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Abstract: In November 2019, the novel coronavirus disease COVID-19 was reported in Wuhan city,
China, and was reported in other countries around the globe. COVID-19 is caused by severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Strategies such as contact tracing and
a vaccination program have been imposed to keep COVID-19 under control. Furthermore, a fast,
noninvasive and reliable testing device is needed urgently to detect COVID-19, so that contact can
be isolated and ringfenced before the virus spreads. Although the reverse transcription polymerase
chain reaction (RT-PCR) test is considered the gold standard method for the diagnosis of SARS-CoV-2
infection, this test presents some limitations which cause delays in detecting the disease. The antigen
rapid test (ART) test, on the other hand, is faster and cheaper than PCR, but is less sensitive, and
may limit SARS-CoV-2 detection. While other tests are being developed, accurate, noninvasive and
easy-to-use testing tools are in high demand for the rapid and extensive diagnosis of the disease.
Therefore, this paper reviews current diagnostic methods for COVID-19. Following this, we propose
the use of expired carbon dioxide (CO2) as an early screening tool for SARS-CoV-2 infection. This
system has already been developed and has been tested on asthmatic patients. It has been proven that
expired CO2, also known as capnogram, can help differentiate between respiratory conditions and,
therefore, could be used to detect SARS-CoV-2 infection, as it causes respiratory tract-related diseases.

Keywords: COVID-19; diagnostic test; screening tool; SARS CoV-2 infection; CO2 waveform; fea-
ture extraction

1. Introduction

Coronavirus disease 2019 (COVID-19) is an infectious disease caused by a novel
coronavirus known as SARS-CoV-2 [1]. Coronaviruses are members of the Coronaviridae
family of the order of Nidovirales that mainly cause infections in the respiratory tract [2].
All viruses belonging to this order are enveloped, non-segmented positive-sense RNA
viruses [3]. The novel coronavirus (SARS-CoV-2) was reported in Wuhan, the largest city
of the Hubei Province in China, in November 2019 [4]. With the movement of population,
SARS-CoV-2 infection was reported in China and many other countries around the globe.
And the pandemic continues. On 30 January 2020, the World Health Organization (WHO)
announced that the outbreak fulfils the criteria for a Public Health Emergency of Inter-
national Concern [5]. The COVID-19 pandemic is taking a tremendous toll worldwide,
mainly on families, societies, healthcare sectors, and on economies [6]. On 3 February 2021,
the WHO report showed that the number of confirmed COVID-19 cases was 103,362,039
globally, including 2,244,713 deaths [7]. Malaysia had 226,912 confirmed cases and 809
deaths [8].

The primary route of SARS-CoV-2 infection is person-to-person transmission by direct
contact. Otherwise, it can travel indirectly through respiratory droplets and fomites [4].
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Therefore, affected countries have taken extensive measures to prevent and control the in-
fection, including the detection of suspected cases at an early stage, the isolation of infected
persons during treatment, and quarantine [1]. Moreover, citizens were encouraged to stay
home, work from home [9], wash hands regularly, and maintain social distancing [10].
A health screening strategy is being used as a primary means of testing for SARS-CoV-2
infection. Here, infrared thermometers are used to detect core body temperature, primarily
at the entrances of public buildings including schools, hospitals, shopping malls, airports,
etc. [11]. Non-contact infrared thermometers have gained popularity in detecting fever
since they are portable, easy to use, and cost-effective. However, their low sensitivity and
accuracy may reduce the effectiveness of this measure.

To date, there is no specific treatment for COVID-19 pneumonia. Early diagnosis of
SARS-COV-2 infection can help in providing effective treatment to the infected person and
reduce further transmission of the virus. Recent published works show that the diagnosis
of COVID-19 is mainly based on clinical symptoms, in addition to the use of real-time
RT-PCR, antibody tests, chest computed tomography (CT) imaging, and chest x-ray images.
Although real-time RT-PCR testing is the main approach used for diagnosing SARS-CoV-2
infection, the effectiveness of this test is based on numerous factors, such as the laboratory
equipment, the skills of the technicians in performing the test and interpreting the results,
and the long time required to generate the results [9]. These factors can lead to a delay in
the detection of the virus at the early stage of infection. The combined use of real-time
RT-PCR tests with either chest CT or serological tests may increase sensitivity in SARS-
CoV-2 infection detection [12,13]. In some hospitals, diagnosis has only been based on
clinical and CT findings due to the shortage of RT-PCR kits [14]. However, some patients
presented a normal CT in the first two days after symptom presentation [14]. Therefore,
the development of new tools can contribute to the timely and accurate detection of this
infectious disease.

The major challenges in developing such a tool include identifying the best biosensor
technology and the optimal parameters with sufficient sensitivity and specificity to assess
respiratory function and its changes. Hence, a rigorous and extensive study was carried
out from December 2019 to May 2021 through Google Scholar, Web of Science, PubMed,
and Scopus, using different keywords (e.g., coronavirus, severe acute respiratory syndrome
monitoring device, respiratory CO2 monitoring device, SARS-CoV-2 monitoring device,
capnograph, COVID-19, capnogram) to identify appropriate respiratory disease assessment
tools. We also manually searched the references of the selected articles for additional
relevant material. In this paper, we reviewed assessment methods, which include the
diagnostic tests, screening tools, and medical devices that have been used throughout
the COVID-19 emergency. A complete detailed review is, however, beyond the scope
of this paper, and can be found in the Joint Research Centre of the European Medicines
Agency/European Commissions (https://covid-19-diagnostics.jrc.ec.europa.eu/devices,
accessed on 1 June 2021). Based on our literature review, we propose using the features of
CO2 signals as a screening tool for SARS-CoV-2 infection.

2. Biological Properties of SARS-CoV-2

SARS-CoV-2 is a large, spherical, enveloped, non-segmented, positive-sense, single-
stranded RNA virus genome of about 30 kb that encodes for multiple structural and non-
structural proteins. It consists of four main structural proteins, which are spike glycoprotein
(S), membrane (M), envelope (E), and nucleocapsid (N) proteins. Neutralizing antibodies
targeting a conserved region on the spike proteins of SARS-CoV-2 and SARS-CoV may
be useful for treating COVID-19 [15]. These neutralizing antibodies are mainly involved
in guiding the entry of viral particles into the host cells to infect them. S proteins contain
S1 and S2 domains, and the interaction between the S1 domains of SARS-CoV-2 and a
specific host cell receptor called Angiotensin Converting Enzyme 2 (ACE-2) promotes a
conformational change in the S protein. The virus mediates membrane fusion with the host
cell via the S2 domain and enters the host cell (specifically alveolar epithelial cells) [15].

https://covid-19-diagnostics.jrc.ec.europa.eu/devices
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The E protein plays a role in the production and maturation of the virus, the M protein
determines the shape of the virus, and the N protein is involved in viral replication [16].
Coronavirus belongs to the family Coronaviridae and, to date, four coronavirus genera have
been identified, including Alphacoronavirus, Betacoronavirus, Gammacoronavirus and
Deltacoronavirus. These groups of viruses have been known to infect animals, including
birds and mammals. SARS-CoV-2 is also a zoonotic coronavirus similar to SARS (severe
acute respiratory syndrome) and MERS (Middle East respiratory syndrome) of the genus
Betacoronavirus [17]. Tang et al. conducted a population genetic analysis of 103 SARS-CoV-
2 genomes, and classified two prevalent evolutionary types of SARS-CoV-2, L type (~70%)
and S type (~30%). The study showed that strains of the L type, derived from the S type,
are evolutionarily more aggressive and contagious [18].

The SARS-CoV-2 virus may enter humans through the respiratory tract or conjunctival
mucosa, and exhibits a preferential tropism for human airway epithelial cells. However,
the pathological changes of the disease and its pathogenesis in humans are not clearly
understood. The virus has a preferential tropism for human airway epithelial cells, and its
cellular receptor, similar to SARS-CoV, is ACE2. The virion binds to the cellular receptor
of angiotensin-converting enzyme 2 (ACE2) through a glycoprotein found on its surface
(Figure 1). Following the virus’ entry into the host cell, the viral RNA enters the cytoplasm,
where the structural proteins are located and the nucleocapsids are assembled. This is
followed by the budding of the lumen of the endoplasmic reticulum and Golgi intermediate
compartment, after which virions are released from the infected cell through exocytosis [19].
The expression of ACE2 is higher in minor salivary glands than in lungs, suggesting that
salivary glands could be potential targets for COVID-19 detection. There are three different
potential pathways of SARS-CoV-2 entry in the saliva (first, from the lower and upper
respiratory tracts; second, from the blood into the gingival crevicular fluid; and third, by
major and minor salivary gland infection) [20].

Life 2021, 11, x FOR PEER REVIEW 3 of 27 
 

 

contain S1 and S2 domains, and the interaction between the S1 domains of SARS-CoV-2 

and a specific host cell receptor called Angiotensin Converting Enzyme 2 (ACE-2) pro-

motes a conformational change in the S protein. The virus mediates membrane fusion with 

the host cell via the S2 domain and enters the host cell (specifically alveolar epithelial cells) 

[15]. The E protein plays a role in the production and maturation of the virus, the M pro-

tein determines the shape of the virus, and the N protein is involved in viral replication 

[16]. Coronavirus belongs to the family Coronaviridae and, to date, four coronavirus gen-

era have been identified, including Alphacoronavirus, Betacoronavirus, Gammacorona-

virus and Deltacoronavirus. These groups of viruses have been known to infect animals, 

including birds and mammals. SARS-CoV-2 is also a zoonotic coronavirus similar to SARS 

(severe acute respiratory syndrome) and MERS (Middle East respiratory syndrome) of the 

genus Betacoronavirus [17]. Tang et al. conducted a population genetic analysis of 103 

SARS-CoV-2 genomes, and classified two prevalent evolutionary types of SARS-CoV-2, L 

type (~ 70%) and S type (~ 30%). The study showed that strains of the L type, derived from 

the S type, are evolutionarily more aggressive and contagious [18]. 

The SARS-CoV-2 virus may enter humans through the respiratory tract or conjuncti-

val mucosa, and exhibits a preferential tropism for human airway epithelial cells. How-

ever, the pathological changes of the disease and its pathogenesis in humans are not 

clearly understood. The virus has a preferential tropism for human airway epithelial cells, 

and its cellular receptor, similar to SARS-CoV, is ACE2. The virion binds to the cellular 

receptor of angiotensin-converting enzyme 2 (ACE2) through a glycoprotein found on its 

surface (Figure 1). Following the virus’ entry into the host cell, the viral RNA enters the 

cytoplasm, where the structural proteins are located and the nucleocapsids are assembled. 

This is followed by the budding of the lumen of the endoplasmic reticulum and Golgi 

intermediate compartment, after which virions are released from the infected cell through 

exocytosis [19]. The expression of ACE2 is higher in minor salivary glands than in lungs, 

suggesting that salivary glands could be potential targets for COVID-19 detection. There 

are three different potential pathways of SARS-CoV-2 entry in the saliva (first, from the 

lower and upper respiratory tracts; second, from the blood into the gingival crevicular 

fluid; and third, by major and minor salivary gland infection) [20]. 

 

Figure 1. Pathogenesis of SARS-CoV-2 (adapted from Alanagreh, L. A., Alzoughool, F., and Atoum, 

M. (2020)). The human coronavirus disease COVID-19: its origin, characteristics, and insights into 

potential drugs and its mechanisms. Pathogens, 9(5), 331) [19]. 

Figure 1. Pathogenesis of SARS-CoV-2 (adapted from Alanagreh, L. A., Alzoughool, F., and Atoum, M. (2020)). The human
coronavirus disease COVID-19: its origin, characteristics, and insights into potential drugs and its mechanisms. Pathogens,
9(5), 331) [19].

3. Clinical Manifestations of COVID-19

Despite the wide spread of SARS-CoV-2 infection, the disease’s clinical manifestations
are nonspecific. At initial presentation, most COVID-19 patients manifest fever, a dry
cough, and myalgia or fatigue [1,9,21]. However, some patients are asymptomatic [22].
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Fever and cough are the predominant symptoms at the early stages of the illness, whereas
diarrhea, a sore throat, and chest tightness are rare [4,23]. In the study carried out by [22]
on 262 patients, 82.1% had fever, while 45.8% had a cough. This is consistent with a study
by Chen, Jun, et al. [24], wherein 87.1% of the 249 patients presented fever, 36.5% had a
cough, and only 3.2% had diarrhea [24]. Dyspnea is uncommon in COVID-19 patients,
though it may be considered when classifying the severity of the disease [22]. Older males
and patients with comorbidities such as hypertension, diabetes, and coronary heart disease
are more vulnerable to SARS-CoV-2 infection due to their weaker immune systems [25,26].

During the disease’s course, some patients develop acute respiratory distress syn-
drome (ARDS) and septic shock, which leads to multiple-organ failure, including liver
dysfunction, heart failure, and abnormalities in renal function associated with increased
blood urea nitrogen [27]. Besides this, the patient may experience variations in their levels
of blood elements, such as increased neutrophils, elevated C-reactive protein and reduced
lymphocytes counts (particularly T-lymphocytes and hemoglobin). The study of Chen
et al. [25] showed that out of 99 patients, 9% presented low leucocyte counts, 38% had high
neutrophil counts, and 35% manifested lymphocyte counts below the normal range [25].
Reduced numbers of T-lymphocytes were also identified in patients with severe acute
respiratory syndrome coronavirus infection (SARS-CoV), which emerged in November
2002. An absolute lymphocyte count below the normal range could be considered as a
reference index in clinical settings while assessing novel coronavirus [25].

COVID-19-infected patients are also more likely to experience blood coagulation disor-
ders, especially those with cardiac injury [27]. In the study of Chen et al. [25], various blood
coagulation tests were considered. Out of 99 COVID-19 patients,16% had an activated
partial thromboplastin time (APTT) below the normal range, 30% had a prolonged pro-
thrombin time, and 36% had D-dimer levels above the normal range [25]. A three-second
longer prothrombin time and a five-second longer APTT were classified as a coagulopathy
condition [26]. Wang et al. [28] reported on 138 cases with COVID-19, 58% of which had
extended prothrombin times, and the levels of D-dimer were higher in ICU patients com-
pared to non-ICU patients [28]. It was suggested that a level of D-dimer above 1 µg/mL
would indicate poor prognosis at the onset of illness [28]. Venous thromboembolism is
another complication faced by some hospitalized COVID-19 patients as a result of limited
movement during illness, dehydration, or the presence of chronic underlying conditions
such as hypertension, diabetes, or cardiac-related diseases [27]. Although SARS-CoV-2 has
mainly been identified as a respiratory tract infection [29], it affects numerous systems,
including the gastrointestinal, cardiovascular, respiratory, and immune systems. There-
fore, both clinical symptoms and findings from diagnostic test such as PCR or imaging
should be taken into account for the proper detection of COVID-19. Figure 2 is a schematic
representation of COVID-19′s developmental stages.

In Figure 2, the natural developmental stages of COVID-19 are illustrated from the
onset to recovery or death [30]. Normally, there are three stages, categorized via disease
severity. Stage 1 is early infection, which is basically related to the onset of the disease
and is generally characterized by the development of mild to moderate influenza-like
symptoms, while the second phase is the pulmonary phase, wherein some individuals
exhibit pneumonia-like symptoms. Lastly, stage 3 is characterized by hyperinflammation,
wherein patients require admission to an intensive care unit (ICU) [30].
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4. Diagnosis of COVID-19

Laboratory testing is important to confirming, isolating, and managing each case.
It involves the detection and characterization of the etiological agent of SARS-CoV-2 in
order to understand the disease’s epidemiology and management, and measures to sup-
press its transmission [31]. COVID-19 usually presents as an acute viral respiratory tract
infection, and carries various common indications of viral pneumonia diseases such as
influenza, parainfluenza, adenovirus infection, respiratory syncytial virus infection, metap-
neumovirus infection, and atypical pathogen infections such as mycoplasma pneumoniae
and clamydophila pneumoniae. It is essential to trace travel and exposure history when
approaching a suspected patient back from an epidemic area [32]. There are three main
steps in testing:

1. Collection of samples (this involves the collection of samples at the right time and
using the right technique);

2. Transportation of samples (this involves maintaining a cold chain and assessing the
duration of transport);

3. Testing samples (this involves using the most suitable method for analysis).

Early detection is extremely useful in controlling the spread of SARS-CoV-2. Various
studies reported the presence of SARS-CoV-2 infection in different clinical specimens,
such as bronchoalveolar lavage fluid, sputum, saliva, throat cells, stool, nasopharyngeal
(NPS) and oropharyngeal (OPS) swabs, blood, fibrobronchoscope brush biopsies, feces,
and urine [28,33,34]. BLF had the highest positive results (93%), whereas pharyngeal swabs
had the lowest (32%) among the lower respiratory track samples. Sputum and nasal swab
samples exhibited 72% and 63% positive results, while fibrobronchoscope brush biopsies
had a positive rate of 46%. The infection was found in feces at the rate of 29%. In the blood
samples, the positive rate was only 1%. Of the 72 urine specimens sampled, all presented
negative results [34]. SARS-CoV-2 infection is rarely present in the blood, and is absent in
urine samples [29,34].

Bronchoalveolar lavage fluid (BLF) is collected for the diagnosis and detection of viral
RNAs, particularly in severe cases, although a suction tool is required in this sampling
process, and it is painful to the patient [35]. Nasopharyngeal (NP) and/or oropharyngeal
(OP) swabs are often recommended for the screening or diagnosis of early infection, as
recommended by the WHO. However, during the sampling process, healthcare workers
are exposed to SARS-CoV-2 and other unknown pathogens via aerosols from swab [33]. In
addition, NP swab specimens are obtained invasively by inserting the swab deeply into the
nasal cavity. This can cause discomfort and minor injuries to the patients, such as bleeding
in the mucosal layer [33]. Sputum and nasal swabs are mostly used for the diagnosis of
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SARS-CoV-2 infection, as their collection process is simple, fast and safe [35]. Although
sputum has been identified as the most sensitive specimen for detecting the virus, a study
conducted on 41 COVID-19 patients showed that only a small number of patients (28%)
displayed sputum production as a symptom [36]. Therefore, nasal swabs seem to be the
most commonly applicable specimens in the detection of SARS-CoV-2 infection [37].

5. Existing Diagnostic Tools

Currently, the clinical diagnosis of COVID-19 pneumonia is based on real-time RT-
PCR tests, chest CT imaging, and the analysis of some hematology parameters [8] such
as leukocyte or lymphocyte count [38]. In Wuhan, where the first cases were identified,
diagnosis was firstly based on epidemiological factors, assessing whether the suspected
patient had been in contact with wildlife, had been to Wuhan, or had a history of close
contact with people from Wuhan or patients who had tested positive in the previous two
weeks [1,4]. Thereafter, chest imaging and the detection of infection agents in respiratory,
blood, and fecal samples were performed. Via the real-time RT-PCR method, SARS-CoV-2
infection was detected in lower respiratory tract samples [36].

5.1. Real-Time RT-PCR Test-Molecular Test

Real-time RT-PCR is a diagnostic test that relies on the nucleic acid amplification
approach. The test is performed in vitro to detect the presence of viruses from sera and
respiratory specimens, including nasopharyngeal swabs, lower respiratory tract aspirates,
and sputum [39,40]. This test involves the use of reagents called “primers and probe”, as
well as other important enzymes, which are used to magnify the target for detection. The
SARS-CoV-2 genome encodes four structural proteins (i.e., the spike surface glycoprotein
(S), nucleocapsid (N), membrane (M) protein, and the small envelope (E) protein) [41]. The
N and E protein genes are the targets for amplification in the rRT-PCR assay, combined with
open reading frame 1 (ORF1) ab and the RNA-dependent RNA polymerase (RdRP) gene.
Real-time RT-PCR-based assays usually detect only two or three of these genes, which is
sufficient to allow for rapid testing and diagnosis. However, interpreting the results may
be challenging [41].

The real-time RT-PCR test remains the gold standard in diagnosing COVID-19. How-
ever, it presents some limitations, which are as follows. Firstly, the test must be performed
in a certified and well-equipped laboratory by a well-trained professional capable of
interpreting the results, and the generation of results takes a long time (2 to 3 h on aver-
age) [9]. Secondly, false-negative results may result from either the inappropriate collection,
transportation, and handling of specimens, the presence of amplification inhibitors, or
insufficient organism numbers in the specimen [40]. The results may also be affected by
the quality of the RNA extracted from the swabs. The degradation of purified RNA, or
the presence of RT-PCR inhibitors or genomic mutations may also cause false-negative
results [42]. Moreover, real-time RT-PCR has a low detection rate at the initial presentation
of the disease [3]. The identification of viral proteins using an antigen-based approach is a
valid alternative for the rapid qualitative detection of SARS-CoV-2 infection [43].

5.2. Rapid Antigen Detection (RAD) Test

An antigen test is a qualitative method for detecting certain proteins that are present
on or within a virus. Similar to a RT-PCR test, an antigen test also uses respiratory
samples, including nasal and nasopharyngeal swabs [43]. Throat saliva and sputum are
not commonly used for RAD tests [44]. Despite its low sensitivity, the antigen test is more
cost-effective and faster than the real-time RT-PCR test. Different antigen test kits are
being produced by manufacturers of diagnostic tests in different countries, and thereafter
approved for emergency use. The Sofia 2 SARS Antigen Fluorescent Immunoassay (FIA) is a
lateral flow immunofluorescent sandwich assay developed by Quidel Company, San Diego,
USA and Coris BioConcept, Gembloux, Belgium. The Food and Drug Administration
(FDA) issued an Emergency Use Authorization for this test, which detects antigen from
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the nucleocapsid protein of the SARS-CoV-2 virus. This test can assess a high number of
individuals per day, as its results are generated within 15 min. However, the test needs to be
performed in laboratories certified by the Clinical Laboratory Improvement Amendments
(CLIA) or in a patient care setting with a CLIA Certificate of Waiver [43]. The Adeptrix
Corporation developed a bead-assisted mass spectrometry (BAMS) antigen test. For this,
Avacta Life Sciences Limited supplied Affimer® reagents, which coat beads that bind the
particles of the virus. Every bead is analyzed using mass spectrometry for the presence of
the virus. The BAMS antigen test is cost-effective, and no special laboratory equipment is
required. Moreover, the test has a greater capacity, as numerous samples can be taken and
analyzed by a single laboratory technician every day [45,46].

The COVID-19 Ag Respi-Strip is a type of RAD test developed by Coris BioConcept,
Gembloux, Belgium. This test was authorized by the Belgian Federal Agency for Medicines
and Health Products for use in public health institutes in Belgium [47]. This diagnostic
method uses patient nasopharyngeal secretions, and the results are generated within 15 min.
Despite its low sensitivity, which also depends on the type of specimen and the level of
the viral load [47], the COVID-19 Ag Respi-Strip test is the first-line method of diagnosing
COVID-19 in Belgium. RAD tests are inexpensive and easy to operate. However, their
analytical performance is affected by a variety of factors, such as the viral load, the quality
of the samples, and the samples processing method [48]. Rapid antigen tests are not
recommended for use as standalone diagnostic tools in clinical practice due to their low
sensitivity, which can give false-negative results [49].

5.3. Antibodies (Serology) Test

The antibody test, also known as the serology test, is a screening method that uses
blood samples taken via finger prick or from a vein in the arm [49]. This test determines
whether antibodies have been developed against the virus [43]. Antibodies are critical
proteins to fighting and clearing out the virus, and they are produced by the immune
system. When an infection is present in the body, adaptive immunity is expected to
increase. B lymphocytes produce specific antibodies and CD8+ T cytotoxic lymphocytes
that help eliminate infected cells [13]. COVID-19 patients develop antibodies against the
nucleoprotein and receptor binding domain (RBD) of SARS-CoV-2. However, the window
of antibody response varies depending on the type of antibody [50]. Zhao et al. [51]
evaluated the dynamics of three different antibodies (total antibody (Ab), immunoglobin
M (IgM) and immunoglobin G (IgG)) in relation to disease progression in COVID-19
patients [51]. The RNA test showed greatest sensitivity in the first week of illness. However,
its sensitivity decreased in the later phases. In the last two phases after onset (weeks 8–14
and 15–39), the total Ab test presented its highest sensitivity (90% and 100%, respectively),
and the IgM test had greater sensitivity than the IgG test from day 1 after onset to the
last day (day 39) [51]. The Ab and IgG tests could thus help identify the level of humoral
immunity in COVID-19 patients [51].

A combination of IgM and IgG antibodies provided increased sensitivity compared to
either alone (IgM or IgG) [49]. Of 397 confirmed COVID-19 cases, 64.48% developed both
IgM and IgG antibodies, whereas the number of patients that tested positive for only IgM
antibodies was greater than those testing positive for IgG antibodies (18.13% and 6.04%,
respectively) [49]. In the work of Guo et al. [52], Ig A antibodies were also assessed in 208
plasma samples collected from 82 confirmed COVID-19 cases and 58 probable cases [52]. In
this study, probable cases were patients who had negative quantitative polymerase chain
reaction (qPCR) test results but who presented typical clinical manifestations [52]. Almost
all the samples were positive for IgA antibodies (93.3%), while IgM and IgG antibodies
were present in 90.4 and 77.9%, respectively. IgA and IgM antibodies were both detected
within a median of 5 days, whereas IgG was detected in 14 days [52]. Various studies
reported the potential applicability of serology testing in the diagnosis of SARS-CoV-
2 infection at different stages of illness. However, seroconversion is not the same in all
individuals, and depends on the time taken for symptoms to manifest and the time at which
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the specimen was taken [52]. In addition, false-negatives result from low concentrations of
antibodies [49]. Thus, antibody tests are not used as stand-alone diagnostic tests, and are
not recommended in any setting wherein reliable diagnostics are crucial to avoiding the
spread of the virus [53]. Antibody tests paired with RNA-based tests display enhanced
sensitivity in detecting the novel coronavirus [51].

5.4. Chest Computed Tomography (CT)

Many researchers have highlighted the applicability of chest CT in COVID-19 diag-
nosis and evaluation, based on different imaging features such as ground glass opacity
(GGO), consolidation, crazy paving patterns, the presence of a halo sign, and changes in
the airways [1,54]. Ground glass opacity is defined as hazy opacity with bronchial and pul-
monary vessel markings, whereas consolidation is a pathological process in which air that
is normally present in the alveoli is replaced with fluids, blood or cells. It is characterized
by increased pulmonary parenchymal density, which causes obscuration in the vessels and
airway wall margins [54]. In [28], ground glass opacity was the most common feature in all
patients. This agrees with Li et al. [55], who considered both clinical and CT findings in 83
COVID-19 cases. Of the 83 patients, 30.1% had a severe/critical illness, and 69.9% were
non-severe. Ground glass opacity was common in all severe cases, while consolidation,
bronchial wall thickening, and crazy paving patterns were present in 88, 64 and 56% of
severe cases, respectively [55]. The CT finding of bronchial wall thickening marked changes
in the airways, as did consolidation, interlobular septal thickening, crazy paving patterns,
spider web signs, subpleural lines, etc. [56]. The number of lobes affected, the level of harm
due to ground glass opacity and consolidation, the presence of nodules in the lungs, pleural
effusion, and the distributions of opacities and patterns were also assessed in COVID-19
patients [57]. All 21 patients were free of pulmonary nodules and pleural effusion, 6 (28%)
manifested both ground glass opacity and consolidation, while 4 (19%) presented crazy
paving patterns. In three (14%) patients, the initial chest CT findings were normal, although
their PCR test showed that all were positive for SARS-CoV-2 infection [57]. The arising
of negative imaging results from confirmed COVID-19 patients shows that chest CT has
limited sensitivity and reliability in detecting infection, especially at the onset of illness [57].
A combination of chest CT and real-time RT-PCR testing thus achieves accurate results in
the early diagnosis of COVID-19 [12,58].

6. Current Screening Tools for COVID-19
6.1. Thermometers

At present, infrared thermometers are used to test for fever as a primary means of
detecting SARS-CoV-2 infection. Measurement of core body temperature has become
a requirement before entering public buildings, such as a shopping complexes, clinics,
schools, airports, etc. [11]. This method was also used to detect SARS infection [59], which
has similar clinical symptoms to SARS-CoV-2, including fever, cough and fatigue [60]. Most
COVID-19 patients present fever at the onset of illness, and so screening body temperature
is crucial to the rapid detection of suspected cases [61]. Non-contact infrared thermometers
have gained popularity in detecting fever as they are portable, easy to use, do not cause
discomfort, and do not depend on direct contact between the device and the forehead
of the subject [62]. Although the device is not expensive and no constant recalibration is
required, its sensitivity and accuracy are low compared to oral thermometers. This low
accuracy can result from the distance between the operator and the subject, which is often
greater than is recommended (3–15 cm) [62]. On the other hand, ear infrared thermometers
have shown high accuracy in measuring body temperature, but they require direct contact
with the subject, and so the probe must be frequently replaced to avoid the spread of the
disease [63].
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6.2. Thermal Imaging Systems

Thermal imaging cameras are another alternative non-contact tool for screening fever.
As the subjects pass into the field of view of the camera, their thermal images are captured
and analyzed [63]. The appropriate use of thermal imaging systems provides an accurate
measurement of the surface skin temperature of an individual. However, this accuracy is
affected by various factors, such as the setup of the system, the environment of the system,
the skill of the operator, and the preparedness of the person who is being screened [64].
As SARS-CoV-2 infection continues to spread, a variety of temperature screening tools
have been developed as a means of quickly and easily identifying suspected cases. Rokid
Company, China, have developed T1 thermal glasses that can simultaneously screen the
temperatures of up to 200 people within two minutes. These smart glasses are equipped
with an infrared sensor, a Qualcomm CPU, and a 12-megapixel camera. The glasses can
record both live photos and videos, and can detect the temperature of a person three
meters away. These thermal imaging detection tools are being used in China by national
authorities, national park staff, and schools [65]. Forward-looking infrared (FLIR) systems
have also been introduced, in the form of two configurations of smart camera, namely,
the A400/A700 Thermal Smart Sensor and the Thermal Image Streaming fixed camera.
The high-quality Configurable Thermal Smart Sensor can detect elevated skin temperature
in the targeted area, such as the forehead or the corner of the eye. Further screening
is recommended for individuals with above-average skin temperature. FLIR thermal
cameras are being used at airports to detect body the temperatures of passengers and
flights crews [66]. Compared to non-contact infrared thermometers, thermal imaging
systems have demonstrated an increased screening capacity. However, their precision in
screening fever is lower, and they require regular calibration, as well as having a high
initial cost [63]. Nonetheless, we cannot deny the usefulness of these systems for the initial
detection of body temperature. However, they should not be used as definitive diagnostic
tools of the presence of SARS-CoV-2, as some individuals may have COVID-19 but no
fever [64].

7. Expired Carbon Dioxide Measurement: A New Screening Tool for COVID-19
7.1. CO2 Removal from Human Body

Human cells require oxygen (O2) and nutrients for their metabolism. The main
byproduct of cell metabolism is CO2. CO2 is produced in all cells of the body, and we
mainly depend on the lungs to remove it. Therefore, any problems with the lungs would
be reflected in changes in CO2 levels in the blood [67]. The body compensates for any
problems in the lungs by increasing breathing rate and excretion via the kidneys. These
aspects can be monitored via blood samples. The CO2 levels in the blood can be measured
in arterial blood samples and are usually expressed as the partial pressure of CO2 in mmHg
or kPa. Expired CO2 concentrations can also be measured noninvasively via exhaled breath.
A capnograph is a noninvasive device that uses infrared technology to measure the CO2
in expired gases and generates a continuous plot of exhaled CO2 over time, known as a
capnogram. The use of infrared rays depends on the interaction between the CO2 molecules
in the air and the infrared ray, which is emitted at a particular wavelength. The amount of
light absorbed is directly proportional to the concentration of absorbing molecules—in this
case, CO2.

When developing a capnograph, the CO2 in expired breath is usually measured in
one of two ways. First, mainstream capnography measures the CO2 flowing through an
endotracheal tube (Figure 3b).
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This is the most accurate method of measuring CO2 and devising the expiration
capnogram, because the flow of air within an endotracheal tube is laminar in nature [68].
Furthermore, the measurement can be taken without interfering with the flow of air
itself. However, this method is primarily suitable for intubated patients, i.e., critically ill
ventilated patients in intensive care units or in operating theatres. The American Society
of Anesthesiologists (ASA) lists capnography as a standard monitoring parameter for all
critically ill ventilated patients, noting that over 90% of adverse events are preventable via
pulse oximetry and capnography monitoring alone [69].

Secondly, sidestream capnography samples a small amount of air aspirated from the
main exhaled stream, which is taken as close as possible to the nose or mouth to ensure
a mostly laminar flow (Figure 3a). The main advantage of sidestream capnography is
its ability to measure the CO2 levels in exhaled breath without interfering significantly
with the patient’s breathing. This allows for the monitoring of spontaneously breathing
nonintubated subjects, as samples can be obtained via nasal cannulas. Furthermore, the
administration of oxygen can continue unimpeded through the nasal cannula [70–72].
In this regard, the use of sidestream monitoring is increasing in popularity due to the
improvements in patient comfort and acceptance associated with it. Figure 3 illustrates
both the sidestream and mainstream methods of capnography for measuring CO2. Figure 4
shows a typical capnogram waveform recording setup, wherein a nasal cannula is attached
to the subject’s nose while they breathe at their own pace.

Today, capnography has been incorporated into intensive care units around the world,
and routinely identifies issues in ventilated patients or those under anesthesia. For example,
capnography waveforms and trends help identify overly rapid or inadequate breathing
rates; blocked or obstructed breathing tubes; inappropriate ventilator settings; or when
patients may be waking up from sedation and paralysis [73–75].
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7.2. Interpretation of Capnogram

A capnogram illustrates variations in the partial pressure of CO2 expired during
respiration [76]. A time-based capnogram is an instantaneous graphical display of the CO2
concentration (mmHg) versus time (seconds). It reflects development of the respiratory
condition of a patient. A normal capnogram has four phases and an end-tidal point
(Figure 5). Each phase reflects a section of the usual process of CO2 elimination [77]. The
flat first phase represents relatively CO2-free early exhalation. As exhalation continues,
the expired CO2 increases very rapidly, and this creates the near-vertical rise in phase II.
Phase III begins near the end of the normal exhalation. The end of this plateau phase
is marked D (the point at which the measured alveolar CO2 levels best approximate the
partial pressure of CO2 in the arteries (PaCO2)). At this point, the level of sampled CO2
is referred to as either PetCO2 or etCO2 (the end-tidal point). As inspiration begins, the
near-vertical, rapidly falling phase IV can be observed. When ventilation and perfusion are
normal, PetCO2 should be 2–5 mmHg higher than PaCO2. The alveolar air is measured
at the end of the horizontal plateau, or the end-tidal point (EtCO2), corresponding to the
end of exhalation. This is usually the point with the highest CO2 reading. In normal lungs,
etCO2 values are very close to blood CO2 values, with the former usually being just a few
mmHg lower, as mentioned earlier.

In a healthy subject, the CO2 waveform, or the capnogram, has a square shape. This is
comprised primarily of a rapid upstroke (indicating the “wall of alveoli air”, containing
CO2, being discharged from normal lungs), a horizontal plateau (indicating the constant
level of CO2 expelled from the alveoli) and a rapid downstroke (indicating the smooth
flow of inspired air). However, the morphology of the capnogram changes due to changes
in breathing, ventilation, airway obstructions, or other breathlessness-associated condi-
tions. Figure 6 shows the morphological changes of a capnogram associated with various
respiratory conditions, such as asthma, chronic obstructive pulmonary disease (COPD),
pulmonary edema and SARS-CoV-2. The changes in an asthmatic capnogram primarily
reflect the variations in the emptying of alveoli that are seen in asthma. Similar changes
occur in other conditions of minor airway narrowing, such as COPD [78,79]. A complete
overview of interpretations of capnograms for different conditions is, however, beyond the
scope of this paper, but can be found elsewhere [70]. Smalhout, considered by many the
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father of clinical capnography, has published around 6000 capnograms, known as the atlas
of strip-chart capnograms, which addresses numerous applications of capnography [80].
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Figure 5. A complete breath cycle in a normal capnogram, with its four phases.

While some changes in the morphology of the CO2 waveform can be seen with the
naked eye, such as the “shark fin” shape for asthmatic patients, more subtle variations
require computation and pattern recognition methods. A deeper understanding of the
shapes of COVID-19 capnograms, instead of just their etCO2 readings, can help in the
development of a more effective screening tool for SARS-CoV-2 infection.

7.3. Analysis of Capnogram Waveform

Expired CO2 provides information that can assist physicians in identifying spot
ventilation derangements, extubation outcomes, bronchospasms, and the effectiveness
of therapy in the clinical environment [81]. Furthermore, features extracted from CO2
signals, such as end-tidal CO2, respiratory rate (RR), time spent at EtCO2, exhalation
duration, Hjorth parameters (activity, mobility and complexity), the slope of phase II,
end-exhalation slope, the slope ratio (SR), and the area ratio can be used to monitor and
diagnose cardiopulmonary diseases, such as COPD, asthma, congestive heart failure (CHF),
pulmonary embolism, and pneumonia [82,83].

Different researchers have reported on various time and frequency features of capno-
grams, including slopes, angles, Hjorth parameters (activity, mobility, and complexity),
curvature measures localized around the transition from the ascending phase to the alve-
olar plateau, EtCO2, exhalation duration, time spent at EtCO2, power spectral density
(PSD), energy, variance, skewness, and kurtosis [84,85]. These features have been used to
quantify differences between the shape of a capnogram in a normal subject and that of a
patient with an obstructive or restrictive disease Table 1. Capnogram features related to
asthma have been widely explored, and have been correlated with spirometric indexes for
discriminating asthmatic from non-asthmatic subjects and estimating asthma severity [86].
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Table 1. Different features extracted from the CO2 waveform and the types of classifiers applied.

Reference Disease Feature Classifier
Performance Measure
(Accuracy, Sensitivity,

Specificity)/AUC
Limitations

You, B. et al. [84] Asthma S1, S2, S3, SR, A1 A2,
SD1, SD2, SD3 - p < 0.001 in all indices

Real-time
implementation is
still challenging

due to the random
time-based setting

criteria

Hisamuddin et al.
[87] Asthma Slope of phase 2, slope

of phase 3, α angle -

Angle α: p < 0.001
slope of phase 3:

p < 0.001
slope of phase 2:

p = 0.35

Selection bias of
waveform for

analysis
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Table 1. Cont.

Reference Disease Feature Classifier
Performance Measure
(Accuracy, Sensitivity,

Specificity)/AUC
Limitations

Kean et al. [88] Asthma

Area (A1) and (A2),
area ratio (AR), S1 and
S2 (Slope), SR (slope
ratio), α angle, HP1
and HP2 (activity),

HP1 and HP2
(mobility), HP1 and

HP2 (complexity)

-
p < 0.0001 (SR)

p = 0.0001051 (HP2
mobility)

Capnogram
features were

extracted manually

Betancourt et al.
[86] Asthma Wavelet coefficients Support vector

machine
sensitivity: 55.71%,
specificity: 99.38%,

Improper
prediction of

asthma severity
degree 1

Doğan, Nurettin
Özgür et al. [89] COPD EtCO2 - sensitivity: 65.2%

specificity: 63.6%

Small sample size
The mean bias of

the study was 4.68
± 7.21

Mieloszyk et al.
[83]

COPD, CHF,
normal subject

Exhalation duration,
Pet CO2, time spent at

Pet CO2, exhalation
slope

Quadratic
discriminant

analysis

Accuracy: 93.9%, for
COPD/normal

classification
Accuracy: 80.0%, for

COPD/CHF
classification

Inability of
tracking changes

in disease severity
and response to
treatment over

time
Some patients

presented with a
mixed picture of
CHF and COPD

Herry, C. L et al.
[90]

Breath
classification
(normal or

abnormal) in
intubated

patients in ICU

Plateau slope,
residuals,

TO angle, α angle, β
angle, PeakCO2, SR1,

min plateau,
skew, kurtosis,

inspiration slope,
expiration slope,

width,
sharpness,
MinCO2

Decision tree
(DT), k-nearest

neighbors
(KNN), and
naive Bayes

(NB)

AUC: 90% (DT)
AUC: 89%(KNN)
AUC: 88%(NB)

The type of
abnormalities was

not classified

Singh, O. P.,
Palaniappan, R.,
and Malarvili, M.

B. [91]

Asthma

Upward expiration
(AR1), downward

inspiration (AR2), and
the sum of AR1 and

AR2

Support vector
machine (SVM)

k-nearest
neighbor

(k-NN) and
naive Bayes

(NB)

Average accuracy of
94.52%, sensitivity of

97.67%, and specificity
of 90%

-

El-Badawy, I. M.,
Singh, O. P., and

Omar, Z. [85]

Differentiation
of regular and

irregular
capnograms

Energy, variance,
skewness and kurtosis,

number of relatively
high spectral peaks

and the area under the
normalized magnitude

spectrum

Support vector
machine

accuracy: 86.5%
specificity: 84%
sensitivity: 89%

precision: 86.51%

On average, 13.5%
of the capnogram

segments were
misclassified due

to the overlap
between some

regular and
irregular

capnogram
samples
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You et al. [84] evaluated the consecutive phases of capnograms for 30 asthmatic
and 10 nonasthmatic subjects. In this study, eight capnographic indices (slopes S1, S2
and S3′s slope ratio (SR); area ratio (AR); SD1, SD2, SD3 (derivatives)) were analyzed
(Figure 7). All these parameters were correlated with spirometric parameters, but the
strongest correlation was observed by analyzing the angle between the ascending phase
(E2) and the alveolar plateau (E3). The correlation between these indices shows that the
severity of bronchospasm can be evaluated by quantitatively analyzing the shape of the
capnogram [84]. That said, these capnographic indices were computed manually.
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Figure 7. Illustration of capnogram and its eight associated indices: slopes (S1, S2, and S3), slope ratio (SR), areas (A1 and
A2), and indices of the second derivative (SD1, SD2, and SD3). The upper capnogram shows the CO2 waveform of a normal
individual, and the lower capnogram shows a deformed CO2 signal due to obstruction [84].

Yaron et al. [92] conducted a prospective study on 20 asthmatic patients and 28
healthy subjects to determine whether the alveolar plateau (dCO2/dt) can help detect
bronchospasm in adult asthmatic patients, and the correlation between dCO2/dt and PEFR.
In each patient, the dCO2/dt values of five consecutive regular breath cycles were measured
manually, and the mean slope was calculated. The computed capnogram index (dCO2/dt)
was correlated with the log of the predicted percent PEFR (r = 0.84, p < 0.001). Betancourt
et al. [86] evaluated degrees of asthma severity using capnogram features obtained via the
decomposition of a breath cycle into small segments (A–B, C–D, E–F and G–H), and further
intermediate parts between the segments (B–C, D–E, F–G and H–A) (Figure 8). A support
vector machine was used to classify asthma severity into six classes using feature vectors.
The G–H segment presented the best results, with a sensitivity of 55.71%, specificity of
99.38%, correct error of 86.0%, and error rate of 13.91%. The results show that the terminal
indices of the capnogram are highly sensitive to airway obstruction [86].
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Doğan, Nurettin Özgür, et al. [89] analyzed the variation in EtCO2 levels in COPD
exacerbations. A total of 102 COPD patients (69 admitted and 33 discharged) were enrolled
in the study. Their EtCO2 values were measured before and after treatment (Pre-EtCO2
and Post-EtCO2) and correlated with arterial partial carbon dioxide pressure levels (PCO2).
The Pre-EtCO2 and Post-EtCO2 measurements correlated positively with PCO2 (r = 0.756,
p < 0.001 and r = 0.629, p < 0.001). The median value of EtCO2 level before treatment
was 39 mmHg in the admitted patients and 32 mmHg in the discharged patients. After
treatment, the median value of EtCO2 level was reduced to 36 mmHg in the admitted
patients, while that of discharged patients remained constant (32 mmHg). At 34.5 mmHg,
the sensitivity and specificity of using the EtCO2 value to predict admission status were
65.2% and 63.6%, respectively. The authors concluded that EtCO2 levels provide little
useful information for evaluating patients with exacerbated COPD in the emergency
department [89]. Singh, O. P. et al. [91] computed various capnogram features, including the
areas (ARi) AR1(A-B), AR2(D-E), AR3(A-B-C), and AR4(A-B-C-D-E), the sum (AR1 + AR2),
and dCO2/dt, the derivative of the complete expiratory portion (A-C) (Figure 9). The
areas AR1, AR2, AR3 and AR4 represent the upward expiration, downward inspiration,
absolute exhalation and a complete breath cycle, respectively. The areas (AR1, AR2, AR3,
AR4, and AR1 + AR2) for the asthmatic CO2 signal possess a higher mean value than
the non-asthmatic CO2 signal, while the dCO2/dt of the expired phase decreased in the
asthmatic patients compared to the nonasthmatic patients. These features may increase or
decrease during an asthma attack, thus providing useful information related to asthmatic
changes [91].
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Modifications in the shape of the capnogram waveform have been analyzed by many
researchers, and various features have been proposed as indicators of respiratory disorders,
with asthma most common among these [84,86,91]. Moreover, Mieloszyk et al. [83] quanti-
tatively analyzed capnogram waveforms to discriminate between COPD and congestive
heart failure (CHF), and between COPD and normal patients. The modifications in the
CO2 signal due to obstructive diseases are still a point of concern. In different studies, the
slopes in different parts of a capnogram were measured, and were shown to be useful in
detecting changes in the airways related to treatment [83,87]. In the study of Hisamuddin
et al., capnographic waveform indices (slope of phase 2, slope of alveolar plateau and angle
α) were analyzed post- and pre-treatment [87]. These features were found to be useful
in detecting improvements in bronchospasm post-treatment. Howe et al. verified these
three features (slope of phase 2, slope of alveolar plateau and angle α). The slopes were
measured using linear trendline analysis, and the angle α was calculated from the observed
gradient of phase 2 and phase 3. Before treatment, the mean gradient values of phase 2,
phase 3 and angle α were 2.61, 0.44 and 134.36, respectively, whereas the post-treatment
values were 2.74, 0.23 and 123.27, respectively. A minor change was noticed in the slope
of phase 2 (p = 0.35), while the slope of phase 3 and angle α changed significantly, with
p < 0.001 for both. The insignificant change observed in the slope of phase 2 might be due
to the mistake made while selecting the starting point of phase 2 (at a CO2 value equal to
4 mmHg) [82].

Over the past decades, many studies have been conducted for the extraction of
capnogram features in association with different respiratory conditions. Incorporation,
implementation, and feasibility of these features in developing a real-time CO2 measure-
ment system has been verified by Singh, O. P. et al. in [93] and Asher, R.J. et. al in [94]. The
system in [93] has already been tested on asthmatic patients and available commercially as
ashthma monitoring system. It has been proven that expired CO2, also known as capno-
gram, can differentiate various respiratory conditions and, therefore, we propose this study
to investigate feasibility of expired CO2 to be used to detect SARS-CoV-2 infection, as it
causes respiratory tract-related diseases.
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7.4. Relationship of CO2 and SARS-CoV-2 Infection

The lung and airways are mainly affected by SARS-CoV-2 infection. An autopsy study
of COVID-19 patients reported different pathological lesions, such as alveolar exudative
inflammation and interstitial inflammation, alveolar epithelium proliferation, and hyaline
membrane formation, in the lungs of those patients [95]. COVID-19 patients may also
experience a lung injury that can lead to acute respiratory distress syndrome (ARDS) [96].
ARDS leads to respiratory failure resulting from the improper oxygenation and excretion
of CO2. Patients with ARDS are also at risk of developing arterial hypoxemia due to
ventilation-to-perfusion mismatch [97]. Besides this, minute ventilation and pulmonary
dead space both increase a s result of the impaired elimination of CO2 from the body, which
causes hypercapnia [98]. Hypercapnia is often caused by the failure to remove excess CO2,
and it has been marked as a predictor of poor prognosis for COVID-19 patients [99].

The measurement of CO2 level is essential in airway management and the early
detection of respiratory depression. The normal value of blood CO2 level ranges between
23 and 31 mmol/L [100,101]. A CO2 level ≤ 23 mmol/L has been considered to represent a
decrease in COVID-19 patients [99]. Hu, Di et al. [99] evaluated the changes in CO2 level
in 1776 COVID-19 patients with underlying diseases of different systems, including the
cardiovascular, pulmonary, endocrine, neurology and digestive systems. Based on the level
of CO2 in their blood, the patients were classified as either non-declined CO2 or declined
CO2 patients; 75.6% of these patients showed a CO2 level in the normal range, while 24.3%
had decreased CO2 levels. The majority of these patients had pulmonary diseases [99].
Reduced CO2 levels can result from shortness of breath, reductions in pulmonary perfusion,
increased alveolar dead space, and hyperventilation. In [99], decreased CO2 levels were
associated with a high mortality risk in COVID-19 patients, but were found to have no
significant impact on the severity of disease [99]. The level of CO2 in the blood can be
measured using a simple test of blood from an artery or vein [101]. However, this method
involves arterial or venous puncture [100], which creates discomfort for the patient.

Unlike the CO2 blood test, capnography is an invasive method of continuously moni-
toring the CO2 exhaled in respiratory gases [101], and it could be effective in monitoring
respiratory conditions in COVID-19 patients. In addition, quantitative analyses of capno-
gram shape (CO2 waveform), undertaken by extracting different features (such as slope
ratio, time spent at EtCO2, exhalation duration, Hjorth parameters (activity, mobility and
complexity), slopes in different regions of the CO2 curve, the slope ratio (SR), and the
area ratio), can reveal real-time changes in respiratory systems, and can also help classify
disease severity in COVID-19 patients. Based on this, we propose the use of CO2 signal
features as a screening tool for SARS-CoV-2 infection, as reported below.

7.5. On the Capnogram as Feature for COVID-19 Detection
7.5.1. Study Setting

The study was performed in the Emergency Department of the University Malaya
Medical Centre, Kuala Lumpur, Malaysia. The study was approved by the Medical Re-
search and Ethics Committee (MREC), Ministry of Health Malaysia (Ref: NMRR-21-763-
59692).

7.5.2. CO2 Data Acquisition

The CO2 data were recorded using a newly developed sidestream CO2 measurement
device based on human respiration, which can digitize the CO2 signal 100 times per second
with 0.01-s intervals [90]. The data were derived from patients with COVID-19 confirmed
using a PCR test. For comparison, CO2 data from control subjects were also recorded.
The breath cycle was considered adequate when the CO2 waveform’s morphology was
excellent and did not contain significant artifacts. “Artifact” refers to alternations in the
morphology of CO2 waveforms induced by sneezing, talking, or coughing during data
recording. Each patient breathed via the nasal cannula/sampling tube (Model 4000-7-25,
Salter Labs, length—210 cm, internal diameter—1.27 mm, and prong diameter—1 mm).
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Figure 10a,b show the expired CO2 waveforms from the Covid-19 and the control subjects
respectively. At least four valid breaths with regular morphology were used for further
analysis from the CO2 signal of each participant recorded over approximately two minutes.
Irregular and unstable CO2 waveforms were not considered for further investigation.
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Figure 10. (a) Expired CO2 waveform from a Covid-19 subject; (b) expired CO2 waveform from a control subject.

7.5.3. Signal Analysis

Firstly, we decided to segment each valid set of four breath cycles into sub-cycles by
employing the simple threshold method, as opposed to manual or visual inspection. Each
cycle of four breaths was segmented into six regions by creating thresholds, as presented
in Figure 11a,b. The threshold for each region was defined as follows:

(a) 1st sub-cycle: 6 mmHg (start) to 11 mmHg;
(b) 2nd sub-cycle: 12 mmHg to 16 mmHg;
(c) 3rd sub-cycle: 17 mmHg to EtCO2;
(d) 4th sub-cycle: 0.25 s from EtCO2 to EtCO2;
(e) 5th sub-cycle: EtCO2 to 10 mmHg;
(f) 6th sub-cycle: 10 mmHg to 4 mmHg (baseline).
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Figure 11. (a). Control: Left, illustration of a valid breath cycle from control patient with slope (Sj), associated to six different
regions mentioned above. Right, regions enclosed with colors represents the area (ARi) extracted from the CO2 signal
associated to six regions mentioned; (b). COVID-19: Left, illustration of a valid breath cycle from COVID-19 patient slope
(Sj) associated six regions mentioned above. Right, regions enclosed with colors represents the area (ARi) extracted from the
CO2 signal associated to six regions mentioned.

Further, two features, area (ARi) and slope (Sj), were computed from the segmented
part of each breath cycle using Equations (1) and (2). The slopes of each sub-cycle were
estimated using the general least squares linear fitting method. This computes the intercept
and slope of the CO2 waveform by reducing the residue according to (2), which may permit
the inclusion of the whole CO2 signal.

ARi =
dt
6

i

∑
j=0

(
Rj−1(t) + 4Rj(t) + Rj+1(t)

)
(1)

where dt and R(t) signify the sampling interval and CO2 signal, respectively.

Slope
(
Sj
)
=

1
C ∑C−1

j=0 bj
(

Mj − sj
)2 (2)

where C is the length of slope (S), which reflects the CO2 signal, bj and Mj are the jth
element of weight and best linear fit, respectively, and Sj is the jth element of S. All of the
features extracted and its significance are tabulated in Table 2 of the following section.
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Table 2. Features and P-values for different segmented sub-cycles extracted from the CO2 waveform.

S. No. Segmented Sub-Cycles Features p-Value

1 6–11 mmHg A1 0.05

S1 0.003

2 12–16 mmHg A2 0.01

S2 0.002

3 17 mmHg–EtCO2
A3 0.001

S3 0.08

4 0.25 s from EtCO2 to EtCO2
A4 0.07

S4 0.05

5 EtCO2–10 mmHg A5 0.07

S5 0.01

6 10 mmHg–4 mmHg A6 0.09

S6 0.08

7.5.4. Results

This preliminary study assessed the ability of CO2 waveform features to discriminate
COVID-19 patients from a control group. In this preliminary report, we studied 14 patients,
with 7 in each class. The significance of each feature extracted from the segmented regions
of COVID-19 and control patients was identified using a paired t-test [102]. Statistical
analysis was performed using SPSS (SPSS 23.0 for Windows) and the significance was set
at p < 0.05.

Initially, the normality of each feature was verified based on skewness and kurtosis
z-value, Shapiro–Wilk p-value, a Q–Q plot, and a histogram [103]. The results of the
normality test show that the data were approximately normally distributed. Therefore, a
parametric paired sample t-test was performed to verify the significance of the features,
based on the p-values of all the sub-cycles.

Our findings suggest that the area and slope of sub-cycle 2 (12–16 mmHg) of the upward
expiratory phase were slightly more significant (p < 0.05) than the alveolar and upper parts
of the upward expiratory phase. We also noticed that the slope (S1) of the 6–11 mmHg
region of the upward expiratory phase was significant (p = 0.003), while S5 was insignificant
(p = 0.01). From Table 1, it can be deduced that that the extracted features of S1, S2, S5 and
AR3 exhibit acceptable discriminatory capabilities for the classes studied. This makes these
features applicable for the screening and monitoring of respiratory illnesses, particularly
COVID-19.

These findings, however, have several limitations. First, the useful information re-
garding SARS-CoV-2 is limited. Second, the information provided here is based on current
data, but it may be altered as more data become available. We need to verify the applica-
bility of these features with more samples and for different respiratory conditions, such
as pneumonia, in order to confirm the deviation in these features for COVID-19. In the
future, we must record CO2 data for a greater number of COVID-19 subjects, along with
PEFR or spirometer data, to confirm the utility of capnographic indices and to determine
the severity level of COVID-19 infection. Furthermore, adding more COVID data from
all categories will facilitate a greater understanding of COVID-19. Hence, the viability of
using the assessed features should be verified in future work.

8. Conclusions

An effective early testing device for SARS-CoV-2 infection will be of great use in
reducing the spread of the virus. While vaccination programs are being used to reach herd
immunity, many countries are still struggling to keep COVID-19 under control. Vaccination



Life 2021, 11, 1101 22 of 26

will not entirely prevent people from getting COVID-19. A fast, flexible and non-invasive
testing device is urgently needed so that tests could be performed routinely and regularly.
In light of this, this paper reviews and discusses the current methods available for assessing
COVID-19. This review has several limitations. First, information regarding SARS-CoV-2
is limited. Second, the information provided here is based on the current evidence but may
be modified as more information becomes available. Different studied have reported on the
limitations of the currently available methods of diagnosing SARS-CoV-2 infection. Each
testing technique has been shown to be suitable in different cases. Therefore, extensive
research is still needed in order to develop alternative tools with enhanced accuracy in
detecting SARS-CoV-2 infection at the early stage. In this preliminary study, we propose
the use of CO2 patterns to screen for SARS-CoV-2 infection. This feature has been used to
differentiate between respiratory conditions such as asthma, COPD and edema patients.
It has proven the ability to classify asthmatic conditions based on capnogram features.
In future studies, the feasibility of the same features will be verified for COVID-19. On
the other hand, employing an amalgamation of capnogram features (e.g., the slope ratio,
area ratio and frequency components) in the detection algorithm will provide greater
understanding of COVID-19. Hence, the applicability of the studied features in a COVID-
19 detection algorithm focusing on CO2 patterns should be verified in future work.
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