNA from which it was translated and reverse-transcribed it into the genome. Therefore,
a new L copy arises in accordance with the reaction (1b). Alu mRNAs are also able to
bind to R} and to be retrotranscribed into the genome, as shown by reaction (1c), where V
denotes the cell volume. Equation (1d-f) describe the degradation of protein Ry and the
silencing of the active transposons by shifting them to the untranscribed chromatin, or by
other mechanisms.

Reactions (1) represent a stochastic version of the model in terms of copies of L, S,
and a number of molecules of R;. Applying a mean field approximation to the stochastic
model, the following deterministic version of the model can be obtained in the form of
ordinary differential equations, which describe the dynamics of the mean concentrations L,
S, and R;, [23]:

dL

E = bLRL — dLL, (2&1)
45 _ SR, — dsS, (2b)
dt

% =ovg — bRy — bsSR, — drRy, (20)

where vg = bgL in the basic model.

The competition between the L1 and Alu elements for protein complexes R} forms the
basis of the predator-prey dynamics in the model. Figure 1 shows characteristic solutions
of both the stochastic and deterministic models. The mean numbers of the aforementioned
transposable elements and protein complexes Ry converge to stationary values, which are
stationary attractors in the space of variables L, S, and R;. The predator—prey nature of
the deterministic model means that L, S, and R} converge to this attractor in the form of
damping oscillations. In mathematical terms, the eigenvalues of the Jacobian at the station-
ary state have non-zero imaginary parts in a linear stability analysis. Persistent stochastic
deviations from the stationary state permanently keep the system in these oscillations. In
contrast to the usual noise, these oscillations have a characteristic period encompassing
many cell generations, with the parameters being determined by the imaginary parts of the
eigenvalues [23]. Therefore, the minimal stochastic model (1) predicts the noise-induced
oscillations of retrotransposon abundance in the genome. In what follows, we modify vg
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and rate constants in this model to account for retrotransposon dynamics under conditions
of competition for ribosomes or energy.
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Figure 1. Dynamics of L, S, Ry, and their mean values in the basic model. The parameter values are
fixed as described in the Methods section. The stochastic dynamics were simulated with the Gillespie
algorithm [26] applied to the reaction set (1), whereas the dynamics of the means were calculated by
solving differential equations (Equation (2)). An approximate period of noise-induced oscillations
equals 27 generations [23].

2.2. Modification of the Model to Include Competition for Ribosomes

Reaction (1a) takes into account both the production of L1 mRNA, and its translation
into a protein. The rate vg = bg L (with constant bg) of this two-stage process implies a ho-
mogeneous influence from the cellular environment. To accommodate for the possible com-
petition for free ribosomes between L1 mRNAs and other cellular RNAs, we modified the
rate vg by temporarily introducing several new variables into the model: L1 mRNA (mL),
mRNA of all other genes (1mg), free ribosomes (E), mRNA-ribosome complexes (mLE and
mgE), and proteins translated from mq (R;). Figure 2 presents the production of L1 proteins
(Rp) and all other cellular proteins (R;) in terms of these variables.

kq ko
mL mLE——> R +mL+E
k-1
E A
ky f
mq qu—2>Rq+mq+E
k.
-1

Figure 2. Kinetic scheme representing the competition for free ribosomes E between L1 mRNAs (mL)
and all other translated RNAs in the cell ().

According to the scheme, the translation rate for protein Ry equals vg =k, mLE. We
found mLE as a stationary solution to the following set of dynamical equations for the
complexes shown in Figure 2:

dmLlE — jymL-E — (k_q + ko)mLE,
T = klmq-E - (k,1 + f{z)qu.
The stationary solution for mLE has the form:

mL

LE = Erop—"—,
" O K mL



Life 2021, 11, 1209

50f18

where Eyot = E + mLE + mgE is the total concentration of ribosomes, K; = (ky +k_1)/k1 ~ k_1/k;
is the equilibrium dissociation constant associated with the mLE complex formation,
cg=1+mgq/ Ky, K, = (lA{Z + 12_1) Jky ~ k_q1/k; is the equilibrium dissociation constant
for the mgE complex formation, and mgq in ¢ is assumed to be a stationary concentration of
all transcribed RNAs (other than transposon RNAs) in the cell.

Allowing a linear relationship between the numbers of L1 mRNAs and genomic copies
of transposons, we introduced a linear approximation constant ¢, (mL = cpL) and obtained
the final expression for the rate vy in the modified model:

L
OR = Vmaxm/ Vmax = k2Eot, (3a)
K
kr:Cle:d<1+”f‘7), (3b)
() Co Ky

where vpmax is the maximal translation rate for Ry, and k; is a constant representing the
strength of competition for ribosomes (‘competition parameter”’). We used this v as a new
reaction rate (see Equation (1a)) in the stochastic simulations. Likewise, when simulating
the dynamics of the mean concentrations, we used the new v in Equation (2c), but with L
replaced by L. We analyzed the influence of competition for ribosomes by simulating the
dynamics for various values of the competition parameter k;.

2.3. Modification of the Model to Include Competition for Energy

The competition of transposons for cellular energetic resources is acknowledged in
the model (1)-(2), by adding energy dependence into the rate constants by, by, and bg, in
accordance with the Michaelis-Menten kinetics. We introduced the dependence on a new
parameter e that quantified the available energy in the cell, expressed, for example, as the
amount of ATP molecules, as follows:

br = br ﬁ, (4a)

bp=b——, (4b)
int T €

ES = bs ¢ . (4C)
kint +e

Here, the additional parameters ki and ki stand for energy consumption of trans-
lation and transposon integration processes, respectively. We used the new constants b;
instead of b; in (1)—(2), and analyzed the influence of energy dependence by simulating the
dynamics in the model for various values of e. In this model, we ignored the competition
for ribosomes and thus set vg = ER L.

We also considered a mixed model, which combined both types of competition for
cellular resources, i.e., ribosomes and energy. In this model, we used v from (3) scaled by
e/ (ki + e) for the translation rate and (4b)—(4c) as the integration rate constants.

2.4. Parameter Values

We fixed the parameter values from the basic model according to ref. [23]: br = 2,
by =1,bs=1,dr=2,d;, =0.5,ds = 0.5, and V = 500. These values provided the characteristic
predator—prey dynamics of transposon replication and can be used as reference values for
further modifications.

To estimate vmax, we have:

Vmax = k2Etot,

where Eiqt is the total concentration of ribosomes, and k; is the translation rate constant.
Assuming the translation rate equals 5 amino acids (aa) per second (BNID 104598 [27])
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and length of L1 mRNA equals 2000 aa [28], we get the following translation speed per
one protein:
_ 5aa/sec

k2= 2000 aa
Taking the estimate Et = 50,000 ribosomes for E. coli (BNID 108600 [27]), we get:

= 0.0025 sec'.

Vmax = 0.0025 x 50,000 = 125 molecules per sec.

To translate seconds to cell generations, we estimated the generation turnover in E. coli
to be 20 min (BNID 103514 [27]). Finally, converting molecules to concentration units, we
divided by the chosen volume V = 500. This value can be considered as an estimate for the
E. coli volume in cubic microdecimeters (BNID 114925 [27]). Thus, we have:

lec. .
125 238 X 1200555 molec.

Vmax = =

500udm® pdm? x gen.

Given this value of vyax, we took the value k, = 149 as a reference for k, (‘normal
conditions’ in terms of the competition for ribosomes), since the modified model with such
vgr and k, provided the same dynamics as the basic model (Figure 1).

We chose parameters ki, and kit (e.g., ker = 0.2 and kin¢ = 3.2) to maintain the previously
reported ratio between the Michaelis-Menten parameters with respect to translation and
integration rates [29,30]. The specific values are not important, since the energy parameter
e has arbitrary units.

2.5. Stability Analysis

We calculated the stationary solutions of the models (Equation (2)), modified as
described above, and analyzed their linear stability against a range of values for the
competition parameter k;, and the energy level e. Stable stationary solutions attracted the
dynamical solutions, starting from various initial conditions. As S may have become zero
for some values of k; in the process of stochastic simulations, we also investigated the
stability of the stationary solutions for the following equations. These equations represent
the modified model (2) where the equation for S is excluded and S is set equal to zero in
the other equations:

% = bLRL — dLL, (53)

dR; L _ _
- = ——— —bjR; —drR;y. b
I Vmaxkr+L LRy —drRp, (5b)

2.6. Stochastic Simulation in Cell Population

To simulate the stochastic dynamics in the models we used the Gillespie algorithm [26].
We ran simulations 3000 times for the same parameter values and initial conditions and
interpreted the results as the stochastic dynamics in a population of 3000 cells. The initial
conditions in each cell were as follows: L = S = 250 copy numbers per cell, and R;, = 100
copy numbers per cell.

To minimize the influence of the initial conditions, we considered the first 100 genera-
tions in these simulations as a buffer period and only analyzed the dynamics afterwards.
Since L and S could drop to zero due to stochastic events, we excluded cells that lost both
active transposons in the buffer period from further analysis. Therefore, beyond the buffer
period, we observed a population of cells with at least one active transposon in each cell,
and defined the 101st generation as the first one of interest for further downstream analysis.
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We characterized the possible noise-induced deaths of either S or L during the stochas-
tic simulation in the population using the Kaplan—-Meier survival functions for L and S,

defined as follows [31]:
d.
F(i) = 1—— > 6
O=T1(1- ©

where d; is the number of ‘deaths’ of L or S (i.e., the number of cells where L or S became
zero) that occurred between cell generations i — 1 and i. #; 1 is the number of cells with
L or S that ‘survived’ (i.e., the number of cells with non-zero L or S) by generation i — 1.
The product in (6) was computed over all generations 7 in the stochastic simulation; this
survival function can be interpreted as the probability that active transposons (either L or S)
remained in the cell by ith generation at the given competition level.

3. Results
3.1. Model of Transposon Dynamics Under Competition for Free Ribosomes

The set of reactions (1) from the basic model by Xue and Goldenfeld are minimal
individual-level representations of the specific interaction between the autonomous (L1)
and non-autonomous (Alu) retrotransposons. The values of the corresponding rate con-
stants orchestrated the transcription and translation processes. Another simplification
concerns the fact that the numbers of copies of L1 (L), Alu (S), and the protein coded by L1
(Rp) stochastically evolved within the cellular environment that remained unperturbed. In
other words, the constant parameters represented and accumulated the joint influence of
both the other cellular processes and the molecular factors.

The competition for free ribosomes should effectively reduce the synthesis rate of Ry,
(vr = brL in the basic model), so we modified the model and derived a new form of this
rate (Equation (3) in the Methods section), which accounted for the influence from the other
RNAs in the cell under the assumption of a quasi-stationary approximation for the kinetic
scheme shown in Figure 2. The new parameter k; in the modified model stands for the
competition for free ribosomes between mRNAs encoded by L1 and other genes, by means
of four factors. According to (3b), a higher competition impact on transposons occurred
at higher values of k,, and this happened if (a) the number of competing non-transposon
RNAs was large, or (b) their affinity to ribosomes was high, or (c) the transcription rate for
L1 was small, or (d) the affinity of L1 mRNAs to ribosomes was low. The total number of L1
and the maximal translation rate were not associated with the competition for ribosomes,
but did have an impact on the translation rate for Ry .

We found a value of k, (k, = 149), for which the modified model with vz from
Equation (3) provided the same dynamics as the basic model in Figure 1. Therefore,
we regarded both the dynamics and the value of competition parameter k;, as standard
conditions, and investigated how the dynamics changed and what new effects appeared as
competition grew.

3.2. Stability Analysis Predicts Two Different Attractors for L1

There were three stationary solutions in the deterministic version of the modified
model at k, with values smaller than the value of k, = 199. Of these, only one solution
was stable (Figure 3). The stationary S of the only stable solution branch decreased as the
competition strength grew, whereas the stationary L remained insensitive to the parameter
within the aforementioned range of its values. At the first bifurcation point (k, = 199),
S dropped to zero and L started to decrease. At the second bifurcation point (k, = 200), the
stationary level of L decreased to zero as well, indicating that both transposons stopped
replicating, either at this level or at the higher levels of competition in the steady state.
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Figure 3. Stationary solutions for L and S (expressed as numbers of copies per cell) in the deterministic model (2)—(3), as

functions of the competition parameter k,. Red and green colors differentiate between linearly unstable and stable solutions,

respectively. The unstable branch S = 0 in the right panel corresponds to both unstable branches in the left panel.

This picture, however, only partially describes what happens in the stochastic system.
Since the stationary solution with zero S was unstable for k, < 199, it follows that, under
the propositions of the deterministic model and given these competition levels, the process
starting at any non-zero S could not reach a state with zero S. However, S became relatively
small close to the bifurcation point (Figure 3), and stochastic effects may have changed the
dynamics predicted by the deterministic solution. In particular, a stochastic simulation may
have encountered a series of degradation reactions in the case of Alu elements, resulting in
a state with S = 0 at some point in time. This situation corresponds to the state of absence
of active Alu retrotransposons in the genome and, consequently, to a stop in replication
for this particular transposon. The reduced deterministic model obtained by excluding
S from the equations (Equation (5) in Methods) describes the deterministic dynamics
corresponding to exactly this particular case.

Figure 4 shows the stationary solutions for L in the reduced model. In contrast to
Figure 3, the solution with non-zero L became stable at k, values less than 200. This
stationary solution attracted all dynamical solutions with zero S. Since the absence of S
effectively removed the constraints imposed on the dynamics of L, this attractor yielded
a higher level of L than the attractor presented as the green line in Figure 3. Therefore,
any noise-induced decrease of S to zero should result in the dynamical increase in L to
the higher mean levels. If, in a likewise fashion, L became zero due to noise effects or due
to high values of k; (see the bifurcation diagram in Figure 3), replication of both L and S
would stop in the cell, hence, the state L = S = 0 permanently sets in the cell.

50004 - i —— stable

i — unstable

4000+ | === bifurcation
3000 |
L ke :
2000 \\\\\\\\ !
10004 \\\\\\\i
0 ;

190 195 200 205

kr

Figure 4. Stationary solutions for L in the reduced deterministic model (5) as functions of the
competition parameter k;.
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Thus, the stability analysis revealed two possible stationary regimes for L1 trans-
posons, depending on whether Alus were present or extinguished in the cell, due to the
competition for ribosomes between L1 RNAs and other RNAs. The L1 copy number tended
over time towards a lower steady-state value if Alu was present, and to a higher steady-
state level otherwise. Within this picture, the cell also could be in a state characterized
by an intermediate L fitting between the two steady-state values. This happens when
Alu has only recently stopped replicating in this cell and the stationary limit has not yet
been reached.

3.3. Stochastic Effects in Transposon Dynamics Divide Cell Population into Pools of Cells with
Essentially Different Numbers of L1

We demonstrated the existence of two regimes for L1 by stochastically simulating the
transposon dynamics in a cell population, under various competition levels for ribosomes.
As k, approached the bifurcation value, cells in the simulation divided into three pools,
depending on the number or L1 and Alu elements. The first pool included cells with non-
zero S and L, in which the predator-prey dynamics continued. The second pool contained
cells in which L was non-zero and S became zero due to stochastic effects, i.e., no active
Alu elements. The third pool included cells with the state L = S = 0; the replication of
retrotransposons stopped completely. The pool sizes depended on k; and simulation time.

To visualize how the pools evolved, we calculated the Kaplan—-Meier survival functions
of L and S in the cell population, which can be interpreted as the probability that the active
transposons (either L or S) remained in the cell by the ith cell generation at the given
competition level (Figure 5). The survival dynamics showed that cells with non-zero S
disappeared rapidly with time. The sharp drop happened long before the bifurcation
value of the competition parameter. Remarkably, the L1 elements remained active in these
cells. The number of cells with non-zero L started to decrease with time only when the
competition strength came close to the bifurcation value.

0.2

0.0

1.04

0.8

k,.=176 | kr=190
— L
— S
kr=196 | kr=200
100 200 300 400 500 600 O 100 200 300 400 500 600
Generations

Figure 5. Dynamics of the survival function from (6) for L (blue) and S (red) and various values of the competition parameter

ky, calculated from a stochastic simulation of transposon replication in a population of 3000 cells. The survival function of S

shows the proportion of cells belonging to the first pool, and the difference between survival functions of L and S indicates

the proportion of cells from the second pool.
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It is noteworthy that the two stationary solutions with non-zero L, described above,
acted as two quasi-attractors in the stochastic model of the cell population, each in its pool of
cells. The stable solution from Figure 3 governs the dynamics in cells with non-zero S (first
pool), whereas the solution from Figure 4 corresponds to the cells with zero S (second pool).
To find out which attractor was dominant in the cells depending on the different levels of
competition for ribosomes, we calculated the distributions of the time-averaged L in the
population for various competition levels (Figure 6). These distributions demonstrated a
qualitative difference. In the case of competition levels far from the bifurcation value of k,
(kr = 176 in Figure 6), S remained non-zero for the majority of cells (i.e., these cells belong to
the first pool), with L being close to the stationary value obtained from the predator-prey
dynamics. However, the fluctuations in the value of S in a small number of cells led to the
inactivation of the Alu elements. Thus, a small portion of the population formed the second
pool of cells, characterized by a larger stationary L. For stronger competition (k, = 190
in Figure 6), the aforementioned pool dominated the cells, and thus the second attractor
became the main mode in the distribution. The long tail of the distribution encompassed
the cells with the intermediate dynamics of growing average L. If k, increased further
(ky = 196 in Figure 6), an essential number of cells lost both L and S and, consequently,
very few cells appeared in the second pool. Finally, at the second bifurcation value of the
competition parameter (k, = 200), the stationary attractor took zero value for both L and S.
This meant that only a few cells with active transposons showed intermediate fluctuations
in their number, which eventually subsided.

2000+
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o
I

k, =176

4000 6000 8000 10000 12000

1000 2000 3000 4000 5000 6000

300+

Number of cells

250+
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Figure 6. Distribution of L over cells with active transposons (cells with non-zero L) in the population of 3000 cells, for

various values of the competition parameter. The histograms show values of L averaged over 300 generations in the

stochastic simulation. Vertical dashed lines show the stable stationary solutions predicted by the full deterministic model

(left line) and reduced one (right line); for k, = 200, both solutions give L = 0 (see Figures 3 and 4).

Figure 6 shows how an increase in the competition parameter qualitatively changes the
distribution of L in a cell population, from bimodal to various skewed forms of unimodal.
These distributions bear the imprint of different transposon dynamics in different pools of
cells, such as the dynamics governed by distinct attractors for L. These distinct attractors
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can be captured in stochastic simulations by averaging L and S in different pools of cells
(Figure 7). The noise-induced disappearance of S started approximately at k, > 150, and
cells with the larger L started to form the second pool.

25,000 i —— L (first pool)
| L (second pool)
1
l —— 5 (first pool
e« 20,000 ! ,( poal)
@ H ---- bifurcation
.g_ :
O 15,000 i
— 1
o i
p— 1
2 10,0001 :
e 1
3 i
< 5000 :
1
i
0 !
50 100 150 200 250 300

Figure 7. The number of retrotransposon copies, averaged over 600 generations of stochastic sim-
ulation in a population of 3000 cells, as a function of the competition parameter. The curves are
interpolations between the values obtained from calculations. The straight line in the curve for L in
the second pool corresponds to the stable stationary solution shown in Figure 4. The other part of
this curve represents cells with the intermediate dynamics of L. The curves for L and S in the first
pool correspond to the stable stationary solution presented in Figure 3.

3.4. Rising Competition for Ribosomes Affects Noise Levels and Oscillation Parameters of L and S

The L1 and Alu copy numbers demonstrated noise-induced oscillations with a specific
amplitude and period under normal conditions (Figure 1). We can also use the ratio of
the standard deviation to the mean to characterize the noise level of stochastic systems.
We found that all these parameters significantly changed as the competition for ribosomes
grew. The noise in the numbers of L1 and Alu increased in all pools of cells with the growth
of the competition parameter. This effect was most pronounced for S in the first pool
and L in the second pool (Figure 8). The oscillation parameters of L and S demonstrated
qualitatively different behavior (Figure 9); the oscillation amplitude of S decreased as the
competition rose. This tendency corresponded to a decreasing average S. At the same
time, oscillations of L demonstrated a local increase in the amplitude preceding the critical
value of the competition parameter (Figure 9a). The oscillation period increased for both
transposons, as the competition parameter approached the critical value (Figure 9b).

! .
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Figure 8. Coefficient of variation of L and S (ratio of the standard deviation to the mean) calculated
over 600 generations of stochastic simulation in a population of 3000 cells and averaged in different
pools, for various values of the competition parameter.
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Figure 9. Characteristic parameters of noise-induced predator-prey oscillations of L and S for various values of the
competition parameter. (a) Time-averaged amplitudes of L and S oscillations in the cells from the first pool estimated from
the stochastic simulation in a population of 3000 cells. The amplitude is the difference between the maximum and minimum
of L or S found in a frame length of 100 generations and repeated by moving the frame with 10-generation increments
within the 600-generation interval. (b) Period of the predator-prey oscillations in the first pool.

3.5. Transposon Dynamics under Competition for Energy

We investigated the competition for energy in the new version of the model by
varying ¢ in the new rate constants from (4) and neglecting the competition for ribosomes.
Smaller levels of e correspond to lower energy resources in the cell and, therefore, a higher
competition level. The stability analysis in the deterministic model showed that there was
only one stable stationary solution, which varied with e very slowly and decreased sharply
if, and only if, e was close to the bifurcation value (Figure 10a). For e smaller than the
bifurcation value (e = 7.3), no transposon replication was possible. Similar to the case of
competition for ribosomes, the period of noise-induced fluctuations in the predator-prey
dynamics of L and S increased as the energy became less accessible (Figure 10b). The
stochastic simulations showed that the average amplitude of the L oscillations also grew
when approaching the bifurcation level. Therefore, the competition for energy led to
qualitatively similar effects in the transposon dynamics as were observed in the case of
competition for ribosomes.
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Figure 10. Energy dependence of stationary solutions and oscillation period. (a) Stable stationary solution for various
values of the energy parameter (e, arbitrary units). (b) Period of noise-induced predator-prey oscillations of L and S for

various values of the energy parameter.

We also investigated the mixed model, which combined both types of competition for
cellular resources (ribosomes and energy). The overall behavior of the mixed model was
qualitatively similar to those described above; however, the described effects were shifted
to smaller values of the competition parameter k;, as the parameter e decreased. Figure 11
illustrates this fact, as the critical value of k;, that delimits the existence of the non-zero
stationary solution in the deterministic model, slowly decreases with the decreasing e.
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Figure 11. Stability of different stationary solutions in the space of parameters kr and e. Light blue shows stable zones, and
dark blue shows unstable zones for (a) the non-zero stationary solution from Figure 3 and (b) the zero stationary solution.

4. Discussion

We investigated a simple model that simulated the predator-prey dynamics of trans-
poson replication under demanding conditions: competing with the other cellular pro-
cesses for ribosomes and energy. Our results clearly indicated that the replication dynam-
ics acquired several characteristic properties when the competition reached substantial
levels (Figure 12). Firstly, noise-induced (i.e., by stochastic fluctuations in the system)
deactivation of Alu elements became possible, which triggered an increase in L1 num-
bers (Figure 12b). Secondly, the cell population demonstrated a bimodal distribution of
L1 elements; this distribution significantly changed with the increasing competition, as
(a) noise-induced inactivation of both transposons occurred in a larger number of cells and,
(b) more cells manifested the intermediate dynamics switching between the two possible
L1 levels (Figure 12c). Third, L1 and Alu copy numbers became noisier in the population,
that is, the retrotransposon abundance in the host genome varied more significantly across
cells and time (Figure 12d). Fourth, the noise-induced predator-prey oscillations decreased
in amplitude for Alu elements, but increased for L1 retrotransposons, whereas the period
of these oscillations slowly increased with the competition strength for both types of trans-
posons (Figure 12e). Finally, the replication process completely stopped at a critical level
of competition.

The competition for cellular resources between different cellular agents may be con-
sidered in the context of bioenergetic costs spent on basic internal processes [24,25,29,32].
These costs are subject to the evolutionary tuning of cellular processes leading to their
homeostasis. Various stressful conditions, such as diseases, alter gene expression, metabolic
and signaling pathways and can lead to the redistribution of resources [33]. A change in
the bioenergetic balance associated with this shift from homeostasis may result in various
unexpected intracellular phenomena, which may be harmful to the organism or, on the
contrary, may bring new adaptive opportunities. All the dynamical features of transposon
replication described in our work can be considered as dynamical markers for possible
stress conditions in a cell population.
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Figure 12. Summary of the results obtained in the study. (a) When there is no competition for
cellular resources within the cell, the previously published predator—prey model predicts the noise-
induced oscillations of L and S in the genome, with specific amplitude A and period T. Solid arrows
label the production path of Ry and its usage as reverse transcriptase, whereas the dashed arrows
designate that Alu competes with L1 for this molecule to insert into genome [23]. Stochastic effects in
transposon dynamics if L1 and Alu compete for cellular resources: (b) Under pressure of competition
for resources, Alu elements may become inactivated, leading to larger L1 abundance. Ly, time-
averaged L in the absence of competition for resources. (c¢) Competition for resources transforms the
population distribution of L, and a bimodal distribution appears at some competition levels because
of the effect from (b). (d) The L1 and Alu copy numbers become more variable as approaching the
complete inactivation. (e) Competition for resources transforms the amplitude A and period T of the

predator—prey oscillations exhibited by the L1 and Alu copy numbers.
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A malignant transformation may induce various stress conditions associated with an
increasing competition for energy. Cancer cells shift their metabolism to the conditions of
limited energy (Warburg effect), so we may expect the reshaped energy demands to affect
both transcription and translation [33-35]. This expectation correlates with the results of
multiple studies showing that cells can be very sensitive to the instant energy levels and
initiate cell death programs if these levels are low [36-38]. Even a moderate (three-fold)
drop in ATP concentrations may lead to apoptosis or necrosis [38]. This renders it plausible
that transposons compete with other cellular agents for the decreasing ATP pool of cancer
cells, especially given the higher rates of transposon insertion in cancer [6,7]. In this case,
we can consider the stochastic effects described in our study as a novel manifestation
of existing cancer hallmarks; however, whether this competition is real in the case of
retrotransposable elements undoubtedly requires solid experimental verification.

Our results, observed in the case of competition for ribosomes, complement other stud-
ies that consider the finite pool of available ribosomes as a rate-limiting factor [39-41]. Such
competition induces cooperative behavior between different types of mRNA molecules,
as modifications in the translation rates of a specific mRNA molecule yield a change in
the translation rates of all other mRNA molecules [39]. A combination of modeling and
experiments have revealed evidence for similar ties between the production rates of pro-
teins, without an apparent regulatory path between them, thus providing evidence of
competition for translational resources [40]. Other models describe the balance between
the burden that a composition of the transcript pool exerts on the translation machinery
and the ribosomal supply [41]. We presume that the increase in the noise of L1 and Alu
numbers reported in our study may also affect the pool of other transcripts in the cell,
through interactions mediated by the competition for the pool of free ribosomes.

Interestingly, viruses are another factor that can promote cell transformation associated
with the type of stress that activates or enhances competition for resources. After infection,
the viral mRNAs compete with the host for ribosomes and eukaryotic initiation factors,
recruiting ribosomes to viral and cellular mRNAs [42,43]. For example, the virulence
factor SARS-CoV-2 NSP1 competes with RNAs for binding the 40S ribosome subunit, thus
inhibiting the protein synthesis in human cells [44]. We may expect the higher competition
level experienced in infected cells to launch the dynamical effects that we have reported
for transposons.

Our results provide good reason to speculate on the possibility of detecting a cell in a
stress state, using a high level of internal competition for resources as a marker, manifested
by measured numbers (or ratios) of L1 and Alu elements in the genome. From this point of
view, all effects presented in Figure 12 are hypothetically detectable, if we count L and S
in the data obtained by the bulk sequencing of cells. We can infer the dynamics of all the
parameters from these estimates, and make conclusions if the transposons participate in
the competition.

The results presented here are purely theoretical, as our computational experiment
aimed to find and investigate the details of potential mechanisms associated with an
increase in the competition for resources. In particular, we fixed most of the parameter
values associated with retrotransposon replication from previous works [23], with our
main purpose being to reproduce the predicted predator—prey dynamics, and estimate
the remainder, considering various numbers reported for the processes involved [27].
This limits the interpretation of the results and their relation to specific organisms or
cell types, based on their homeostatic parameters. However, as mentioned above, the
results may facilitate situations in which specific values of replication parameters are
transient [7,45]. Therefore, it is important to characterize the theoretical possibilities
allowed by the nonlinear nature of the replication dynamics, and our results should be
informative in this context.

The presented model describes the transposon replication process in an individual
cell, but some of the reported effects are best exhibited and quantified in a population
of cells. This is a consequence of the stochastic nature of these effects, such as the noise-
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induced extinction of active Alu or L1, which happens with a certain probability. The
predator-prey dynamics of these transposons is primarily a stochastic feature of each cell
in the population [23]. Therefore, by introducing the competition for cellular resources into
the model, we translated the stochastic effects from the level of individual cells to the level
of cell populations. In this respect, our modeling approach connects the single cell and
population-level models of transposon activity [20]. In the future, we hope to incorporate
more details into the model and explore the biologically plausible dynamical scenarios for
specific organisms or cell types.

The model can be generalized by extending the number of ‘players’, as well as
by including other types of competition for resources, thus opening future intriguing
research avenues.

Specifically, L1 can compete for the protein machinery essential for propagation not
only with Alu, but also with another non-autonomous retrotransposon SVA [46]. This
introduces a second ‘predator’ (S) into the model, which participates in the noise-induced
oscillations. Naturally, the long-term behavior of these oscillations generally depends on
the parameter values. In our case, a small difference in the insertion rate constants of the
two non-autonomous retrotransposons resulted in the eventual inactivation of one of them
(Figure 13). The model can be extended further by accounting for the competitive binding
of Sand S, to R;.

7004 . Stochastic: == | S wfp S5
k Deterministic: — em [ S S,
600
5004

4004

300

Number of copies
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1004

0 50 100 150 200 250
Generation

Figure 13. The same dynamics as presented in Figure 1, but for a model with one additional predator
S;. This model has additional reactions and equation for S, in (1)—(2), which coincide with the
reactions and equation for S. We assume that S, has the same parameters as S, except bgy = 0.98*bg. In
case bg < bsy, S asymptotically vanishes and S, remains as the only predator (not shown). Dynamics
of R; is not shown.

Some mRNAs utilize the enzymatic activity of L1 to reverse transcribe into DNA,
and in the process generate genomic copies called processed pseudogenes. This biological
phenomenon creates further questions and offers further opportunities for model extension,
as some processed pseudogenes are a byproduct of LINE1 mobilization [47,48]. Accounting
for these events under the active competition between L1 transcripts and non-transposon
mRNAs for ribosomes will ensue, accounting for pseudogene-related mRNAs separately
from other non-transposon mRNAs. The latter competes with L1 transcripts only for
ribosomes, whereas the former plays the additional role of the second predator (analog of
S, described above), thus participating in two types of competition simultaneously.

The environment, including various internal resources, is of paramount importance
for upkeeping the homeostatic state of the cell. This study sought answers to the questions
that remain to be addressed in focused wet lab experiments, concerning the understudied
details of the interplay between genomic parasites and other cellular processes consuming
energy and resources. In their absence, our models facilitate the development of new
approaches for the evaluation of cell states in normal conditions and in disease.
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