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the results presented in the manuscript. In particular, the following sections focus on (i)

the mathematical model explicitly accounting for the limited availability of shared cellular
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S1 Mathematical model

In this section, we introduce the mechanistic model underpinning our results, explicitly

accounting for the limited availability of shared cellular resources [1], together with the time-

scale separation based model order reduction leading to the dynamics of the toggle switch

included in the manuscript. In particular, we first consider the expression of a single protein

with a constitutive promoter, then generalize this setup to the case of multiple proteins with

inducible promoters to derive the model of the toggle switch [2] in case of scarce resources.

Finally, leveraging this model incorporating competition for shared resources, we illustrate

the coupling between the toggle switch and its context represented by a repressilator module

[3], leading to the results in Figure 1 of the manuscript.

2



S1.1 Dynamics of protein expression with shared resources

Consider first the expression of protein x from a constitutive promoter.

Transcription of mRNA m is modeled as

b+ p
κ+

−⇀↽−
κ−

c, c
γTX

−−→ b+ p+m,

whereas translation of protein x is governed by the reactions

m+ r
k+−⇀↽−
k−

d, d
γTL

−−→ m+ r + x,

together with the decay/degradation of both mRNA and protein according to

m
δTX

−−→ ∅, d
δTX

−−→ ∅, x
δTL

−−→ ∅,

where the parameters and species are described in Table S1.

Therefore, the expression of protein x is governed by the dynamics

ċ =
!
κ+bp− κ−c

"
− γTXc,

ṁ =γTXc−
!
k+mr − k−d

"
+ γTLd− δTXm,

ḋ =
!
k+mr − k−d

"
− γTLd− δTXd,

ẋ =γTLd− δTLx,

(S1)

together with the constraints

D = b+ c, pT = p+ c, rT = r + d, (S2)

due to the conserved nature of DNA, RNAP and ribosome, where D, pT , and rT denote the

total concentration of DNA, RNAP, and ribosomes, respectively.

3



Table S1: Microscopic biophysical parameters and species governing protein expression

Parameter Description
x protein concentration
p concentration of free RNAP
r concentration of free ribosome
b promoter not bound with RNAP
c promoter bound with RNAP
m mRNA not bound with ribosome
d mRNA bound with ribosome

γTX transcriptional production rate constant
γTL translational production rate constant
δTX transcriptional decay rate constant
δTL translational decay rate constant
κ+ RNAP binding rate constant
κ− RNAP unbinding rate constant
k+ ribosome binding rate constant
k− ribosome unbinding rate constant
D total concentration of DNA
pT total concentration of RNAP
rT total concentration of ribosome

Next, introduce the dissociation constants

κ =
κ− + γTX

κ+
, k =

k− + γTL + δTX

k+
,

and note that binding and unbinding reactions are much faster than production/decay events,

i.e., γTX ≪ κ− and γTL, δTX ≪ k− [4], yielding κ ≈ κ−/κ+ and k = k−/k+. Considering

the quasi-steady state approximation of the dynamics in (S1) then yields

c = D
p
κ

1 + p
κ

, d =
mr

k
, m =

γTX

δTX

c

1 + r
k

,

hence with the conservation laws for pT and rT from (S2) we obtain

pT = p+D
p
κ

1 + p
κ

, rT = r +
γTX

δTX

D
p
κ

1+ p
κ

r
k

1 + r
k

.
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Finally, since p ≪ κ and r ≪ k typically (see section B3 of [1] for more details) we have that

ẋ =
α

1 + β
− δTLx (S3)

with

α =
γTXγTLDpT rT

δTXκk
, β =

D

κ

#
1 +

γTX

δTX

pT
k

$
. (S4)

Therefore, considering the dynamics in (S3), the lumped parameter α captures the max-

imal expression rate of x, whereas its effective rate is given by α/(1 + β). This effective

rate increases, for instance, only sublinearly with the DNA copy number D, therefore, the

denominator via the lumped parameter β captures the effect of resource sequestration as-

sociated with the expression of x (e.g., doubling D causes an increase of less than 100% in

protein concentration at the steady state).

Similarly, in case of multiple proteins xi for i = 1, . . . , N with inducible promoters, the

expression in (S3) modifies according to

ẋi =
αiεi

1 +
%N

j=1 βjεj
− δTLxi, (S5)

where αj and βj are defined as in (S4), and the activation levels εi can depend on x1, . . . , xN

(for more details, see Section B in the SI of [5]).

S1.2 Dynamics of the toggle switch with scarce resources

In case of the toggle switch with proteins y and z and dissociation constants Ky and Kz to

the promoter of z and y, respectively, the promoter activation levels are

εy = ν +
1

1 + z2

K2
z

, εz = ν +
1

1 + y2

K2
y

,
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where ν ≥ 0 represents the leakiness of the promoters. With this, from (S5) it follows that

ẏ =
αyεy

1 + βyεy + βzεz + βc

− δTLy, ż =
αzεz

1 + βyεy + βzεz + βc

− δTLz,

where βc =
%

j βjεj denotes the burden due to the expression other than y and z (i.e., the

genetic context of the toggle switch). Therefore, with the rescalings y ← y/Ky, z ← z/Kz,

αy ← αy/Ky, αz ← αz/Kz, and t ← δTLt we obtain the de-dimensionalized dynamics

ẏ =
αy

!
ν + 1

1+z2

"

1 + βy

!
ν + 1

1+z2

"
+ βz

&
ν + 1

1+y2

'
+ βc

− y,

ż =
αz

&
ν + 1

1+y2

'

1 + βy

!
ν + 1

1+z2

"
+ βz

&
ν + 1

1+y2

'
+ βc

− z.

(S6)

In the manuscript, we focus on the symmetric realization of the toggle switch: i.e., α = αy =

αz and β = βy = βz, but a similar approach can be followed to study the effects of parameter

asymmetry [6, 7]. In Sections S2–S4 we assume that βc = 0 as effects of loading from the

context are considered in Section S5.

S1.3 Toggle switch together with the repressilator

In case of the repressilator [3] with proteins xi for i = 1, 2, 3 and corresponding dissociation

constant Ki to the respective promoters, the activation levels are

ε1 =
1

1 +
x2
3

K2
3

, ε2 =
1

1 +
x2
1

K2
1

, ε3 =
1

1 +
x2
2

K2
2

.

Therefore, with the lumped parameters αi and βi defined in (S4), and with the rescalings

xi ← xi/Ki, αi ← αi/Ki, and t ← δTLt from (S5) it follows that the dynamics of the
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repressilator are given by

ẋ1 =

α1

1+xn
3

1 + β2

1+xn
1
+ β3

1+xn
2
+ β1

1+xn
3
+ β′

c

− x1,

ẋ2 =

α2

1+xn
1

1 + β2

1+xn
1
+ β3

1+xn
2
+ β1

1+xn
3
+ β′

c

− x2,

ẋ3 =

α3

1+xn
2

1 + β2

1+xn
1
+ β3

1+xn
2
+ β1

1+xn
3
+ β′

c

− x3,

(S7)

where β′
c denotes the loading due to the expression other than xi for i = 1, 2, 3. In particular,

when the toggle switch and the repressilator proteins are co-expressed, representing each

other’s context, we have that

βc =
β2

1 + xn
1

+
β3

1 + xn
2

+
β1

1 + xn
3

, β′
c = β

#
2ν +

1

1 + z2
+

1

1 + y2

$
,

thus coupling together (S6) and (S7) due to the scarcity of shared cellular resources, leading

to the data presented in Figure 1 of the manuscript.

S2 Stability analysis

Here we provide the details of the stability analysis of the toggle switch accounting for both

resource competition and promoter leakiness via β and ν, respectively. We first focus on the

case when both these factors are neglected, followed by the analysis when their effects are

analyzed separately, and finally, we consider their combined impact.

S2.1 Resource competition and promoter leakiness are neglected

When resource competition and promoter leakiness are both neglected (β = ν = 0), the

dynamics of the toggle switch simplify to

ẏ = f0(y, z), ż = f0(z, y), f0(v, w) =
α

1 + w2
− v, (S8)
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yielding bistability when α > 2 and monostability otherwise [2]. To facilitate the compre-

hension of later results, here we briefly summarize the main steps to achieve this result.

Number of fixed points From (S8) we obtain that α = z(1 + y2) = y(1 + z2), hence we

have that z2 − z (y + 1/y) + 1 = 0, leading to the constraint

z =

#
y +

1

y

$
±

(#
y +

1

y

$2

− 4

2
=

#
y +

1

y

$
±

#
y − 1

y

$

2
.

Given that it is not possible to have y = 0 or z = 0 at an equilibrium of (S8), we obtain

that we must have either z = y or z = 1/y at fixed points of (S8). In the former case when

z = y, we obtain from (S8) that z3 + z − α = 0 with a negative discriminant, yielding one

real positive solution and a pair of complex conjugates. Conversely, in the latter case when

z = 1/y, from (S8) it follows that we must satisfy z3 − αz2 + z = 0 at an equilibrium. Since

z ∕= 0, this leads to z2 − αz + 1 = 0 with its solutions given by z = (α ±
√
α2 − 4)/2, thus

(S8) has one positive fixed point if α < 2 and three if α > 2, as illustrated in Figure S1.

Stability of fixed points Stability can be determined using nullcline analysis, for in-

stance, as detailed in Section 5.3 of [4]. In particular, from (S8) it follows that

∂f0(y, z)

∂y
< 0,

∂f0(y, z)

∂z
< 0,

∂f0(z, y)

∂y
< 0,

∂f0(z, y)

∂z
< 0,

and at the equilibria denoted by circles in Figure S1 we have

dz
dy

))))
f0(y,z)=0

<
dz
dy

))))
f0(z,y)=0

< 0,
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Figure S1: The stability profile of (S8) depends on the value of α. (A) The dynamics are
monostable when α < 2 as the nullclines 0 = f0(y, z) and 0 = f0(z, y) intersect only once
(grey circle). (B) Once α > 2, the nullclines intersect three times, rendering the dynamics
bistable as the intersections denoted by red and green circles give rise to stable fixed points.

Combining these with the implicit function theorem yields that

0 >
∂f0(y, z)

∂y
+

∂f0(z, y)

∂z
,

0 <
∂f0(y, z)

∂y

∂f0(z, y)

∂z
− ∂f0(y, z)

∂z

∂f0(z, y)

∂y
,

that is, the trace and determinant of the Jacobian of (S8) are negative and positive, re-

spectively, at the fixed points denoted by circles in Figure S1. Hence, the corresponding

equilibria are stable and hyperbolic. Instability of the third fixed point in Figure S1B can

be shown similarly.
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S2.2 Effects of resource competition

Once resource competition is accounted for (β > 0), but promoter leakiness is still neglected

(ν = 0), the dynamics of the toggle switch from (S6) become

ẏ =
α

1+z2

1 + β
1+z2

+ β
1+z2

− y, ż =

α
1+y2

1 + β
1+z2

+ β
1+z2

− z. (S9)

As it was originally shown in [8], the above dynamics are bistable if q < 1 with

q =
2(1 + β)

α
,

and monostable otherwise.

S2.3 Effects of promoter leakiness

When promoter leakiness is taken into account (ν > 0) but resource competition is neglected

(β = 0), from (S6) the dynamics are given by

ẏ = α

#
ν +

1

1 + z2

$
− y, ż = α

#
ν +

1

1 + y2

$
− z, (S10)

which is bistable if (α, ν) lies below the curve (αw(w), νw(w) in the (α, ν)-plane where

αw(w) =
(1 + w2)

2

2w
, νw(w) =

w2 − 1

(1 + w2)2
, w ≥ 1. (S11)

To show this, note that y = 0 or z = 0 is not possible at an equilibrium of (S10), thus we

must have y(ν + 1
1+y2

) = z(ν + 1
1+z2

), yielding

(y − z)
!
νy2z2 + νy2 + νz2 − yz + ν + 1

"
= 0.
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Furthermore, at an equilibrium of (S10) we also have αν = y − α
1+z2

= z − α
1+y2

, yielding

(y − z)
*!
1 + y2

" !
1 + z2

"
− α (y + z)

+
= 0. (S12)

Therefore, at an equilibrium of (S10) we either have y = z or (y, z) must satisfy

0 =
!
1 + y2

" !
1 + z2

"
− α (y + z) , (S13)

0 = νy2z2 + νy2 + νz2 − yz + ν + 1. (S14)

In the former case when y = z, from (S10) it follows that y = α(ν + 1
1+y2

), where the

right-hand side and left-hand side are monotonically increasing and decreasing, respectively.

Combining this with the fact that the right-hand side exceeds the left-hand side when y = 0,

we conclude that (S10) has a single positive fixed point when y = z.

In the latter case, the pair (y, z) must satisfy both (S13) and (S14). As the former

only depends on α, whereas the latter is only affected by ν, the effects of α and ν can

be studied independently (Figure S2). Focusing first on the constraint (S13), it has two

intersections with the y = z line. Let (w′, w′) denote the one farther from the origin (red

dot in Figure S2A). Next, considering the constraint (S14), define its intersections with the

y = z line as w− < w+, depicted in green and purple in Figure S2B, respectively, given by

w+,− =
,

1− 2ν ±
√
1− 8ν/(2ν). Therefore, w− → 1 and w+ → ∞ for ν → 0; at ν = 0.125

we obtain that w− = w+ =
√
3; and for greater values of ν the points w− and w+ become

imaginary. Furthermore, from (S14) it follows that for a given value of w, the corresponding

value of α is given by αw(w) from (S11), depicted in Figure S2C. Similarly, from (S13) we

obtain that when y = z = w, the corresponding value of ν is given by νw(w) from (S11),

depicted in Figure S2D. Therefore, considering the curves in Figure S2A and Figure S2B,

for a particular (α, ν) pair the curves intersect exactly twice if w− < w < w+. Thus, for a

given α, we can determine the corresponding value of w′ (Figure S2C), hence the value of

ν according to (S11). This value defines the critical threshold for leakiness, as exceeding it
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causes the condition w− < w < w+ to be violated (Figure S2D), eliminating the existence of

solutions satisfying (S13)–(S14).

Summarizing the above,: the constraints (S13) and (S14) intersect exactly twice if and

only if (α, ν) lies below the curve (αw(w), νw(w)) defined in (S11). Combining this with the

fact that (S10) has exactly one fixed point such that y = z, we conclude that the above

Figure S2: Promoter leakiness shapes the stability profile of the toggle switch via the con-
straints (S13) and (S14). (A) Pairs of (y, z) satisfying (S14) for different values of α (α = 3,
α = 10, and α = 100, respectively, the red arrow denotes the direction in which α increases).
(B) Pairs of (y, z) satisfying (S13) for different values of ν (ν = 0.005, ν = 0.05, and ν = 0.1,
respectively, the green and purple arrows denote the direction in which ν increases). (C)
Intersection of (S13) with the y = z line, denoted by the red dot in panel A. (D) Intersection
of (S14) with the y = z line, denoted by the green/purple dots in panel B.
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condition also guarantees the existence of three fixed points, otherwise there is only one.

Stability of the fixed points can be concluded as in the previous section, eventually leading

to the following: (S10) is bistable if (α, ν) lies below the curve (αw(w), νw(w)) defined in

(S11), otherwise it is monostable, as summarized in Figure 2B of the manuscript.

S2.4 Effects of resource competition and promoter leakiness

Once both resource competition and promoter leakiness are considered (β, ν > 0), the dy-

namics of the toggle switch become

ẏ =
α
!
ν + 1

1+z2

"

1 + β
&
2ν + 1

1+z2
+ 1

1+y2

' − y, ż =
α
&
ν + 1

1+y2

'

1 + β
&
2ν + 1

1+z2
+ 1

1+y2

' − z. (S15)

As it is not possible to have y = 0 or z = 0 at an equilibrium of (S15), in what follows

we assume that y, z > 0. To establish the stability profile of (S15), first note that at an

equilibrium we have

αν =y

-
1 + β

#
2ν +

1

1 + z2
+

1

1 + y2

$.
− α

1 + z2
,

αν =z

-
1 + β

#
2ν +

1

1 + z2
+

1

1 + y2

$.
− α

1 + y2
,

yielding

(y − z)

-
1 + β

#
2ν +

1

1 + z2
+

1

1 + y2

$.
− α

#
1

1 + z2
− 1

1 + y2

$
= 0,

which can be rewritten as

(y − z)
*
(1 + 2βν)

!
1 + y2

" !
1 + z2

"
+ β

!
2 + y2 + z2

"
− α (y + z)

+
= 0. (S16)
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Second, from (S15) it also follows that at an equilibrium we have

α

1 + β
&
2ν + 1

1+z2
+ 1

1+y2

' =
y

ν + 1
1+z2

,
α

1 + β
&
2ν + 1

1+z2
+ 1

1+y2

' =
z

ν + 1
1+y2

,

yielding y(ν + 1
1+y2

) = z(ν + 1
1+z2

), which can be rewritten as

(y − z)
!
νy2z2 + νy2 + νz2 − yz + ν + 1

"
= 0. (S17)

Considering (S16)–(S17), there are two cases: when y = z > 0 and when y ∕= z. In the

former case, at a fixed point of (S15) we have that

y =
α
&
ν + 1

1+y2

'

1 + 2β
&
ν + 1

1+y2

' , (S18)

where the left-hand side is monotonically increasing with y, and conversely, the right-hand

side is decreasing. Since the latter exceeds the former when y = 0, we conclude that (S18)

has a single positive root, hence (S15) has a unique positive fixed point when y = z.

Next, we focus on the case when y ∕= z. Since 1 + 2βν > 0, it follows from (S16)–(S17)

that fixed points of (S15) must satisfy

0 =νy2z2 + νy2 + νz2 − yz + ν + 1, (S19)

0 =
!
1 + y2

" !
1 + z2

"
+ β̃

!
2 + y2 + z2

"
− α̃ (y + z) , (S20)

with α̃ = α/(1 + 2βν) and β̃ = β/(1 + 2βν). Therefore, the stability profile of (S15) is

determined by the number of intersections that (S19)–(S20) have. The case of ν = 0 has

been studied in Section S2.2, and since (S19) has no real solutions for ν > 0.125, here

we focus on the case when 0 < ν < 0.125. Within this range, numerical analysis reveals

that (S19)–(S20) have either zero, two, or four intersections (apart from degenerate cases).

Nullcline analysis similar to the one presented in Section S2.1 further uncovers that these
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Figure S3: The stability profiles are computed numerically for 1,000,000 samples from the
range (α, β) ∈ [0, 1000] × [0, 100] for all values of ν. In all cases, the Pearson correlation
coefficient is R2 > 0.99 for the linear fit αai(ν)− β + bi(ν) = 0 to estimate ai(ν) and bi(ν).

correspond to monostable, bistable, and tristable dynamics, respectively. Importantly, the

regions in which (S19)–(S20) have zero, two, or four intersections are separated by linear

constraints given by qi(ν) = 1 with

qi(ν) =
β − bi(ν)

αai(ν)
i = 1, 2, 3,

where ai(ν) and bi(ν) depend on ν, as detailed in Figure S3. In particular, we have that

(S15) is (i) monostable if q1 > 1 or max(q2, q3) < 1; (ii) bistable if q1 < 1 < q2; and (iii)

tristable if q2 < 1 < q3, as illustrated in Figure 3 in the main text. Therefore, by studying

how the constraints are affected by ν (Figure S4), we can reveal how the interplay among α,

β, and ν shape the stability profile of (S15).
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Figure S4: The constraint q1(ν) = 1 rotates clockwise with ν, while q2(ν) = 1 and q3(ν) = 1
both rotate counter-clockwise. Thus, the bistable region between q1(ν) = 1 and q2(ν) = 1
shrinks as ν increases. Red, green, and purple correspond to ν = 0.02, ν = 0.07, and
ν = 0.12, respectively.
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S3 Robustness analysis

Having uncovered how the stability profile of (S15) is shaped by the interplay among α, β,

and ν, here we characterize their effect on the robustness of the metastable fixed points to

noise. To this end, we first calculate the potential barrier separating them as it is inversely

proportional to the average time it takes for trajectories to cross from one to another [9].

According to the definition of V (y, z) and hi in Section 2.3 of the manuscript, for each

metastable fixed point [9, 10]:

1. determine the number and location of fixed points, and classify them as stable/unstable

(as detailed in Section S2);

2. create a set S of initial conditions in the range (y, z) ∈ [α,α] (e.g., uniform 2D grid),

simulate the system trajectories for the initial points in S, compute the potential

decrease along them according to its definition in Section 2.3 of the manuscript, and

partition the endpoints of these trajectories into as many clusters as the number of

stable fixed points (e.g., using k-means clustering in MATLAB);

3. for each region of convergence, determine the potential of the initial points by assigning

the same potential to the endpoints (stable fixed point), then adjust the potentials in

each region of convergence so that trajectories starting nearby (at the edges of the

regions of convergence) have the same potential;

4. calculate the potential barriers according the definition of hi in Section 2.3 of the

manuscript.

With this, we next present numerical simulation results regarding the potential barriers

that separate the metastable fixed points of (S15). To this end, let x1 and x2 denote the

metastable fixed points in the bistable case, whereas x3 corresponds to the third equilibrium

appearing once the dynamics become tristable, so that h1 = h2 and h3 denote the potential

barriers required for leaving the former two and the latter, respectively. In Figure S5 we
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illustrate how the potential barriers h1 = h2 depend on α and β in the region of bistability

(i.e., when q1(ν) < 1 and q2(ν) > 1, see Section S2.4) for different values of ν in the range of

multistability (i.e., 0 < ν < 0.125). Importantly, the optimal value β∗ of β maximizing the

potential barriers h1 = h2 increases linearly with α for a given value of ν and this constraint

rotates counter-clockwise with increasing ν, as illustrated in Figure S6.

Figure S5: In case of bistability, the potential barriers h1 = h2 decrease with ν. Colors
indicate the value of h1 = h2.
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Figure S6: The potential barriers h1 = h2 are maximized in the middle region between the
constraints q1(ν) = 1 and q2(ν) = 1 (Figure S5), and the relationship between α and β at
these points is captured by a linear constraint with the displayed slope and bias. The linear
fit was obtained for the data presented in Figure S5 using the built-in MATLAB function
fitlm, yielding models with Pearson correlation coefficient R2 > 0.99.

This reveals, for instance, that while increasing β in the bistable region eventually pushes

the dynamics towards monostability, it can also be used to compensate for the adverse

effects of ν and increase robustness to noise, illustrated in Figure S7. In particular, as

greater promoter leakiness decreases robustness to noise in the bistable region (Figure S5),

increasing β can be leveraged to mitigate this effect.
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Figure S7: Increasing β can compensate for greater promoter leakiness. Simulation param-
eters are α = 100, together with β = 6 and β = 8 for red/green and purple, respectively.
Gray area denotes the region where the dynamics are bistable.
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Finally, as illustrated in Figure S8, in the tristable region (q2(ν) < 1 and q3(ν) > 1

from Section S2.4) robustness of the middle stable fixed point is dominated by that of the

other two near the region of bistability, and this relationship is reversed near the region of

monostability.

Figure S8: Relative height of the potential barriers h1 = h2 and h3 in case of tristability.
Colors indicate the value of log10(h3/h1) = log10(h3/h2). The potential barriers h1 = h2

dominate h3 near the region of bistability (q1(ν) = 1, top border) and vice versa near the
region of monostability (q3(ν) = 1, bottom border).
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S4 Population-level stability and robustness properties

Considering the results of the preceding two sections, the population-level stability and

robustness properties of (S15) are governed by the random variables

Q =
2(1 + β)

α
, Qi =

β − bi(ν)

αai(ν)
, i = 1, 2, 3, (S21)

where X = (α, β) ∼ N (µ,Σ) is considered to be a bivariate normal random variable with

µ =

/

01
µα

µβ

2

34 , Σ =

5

67
σ2
α ρσασβ

ρσασβ σ2
β

8

9: , (S22)

as introduced in the manuscript. Therefore, in what follows we calculate the (approximate)

distribution of random variables of the form

W =
AX +B

CX +D
, (S23)

where X is a bivariate normal random variable with A,C ∈ R2 and B,D ∈ R. Leveraging

this, we next reveal how ν together with parameters in (S22) shape the population-level

properties of (S15) in the presence of cell-to-cell heterogeneity [11].

S4.1 Distribution of the ratio of normal random variables

Although the distribution of W in (S23) could be approximated by that of a normal random

variable [12, 13], this approximation is only accurate in a narrow parameter region. To obtain

a more general approximation of the distribution of W revealing the role of the entries in µ

and Σ, we next consider the result of Hinkley [14] and Geary [15] in a more general format,

originally presented in [16]. In particular, let X ∼ N (µ,Σ) where µ ∈ RN and Σ ∈ RN×N .
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Introduce A,C ∈ RN and B,D ∈ R, together with

F (w) = Φ

#
w − µW (w)

σW (w)

$
(S24)

where Φ(·) is the cumulative density function of the standard normal distribution and

µW =
Aµ+B

Cµ+D
, σW (w) =

(
A− Cw

Cµ+D
Σ
A⊤ − C⊤w

Cµ+D
.

With this, the cumulative density function of W from (S23) can be approximated [16] as

|P(W < w)− F (w)| ≤ Φ

#
− Cµ+D√

CΣC⊤

$
. (S25)

S4.2 Approximate distribution of Q and Qi

Considering (S24) together with the notation of Section S4.1, in case of the random variable

Q in (S21) we have A = [0 2], B = 2, C = [1 0], and D = 0, yielding

P(Q < q) ≈ F (q) = Φ

#
q − µQ

σQ(q)

$
, (S26)

µQ =
2(1 + µβ)

µα

, σQ(q) =

;
q2σ2

α + 4σ2
β − 4qρσασβ

µα

. (S27)

Similarly, for Qi from (S21) we have that Ai = [0 1], Bi = −bi(ν), Ci = [αi(ν) 0], and

Di = 0, resulting in

P(Qi < qi) ≈ Fi(qi) = Φ

#
q − µi

σi(q)

$
, (S28)

µi =
µβ − bi(ν)

µαai(ν)
, σi(qi) =

;
q2 [ai(ν)σα]

2 − 2ρqi [ai(ν)σα] σβ + σ2
β

ai(ν)µα

. (S29)
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S4.3 Population-level composition

To characterize the population-level composition, let pmono, pbi and ptri denote the frac-

tion of the population with monostable, bistable, and tristable stability profile, respectively.

Alternatively, these quantities measure the probability of a given realization lying in the

corresponding stability region in Figure 3 of the manuscript. As earlier, we assume that the

probability of α and β taking on negative values is negligible. Furthermore, to simplify the

notation, we denote by σq and σi the value of σq(1) and σi(1), respectively.

The probability pmono comprises two components: let p′mono and p′′mono denote the prob-

abilities of lying in the monostable regions on the upper left and lower right corners in in

Figure 3 of the manuscript, respectively, so that the probability of monostability is given by

pmono = p′mono + p′′mono. From Figure 3 it follows that p′mono = P(Q1 > 1), hence from (S28)

we obtain that

p′mono = P(Q1 > 1) ≈ 1− Φ

#
1− µ1

σ1

$
,

and since p′mono+ pbi = P(Q2 > 1) from Figure 3 in the manuscript, we also have from (S28)

that the fraction of the population that is bistable is given by

pbi = P(Q2 > 1)−P(Q1 > 1) ≈ Φ

#
1− µ1

σ1

$
− Φ

#
1− µ2

σ2

$
. (S30)

To compute p′′mono, let ᾱ denote the value of α where the constraints q2(ν) = q3(ν) = 1

intersect (at the tip of the tristable region in Figure 3 of the manuscript), given by ᾱ(ν) =

[b2(ν)−b3(ν)]/[a3(ν)−a2(ν)]. With this, we have that p′′mono = P(Q2 < 1,α < ᾱ(ν))+P(Q3 <

1,α > ᾱ(ν)). Regarding the first term, we obtain

P(Q2 < 1,α < ᾱ(ν)) =

< ᾱ(ν)

−∞
P(Q2 < 1,α = α′)dα′

=

< ᾱ(ν)

−∞
P(Q2 < 1|α = α′)P(α = α′)dα′

=

< ᾱ(ν)

−∞
P(β < a2(ν)α

′ + b2(ν)|α = α′)P(α = α′)dα′,
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and from the marginal probability of multivariate normal random variables we further have

P(β < a2(ν)α
′ + b2(ν)|α = α′) = Φ

#
a2(ν)α

′ + b2(ν)− µ′

σ′

$

with µ′ = µβ + ρ (α′ − µα) σβ/σα and σ′ =
,

1− ρ2σβ, and since P(α = α′) = φ(α
′−µα

σα
), we

obtain that

P(Q2 < 1,α < ᾱ(ν)) =

< ᾱ(ν)

−∞
Φ

#
a2(ν)α

′ + b2(ν)− µ′

σ′

$
φ

#
α′ − µα

σα

$
dα′,

P(Q3 < 1,α > ᾱ(ν)) =

< ∞

ᾱ(ν)

Φ

#
a3(ν)α

′ + b3(ν)− µ′

σ′

$
φ

#
α′ − µα

σα

$
dα′,

eventually yielding

pmono =

< ᾱ(ν)

−∞
Φ

#
a2(ν)α

′ + b2(ν)− µ′

σ′

$
φ

#
α′ − µα

σα

$
dα′ + 1

+

< ∞

ᾱ(ν)

Φ

#
a3(ν)α

′ + b3(ν)− µ′

σ′

$
φ

#
α′ − µα

σα

$
dα′ − Φ

#
1− µ1

σ1

$
.

(S31)

Finally, since 1 = pmono+ pbi+ ptri we obtain that that tristable fraction of the population is

given by ptri = 1− pmono− pbi where pmono and pbi are given in (S30) and (S31), respectively.

Considering that the bistable region shrinks as ν increases (Figure S4D), we expect pbi

to decrease with ν, confirmed in Figure 6A in the manuscript. Additionally, our results also

reveal that while increasing µβ when ν = 0 always increases the probability of monostability

(thus pushing the population towards unimodality), this is not necessarily true when ν > 0.

As illustrated in Figure 6B in the manuscript, with more details presented in Figure S9, while

the unwanted middle peak (corresponding to y ≈ z at the steady state) can be eliminated

by increasing µβ in the green/purple cases in Figure S9, this choice is exactly the opposite

of the required strategy in the red case in Figure S9.
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Figure S9: The composition of the population depends on the position of the pdf of (α, β)
with respect to the regions uncovered in Figure 3 of the manuscript. (A) Increasing µβ

can shift the population away from bistability (red, illustrated in panel B) or towards it
(green and purple, illustrated in panels C and D, respectively). (B) Increasing µβ renders
the population unimodal, whereas decreasing it gives rise to bimodality (µα = 60, light:
µβ = 21, dark: µβ = 24, grey: µβ = 18). (C) Increasing µβ renders the population bimodal
(µα = 60, light: µβ = 3.5, dark: µβ = 8). (D) Increasing µβ renders the population bimodal
(µα = 150, light: µβ = 20, dark: µβ = 30). Simulation parameters: ρ = 0.75, σα = µα/5,
σβ = µβ/5 in all panels.

S5 Context effects

Considering the rescaling α ← α/(1 + βc) and β ← β/(1 + βc), the dynamics in (S15) get

transformed as if we had βc = 0. Therefore, all results in the previous sections are readily

applicable by simply applying the above rescaling.

For instance, in the absence of promoter leakiness (ν = 0), the value of q = 2(1 + β)/α
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Figure S10: Loading from the context can cause transitions between stability profiles. (A)
Without loading from the context (green, βc = 0), the toggle switch lies in the bistable
region (α = 50, β = 15, ν = 0.03), but once loading arises in the context (red, βc = 10), the
dynamics shift into the monostable region. (B) Without loading from the context (green,
βc = 0), the toggle switch lies in the monostable region (α = 150, β = 4, ν = 0.03), but once
loading arises in the context (red, βc = 2), the dynamics shift into the bistable region.

increases with βc as q = 2(1 + β
1+βc

)( α
1+βc

)−1 = 2(1+β)
α

(1 + βc

1+β
). Additionally, the critical

value of βc pushing the dynamics from bistability to monostability (i.e., q = 1) is given by

β′
c = α

2
− (1 + β) = (1 + β)(q−1 − 1). From these two expressions it follows that greater

values of β protect against unwanted effects of loading from the context [8] (as illustrated

in Figure 7B in the manuscript). Similarly, in the presence of promoter leakiness (ν > 0),

loading from the context changes the value of qi(ν) via the rescaling α ← α/(1 + βc) and

β ← β/(1+βc), thus altering the stability profile of (S15). As a result, not only can bistable

systems become monostable (Figure S10A), but the opposite is also possible (Figure S10B).

Population-level results presented in the previous section can be similarly extended for

βc > 0 by considering the values of Q and Qi for i = 1, 2, 3 from (S21) via the rescaling

α ← α/(1+βc) and β ← β/(1+βc), yielding the changes µα ← µα/(1+βc), µβ ← µβ/(1+βc),

σα ← σα/(1+βc), and σβ ← σβ/(1+βc). With the corresponding modified values of µQ, σQ,

µi, and σi from (S27) and (S29) the results of Section S4.3 are applicable even in the presence

of loading from the context, so that we can study the population-level composition of (S15).

In addition to obtaining the results presented in Figure 7A of the manuscript (with additional

details provided in Figure S11), we can also reveal that simply by increasing loading from the
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Figure S11: Detailed simulation data corresponding to Figure 7A in the manuscript. The
histograms represent the distribution of y − z in the steady state, obtained by generating
10,000 random samples with the following parameters: ν = 0.03, σα = µα/5, σβ = µβ/5,
σc = µc/5, ρ = ρ1 = ρ2 = 0.75, and (µα, µβ, µc) = (10, 1, 0) for light red, (µα, µβ, µc) =
(10, 1, 3) for dark red, (µα, µβ, µc) = (20, 2, 0) for light green, (µα, µβ, µc) = (20, 2, 3) for dark
green, (µα, µβ, µc) = (150, 5, 0) for light purple, (µα, µβ, µc) = (150, 5, 15) for dark purple.

the context the dynamics can go through a sequence of unimodal-trimodal-bimodal-unimodal

transitions (Figure S12).

Finally, the above results can be generalized to the case when βc is also a random variable.

In particular, let α, β, and βc be distributed according to the multivariate normal distribution
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Figure S12: Loading from the context can give rise to trimodal stability profiles even in
the absence of underlying tristable dynamics as a result of mixing bistable and monostable
subpopulations. Simulation parameters are: ν = 0.03, µα = 150, µβ = 4, ρ = ρ1 = ρ2 = 0.75,
σα = µα/5, σβ = µβ/5, σc = µc/5.
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with mean and covariance

µ =

/

00001

µα

µβ

µc

2

33334
, Σ =

5

66667

σ2
α ρσασβ ρ1σασc

ρσασβ σ2
β ρ2σβσc

ρ1σασc ρ2σβσc σ2
c

8

9999:
. (S32)

When ν = 0, with the rescaling α ← α/(1 + βc) and β ← β/(1 + βc) we obtain that Q from

(S21) takes the form

Q =
2
&
1 + β

1+βc

'

α
=

2(1 + β + βc)

α
,

hence with the notation of Section S4.1 we have A = [0 2 2], B = 2, C = [1 0 0], and

D = 0, so that from Section S4.2 it follows that (S26) still holds, but now with

µQ =
2(1 + µβ + µc)

µα

, σQ(q) =

;
q2σ2

α − 4qρσασβ − 4qρ1σασc + 4σ2
β + 8ρ2σβσc + 4σ2

c

µα

.

Similarly, when ν > 0, the population-level stability and robustness properties of (S15)

are governed by Qi for i = 1, 2, 3 from (S21), which together with α ← α/(1 + βc) and

β ← β/(1 + βc) yield

Qi =
β − (1 + βc)bi(ν)

αai(ν)
.

Therefore, with the notation of Section S4.1 we now have A = [0 1 − bi(ν)], B = −bi(ν),

C = [ai(ν) 0 0], and D = 0, so that from Section S4.2 it follows that (S28) still holds,

but now with µi = [µβ − bi(1 + µc)]/(aiµα) and

σi(qi) =

;
aiqi(aiqiσ2

α − 2ρσασβ + biρ1σασc) + bi(biσ2
c − 2ρ2σβσc + aiqiρ1σασc) + σ2

β

aiµα

.
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S6 Simulation parameters

Figure 1 Genetic context was considered by the addition of the repressilator [3], for details,

see Section S1. Simulation parameters are α1 = α2 = α3 = 10, β1 = β2 = β3 = 1, n = 4,

ν = 0, together with with (α, β) = (4, 0.1) and (α, β) = (8, 1.2) for toggle #1 and toggle #2,

respectively. Stochastic simulations were performed by considering the overdamped Langevin

dynamics widely used in biomolecular simulations [17, 18]. Accordingly, the dynamics of the

toggle switch are extended as

ẏ = fy(y, z) + σξy, ż = f(z, y) + σξz, (S33)

where σ regulates the intensity of the zero-mean δ-correlated Gaussian white noise (ξy, ξz),

causing trajectories to leave the metastable fixed points. Stochastic simulations were carried

out using an Euler-Maruyama scheme [19] with time step ∆t = 0.1, simulation time horizon

T = 1, 000 and noise intensity σ = 0.1.

Figure 2 Only analytical results are presented, no simulation is included.

Figure 3 Sample trajectories of (S15) were generated with random initial conditions

(y0, z0) ∈ [0,α]2. Simulation parameters corresponding to red, green, and purple are (α, β, ν) =

(200, 5, 0.03), (α, β, ν) = (200, 15, 0.03), and (α, β, ν) = (200, 9.8, 0.03), respectively.

Figure 4 The potential surface in Figure 4A corresponds to (α, β) = (20, 0), computed

using the algorithm outlined in Section 2.3 of the manuscript. In Figure 4C the value of β

increases from β = 0 to β = 2 while ν = 0 is kept constant, whereas α = 5, α = 7.5, and

α = 10 for purple, green, and red, respectively. The displayed values are normalized to the

maximal potential barrier (α = 10, β = 0). In both panels of Figure 4D ν = 0.03. In the

left panel red, green, and purple correspond to α = 25, α = 50, and α = 75, respectively.

In the right panel the same values of α correspond to the different shades of red, green, and
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purple. For all colors, light, medium, and dark shades correspond to noise power σ = 1.0,

σ = 1.1, and σ = 1.2, respectively, averaging three independent simulations considering

(S33). Stochastic simulations were carried out as in Figure 1, using an Euler-Maruyama

scheme [19] with time step ∆t = 0.1 and simulation time horizon T = 100, 000.

Figure 5 Shaded regions denote distributions obtained by considering 10,000 random sam-

ples of Q = 2(1 + β)/α from (S22), whereas lines depict the corresponding approximations

using (S26). In Figure 6A µα = 10, σα = µα/5, σβ = µβ/5, ρ = 0. In Figure 6B µα = 10,

σα = µα/5, µβ = 2, and σβ = µβ/5, together with ρ = −1 for red, ρ = −1/3 for green,

ρ = 1/3 for purple, and ρ = 1 for orange.

Figure 6 In Figure 6A, for each value of ν, first 100 triplets of (µα, µβ, ρ) ∈ [0, 100] ×

[0, 50] × [−1, 1] are chosen using a uniform distribution. With σα = µα/3 and σβ = µβ/3

the bistable fraction is computed using (S30). In Figure 6B, 100,000 random samples are

generated according to (S22) such that ν = 0.05, ρ = 0.75, σα = µα/5, σβ = µβ/5, together

with the following choices of (µα, µβ): (60, 21) for light red, (60, 24) for dark red, (60, 18) for

grey, (60, 3.5) for light green, (60, 8) for dark green, (150, 20) for light purple, and (150, 30)

for dark purple. In Figure 6C, the simulation parameters are ν = 0.05, µα = 75, σα = µα/5,

σβ = µβ/5, ρ = 0.75, such that 100,000 samples of (α, β) were generated for each value of

µβ ∈ {1, 2, . . . , 40} using (S22), whereas the colored dots correspond to the sample values

µβ ∈ {5, 15, 25, 35} for green, red, purple, and orange, respectively. In the middle panel,

the bistable fraction of these samples were determined by considering the percentage that

lies in the grey region in the left panel between the q1(ν) = 1 and q2(ν) = 1 constraints.

In the right panel, the distribution of the potential barrier is computed using the algorithm

detailed in Section 2.3 of the manuscript, and its median value is displayed (normalized to

the maximal value).
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Figure 7 In Figure 7A, light dots denote the location of (µα, µβ) in the absence of the

context, whereas the corresponding dark dots illustrate the shift due to the context. The

histograms represent the distribution of y − z in the steady state, obtained by generating

10,000 random samples considering (S32) such that ν = 0.03, σα = µα/5, σβ = µβ/5, σc =

µc/5, ρ = ρ1 = ρ2 = 0.75, together with the following choices of (µα, µβ, µc): (10, 1, 0) for

light red, (10, 1, 3) for dark red, (20, 2, 0) for light green, (20, 2, 3) for dark green, (150, 5, 0) for

light purple, (150, 5, 15) for dark purple. In Figure 7B, the data is obtained considering both

directly computing the potential surface using the algorithm outlined in Section 2.3 of the

manuscript (circles), as well as the approximation h ≈ ψ1(q
−1 − 1)ψ2 of the potential barrier

with (ψ1,ψ2) = (0.545, 2.039) (solid lines). Simulation parameters are: (α, β) = (10, 2) for

green, (α, β) = (6.67, 1) for red, and (α, β) = (4, 0.2) for purple, respectively, together with

ν = 0 in all cases.
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