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Abstract: We explored how changes of viral abundance and community composition among four
contrasting regions in the Southern Ocean relied on physicochemical and microbiological traits.
During January–February 2015, we visited areas north and south of the South Orkney Islands (NSO and
SSO) characterized by low temperature and salinity and high inorganic nutrient concentration, north
of South Georgia Island (NSG) and west of Anvers Island (WA), which have relatively higher
temperatures and lower inorganic nutrient concentrations. Surface viral abundance (VA) was
highest in NSG (21.50 ± 10.70 × 106 viruses mL−1) and lowest in SSO (2.96 ± 1.48 × 106 viruses
mL−1). VA was positively correlated with temperature, prokaryote abundance and prokaryotic
heterotrophic production, chlorophyll a, diatoms, haptophytes, fluorescent organic matter, and
isoprene concentration, and was negatively correlated with inorganic nutrients (NO3−, SiO4

2−,
PO4

3−), and dimethyl sulfide (DMS) concentrations. Viral communities determined by randomly
amplified polymorphic DNA–polymerase chain reaction (RAPD-PCR) were grouped according to
the sampling location, being more similar within them than among regions. The first two axes of
a canonical correspondence analysis, including physicochemical (temperature, salinity, inorganic
nutrients—NO3−, SiO4

2−, and dimethyl sulfoniopropionate -DMSP- and isoprene concentrations)
and microbiological (chlorophyll a, haptophytes and diatom, and prokaryote abundance and
prokaryotic heterotrophic production) factors accounted for 62.9% of the variance. The first axis,
temperature-related, accounted for 33.8%; the second one, salinity-related, accounted for 29.1%.
Thus, different environmental situations likely select different hosts for viruses, leading to distinct
viral communities.
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1. Introduction

Marine viruses, the smallest and most abundant biological entities in the sea, play key roles
in biogeochemical cycles, shape microbial communities, and are the largest reservoir of diversity
throughout the water column from the tropics to polar systems [1,2]. The Southern Ocean (SO), which
surrounds Antarctica, plays an essential role in regulating the world’s climate by contributing to the
global water circulation system. One of its main traits is the Antarctic Circumpolar Current (ACC),
which flows clockwise around Antarctica. The SO is characterized by low temperature and relatively
low salinity waters and comprises open sea regions in which high inorganic nutrient availability
coexists with low chlorophyll concentrations (HNLC regions), primarily due to a lack of iron supply for
phytoplankton to perform photosynthesis [3] and the limited light during most of year. The phenomenon
of lower algal biomass than that expected for the high concentrations of inorganic nutrients present
in the system is known as the Antarctic paradox [4]. However, during the Austral summer, notable
phytoplankton blooms occur throughout the area [5,6]. These are followed by the proliferation of
prokaryotes, heterotrophic protists and viruses, which can reach high levels of abundance, activity, and
diversity [7]. Processes like grazing by protists and/or zooplankton (through sloppy feeding), as well
as viral lysis of prokaryotes and phytoplankton, break microbial cells [8] and promote the leaching of
organic matter and micronutrients, such as iron-rich organic compounds, which become available for
the growth of prokaryotic and eukaryotic phytoplankton [9–12].

Furthermore, viruses, phytoplankton, and prokaryotes are presumably key agents involved in
making secondary metabolites, including volatiles that escape to the atmosphere and eventually
may evolve into marine secondary aerosols, crucial in the creation of cloud condensation nuclei
and, therefore, having consequent effects on climate [13,14]. A conspicuous secondary metabolite
is dimethyl sulfoniopropionate (DMSP), an algal osmolyte that is produced in high intracellular
concentrations by many phytoplankton taxa [15–17]. Two of the major aerosol-forming volatiles are
isoprene (2-methyl-1,3-butadiene), which is a by-product of algal photosynthesis [14,18], and dimethyl
sulfide (DMS), which derives from DMSP through the action of enzymatic lyase activity [15,16,19,20].
Generally, haptophytes, cryptophytic, and small dinoflagellates are the groups recognized to be greater
DMSP producers [16,21]. DMSP is released from the cell mainly through senescence or exudation in
late phases of blooms [22,23], but most importantly through grazing [20,24] and viral attack [25–27] and
is partly transformed into DMS. Isoprene is more related to photosynthetic activity as its concentration
peaks match those of phytoplankton activity [28–31], and chlorophyll-normalized isoprene production
rates are known for their different phytoplankton taxa (see Booge [32] for a review). However,
the relationship between phytoplankton, viruses, and isoprene remains poorly explored.

The dominating groups of phytoplankton during austral summer are diatoms, dinoflagellates,
haptophytes, cryptophytes, and prasinophytes [33–36]. Phytoplankton proliferations are followed
by specific prokaryotic taxa [37] that covary with changes in the phytoplankton community [38–40].
Both prokaryotes and phytoplankton are subjected to grazing by protists and lysis by viruses [41–44].
Environmental fluctuations could influence the abundance and activity of potential hosts, which
will imply changes in the abundance and composition of the viral community. This was observed
in several Antarctic lakes ([45] and refs therein), where changes from a single-stranded DNA to
a double-stranded DNA–virus-dominated assemblage appeared to respond to a seasonal shift in
host organisms [46]. At the same time, virus mortality processes are constrained by environmental
factors [47,48]. For example, it has been reported that virus-host interactions are affected by changes in
temperature and salinity [49,50], as well as by inorganic and organic nutrient concentrations, as viruses



Life 2020, 10, 107 3 of 20

have a high demand for nitrogen and phosphorous during replication [51]. However, for Antarctic
marine waters, there is still little information known on the sources of viral abundance and community
variation, except for the study carried out by Miranda [52] who described seasonal changes of ssRNA
viral communities in coastal Antarctic waters, in relation to variations of phytoplankton communities
in spring and summer.

In this study, our goal was to explore the relationships between physicochemical and biological
factors, and the abundance and composition of marine viral communities from the surface and the
DCM (deep chlorophyll maximum). We studied these relationships in four regions of the Southern
Ocean, characterized by distinct hydrographic conditions and dominated by different phytoplankton
groups. Specifically, we tested whether (i) viral abundance and community composition were different
among the four regions, and (ii) to which degree these dissimilarities were linked to the variability
of potential hosts or environmental factors. To achieve our objective, we assessed the abundance
and viral community composition in these four regions, and examined their potential relation to an
array of (1) physicochemical (temperature, salinity, inorganic nutrients, fluorescent dissolved organic
matter -FDOM- as an indicator of organic matter, and DMSP, DMS, and isoprene concentrations),
and (2) biological (prokaryote abundance and prokaryotic heterotrophic production, chlorophyll
a concentration, and phytoplankton taxonomic composition and biomass) variables. Additionally,
we discuss the potential role of the distinct viral communities detected at each site in the production of
aerosol precursor compounds.

2. Materials and Methods

2.1. Sampling Regions and Strategy

The PEGASO cruise was carried out between January and early February 2015 on board of the
R/V BIO-Hespérides in the Southern Ocean near the Antarctic Peninsula, and the Sub-Antarctic Ocean
(Figure 1A). Four zones were chosen for a several-day study following a Lagrangian approach: north
of the South Orkney Islands (NSO), southeast of the South Orkney Island (SSO), northwest of South
Georgia Island (NSG), and west of Anvers Island (WA). The position of the main hydrographic fronts
along the cruise was determined following the scheme of Orsi et al. (1995) [53] (see Nunes et al. [36] for
more details), with reference to the continuous records of temperature and salinity (thermosalinograph
SBE 21 SeaCAT). Current velocity and direction were measured with the Shipboard Acoustic Doppler
Current Profiler (SADCP) “Ocean Surveyor” at 75 khz, and the synoptic modeling data were obtained
from the Global Real-Time Forecast System (Global RTOFS) [54]. In addition, we used 8-day average
satellite images of chlorophyll-a concentration and sea surface temperature obtained from the Visible
and Infrared Scanner (VIRS), NASA. In three of the zones (NSO, NSG, and WA), the studied water
bodies were marked using WOCE (World Ocean Circulation Experiment) standard drifters provided
with the Iridium communication system; in SSO, icebergs were used as Lagrangian markers. Seawater
samples were collected at least once a day, at around 8:30 solar time (local time), with 12 L PVC Niskin
bottles attached to a rosette sampling system. Samples were collected at several depths, from the
surface (4 m) to 200 m; however, for the present study we used the 4 m and the DCM depth samples.
A total of 50 stations were sampled for our purposes (16 at NSO, 14 at SSO, 11 at NSG, and 9 at WA,
Figure 1A, and Tables S1 and S2).
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Figure 1. (A) Map of the location of the study regions: north of South Orkney, NSO; south of South 
Orkney, SSO; north of South Georgia, NSG; west of Anvers, WA. For each region, a zoomed window 
shows the position and number of the stations sampled. (B) Salinity–temperature diagram for the 
different sampled regions. 

2.2. Physicochemical Variables 

Profiles of salinity, temperature, and fluorescence were obtained with a CTD probe (SeaBird 911 
Plus) attached to the rosette. The CTD cast was deployed down to 200 m deep at all stations. Inorganic 
nutrients, fluorescent dissolved organic matter (FDOM), dimethyl sulfoniopropionate (DMSP), 
dimethyl sulfide (DMS), and isoprene concentrations were sampled at all stations, but only assessed 
at the surface (4 m). For inorganic nutrient (nitrate (NO3−), nitrite (NO2−), and ammonium (NH4+), 
silicate (SiO42−), and phosphate, P (PO43−)) concentrations, samples of 10 mL were collected from all 
stations and kept frozen (−20 °C) until analyzed in the laboratory of the Institut de Ciències del Mar, 
CSIC (ICM-CSIC) in an auto-analyzer (Bran + Luebbe AA3), following standard spectrophotometric 
methods [55]. For FDOM, we collected 250 mL sample in acid-cleaned glass bottles. The water sample 
was filtered through 0.2 µm acid-cleaned polycarbonate filters and analyzed onboard using a Perkin 
Elmer LS55 luminescence spectrometer. Single measurements for all surface samples were carried 
out in a 1 cm acid-cleaned quartz fluorescence cell at a constant room temperature and rinsed with a 
filtered water sample before analyses. We used the excitation/emission (Ex/Em) of 280/350 nm 
wavelengths to determine FDOM peak-T as an indicator of protein-like substances and of labile DOM 

Figure 1. (A) Map of the location of the study regions: north of South Orkney, NSO; south of South
Orkney, SSO; north of South Georgia, NSG; west of Anvers, WA. For each region, a zoomed window
shows the position and number of the stations sampled. (B) Salinity–temperature diagram for the
different sampled regions.

2.2. Physicochemical Variables

Profiles of salinity, temperature, and fluorescence were obtained with a CTD probe (SeaBird 911
Plus) attached to the rosette. The CTD cast was deployed down to 200 m deep at all stations. Inorganic
nutrients, fluorescent dissolved organic matter (FDOM), dimethyl sulfoniopropionate (DMSP), dimethyl
sulfide (DMS), and isoprene concentrations were sampled at all stations, but only assessed at the
surface (4 m). For inorganic nutrient (nitrate (NO3

−), nitrite (NO2
−), and ammonium (NH4

+),
silicate (SiO4

2−), and phosphate, P (PO4
3−)) concentrations, samples of 10 mL were collected from all

stations and kept frozen (−20 ◦C) until analyzed in the laboratory of the Institut de Ciències del Mar,
CSIC (ICM-CSIC) in an auto-analyzer (Bran + Luebbe AA3), following standard spectrophotometric
methods [55]. For FDOM, we collected 250 mL sample in acid-cleaned glass bottles. The water sample
was filtered through 0.2 µm acid-cleaned polycarbonate filters and analyzed onboard using a Perkin
Elmer LS55 luminescence spectrometer. Single measurements for all surface samples were carried
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out in a 1 cm acid-cleaned quartz fluorescence cell at a constant room temperature and rinsed with
a filtered water sample before analyses. We used the excitation/emission (Ex/Em) of 280/350 nm
wavelengths to determine FDOM peak-T as an indicator of protein-like substances and of labile
DOM [56,57]. Fluorescence measurements were expressed in Raman Units (R.U.), following Lawaetz
and Stedmon [58], by normalization to the integrated water Raman scattering band of Milli-Q water
freshly generated onboard every day. For DMSP analysis, two pellets of NaOH were added to 30 mL
surface samples in gas-tight glass vials for 24-h hydrolysis to volatile DMS. Once in the ICM-CSIC
lab, aliquots of 0.1 to 1 mL were injected into a purge flask with 2 mL of high purity water and
purged for 4–6 min with ultrapure Helium. Volatiles were trapped in a Teflon tube loop submerged in
liquid nitrogen, from where they were revolatilized by dipping the loop in hot water and injecting it
into a gas chromatography system (GC-14A, Shimadzu). Sulfur compounds were separated using a
packed CarbopackH 60/80 mesh column (Sigma-Aldrich, St. Louis, MO, USA) maintained at 170 ◦C
and detected with a flame photometric detector. Retention time for DMS was 0.9 min, and the
detection limit was 3 pmol. Analytical precision was better than 5%. Calibration was performed by
syringe injection into the purge vial of varying volumes of a gaseous mixture of He and DMS released
by a weight-calibrated permeation tube (Dynacal, Valco Instruments Co. Inc., Houston, TX, USA).
DMSP concentrations were calculated by subtraction of the endogenous DMS. Isoprene and DMS
were determined, along with other volatiles, on a gas chromatography-mass spectrometry system
(5975-T LTM GC/MS, Agilent Technologies, Santa Clara, CA, USA). Aliquots of 25 mL were drawn
from the glass bottle with a glass syringe with a Teflon tube and filtered through a 25 mm glass fiber
filter while being introduced into a purge and trap system (Stratum, Tekmar Teledyne, Mason, OH,
USA). Volatiles were stripped by bubbling with 40 mL min−1 of ultrapure He for 12 min, trapped
on solid adsorbent (VOCARB 3000) at room temperature, and thermally desorbed (250 ◦C) into the
GC. DMS and isoprene, monitored as m/z 62 and 67, respectively, in selected ion monitoring mode,
had retention times of 2.4 and 2.5 min in the LTM DB-VRX chromatographic column held at 35 ◦C. The
detection limit was 0.01 pmol (0.5 pmol L−1 in the samples), and the median analytical precision was
5%. DMS calibration was performed with DMS solutions generated by dissolution and hydrolysis
of solid DMSP (TCI, Tokyo, Japan) in high purity water. Calibration of isoprene was performed by
injections of a gaseous mixture of isoprene in N2 (provided by the University of California Irvine).

2.3. Microbiological Variables

The biomass of phytoplankton, abundances of viruses and prokaryotes, and prokaryotic
heterotrophic production, were assessed in all stations (surface and DCM), while viral communities’
compositions were estimated in 20 stations at the surface and 17 at the DCM (Table S2). Chlorophyll
a concentration (Chl-a) was determined on board in 250 mL sub-samples that were filtered through
glass-fiber filters (Whatman GFF). This filtration was followed by extraction with 90% acetone of at
least 24 h in the dark at 4 ◦C. The fluorescence of the extracts was measured with a calibrated
fluorometer (Turner Designs), and no phaeophytin corrections were applied [59]. Microalgae
were identified and quantified by pigment composition determined by HPLC [60]. CHEMTAX
(chemical taxonomy software, version 1.95) was used to derive the contribution of microalgal groups
for the total Chl-a biomass from pigment data [61]. Seven pigmentary classes were quantified:
chlorophytes, cryptophytes, diatoms, dinoflagellates, haptophytes, prasynophytes, and pelagophytes
(see Nunes et al. [36] for details). For our purposes, we only used the three most representative groups
(cryptophytes, haptophytes, and diatoms) that each contributed with more than 20% each to the
total chlorophyll a concentration in the visited areas. Sub-samples (2 mL) for viral abundance
(VA, dsDNA-double stranded DNA- viruses) were fixed with glutaraldehyde (0.5% final concentration),
flash-frozen in liquid nitrogen, and stored at−80 ◦C. Once in the ICM-CSIC laboratory, these sub-samples
were thawed and stained with SYBR Green I before counting [62]. Groups of viruses were determined
in bivariate scatter plots of green fluorescence of stained nucleic acids versus side scatter [42]. Viruses
were classified as low (V1), medium (V2), and high (V3) according to fluorescence signal. Presumably,
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the V1 and V2 fractions are mainly attributed to bacteriophages, although some eukaryotic algal viruses
may display low fluorescence, and V3 to phytoplankton viruses [42]. Prokaryote abundance (PA)
was determined in 2 mL sub-samples preserved with a 1% paraformaldehyde +0.05% glutaraldehyde
solution, flash-frozen in liquid N2, and stored at−80 ◦C until analysis. Once in the ICM-CSIC laboratory,
samples were stained with SYTO13 (SYTOTM13, ThermoFisher) and counted following the protocol of
Gasol and Del Giorgio [63]. Counts of viruses and prokaryotes were carried out in a flow cytometer
(FACSCalibur, Becton & Dickinson). Samples for prokaryotes were run with fluorescent yellow-green
latex beads (0.92-µm) as an internal standard, and for viral counts using a flow rate of ~60 µL min−1.
Prokaryotic heterotrophic production (PHP) was estimated by the radioactive 3H-leucine incorporation
technique [64], according to the modifications established for the use of microcentrifuge [65]. Leucine
incorporation was assessed on board in a scintillation counter (Beckman). Then,

PHP = Leu × CF (µgC L−1 d−1), (1)

where Leu is the 3H-leucine incorporation (pmol L−1 h−1), and CF is the conversion factor used:
1.5 kg C mol Leu−1 (cf. [66]).

2.4. Viral Community Composition: Random Amplified Polymorphic DNA (RAPD)

The randomly amplified polymorphic DNA-polymerase chain reaction (RAPD-PCR) is a practical
and efficient method for measuring dsDNA viral diversity, providing viral assemblage comparisons
through banding patterns. By gathering the required DNA concentration, we ensure that the analyses
will give us a representative image of the original richness of the area and that the evenness distribution
between samples will only respond to the initial diversity of the sample. Seawater samples (5L)
from representative selected stations of the different regions and from two depths—surface and DCM
(Table S2)—were sequentially filtered by 0.8 µm and 0.2 µm. Then, the 0.2 µm filtered samples
were concentrated up to 50 mL with tangential flow filtration by using a spiral-wound cartridge
(30-KDa VIVAFlow 200). Concentrates were stored at 4 ◦C until analysis. Once in the laboratory
of the ICM-CSIC, the 50 mL concentrates were prefiltered through a polycarbonate filter (0.2 µm
nucleopore) to eliminate any remaining prokaryote that would add prokaryotic DNA to the viral
banding pattern, and ultra-concentrate by centrifuging at 4000 rpm for 10 min in 30-kDa ultra centrifugal
filter tubes (Amicon, Sigma) [67]. Then, the viral ultra-concentrates were placed into agarose plug-like
molding pieces. Before amplification of the viral DNA, the absence of the 16S rRNA prokaryotic
gene was checked via PCR to ensure that each sample was prokaryotic-DNA free and, if it was not
the case, it was treated with DNAse and further rechecked. Then, proteinase K was added in order
to release the viral DNA from the protein capsid, and afterwards, treated with a cleaning protocol
(Pefabloc®, Sigma), to inactivate this proteinase, as it can act as a Taq–polymerase inhibitor. Randomly
amplified polymorphic DNA-polymerase chain reaction (RAPD–PCR) was designed (10′ at 94 ◦C,
30 times 3′ at 35 ◦C, 1′ at 72 ◦C and 30 s at 94 ◦C, 3′ at 35 ◦C, and 10′ at 72 ◦C) to amplify random
sequences of the viral DNA by using the CRA22 primer (5′-CCG CAG CCA A- 3′). This primer was
chosen due to its better results during the optimization of the protocol [68]. Consecutive RAPD-PCR
reactions were done until 450 ng of DNA were obtained from each sample. DNA quantification was
performed using a QuBit fluorometer. After that, the viral community composition was determined by
using a gel electrophoresis technique. Briefly, the gel characteristics and running settings were 1.8%
AG-2 at 70 Volts during 120 min and DNA was stained with 7 µL of SYBR Safe (10000X concentrate in
DMSO). Finally, a UV image was taken from every gel with the gel imaging system ChemiDocTM
(Bio-Rad) with a time exposure of around 2.1 s. Gel band pattern analysis was performed using
the Quantity One 4.5.2 software (Bio-Rad). To make the band-distribution comparable between two
different gels, before to final results we conducted banding pattern calibrations. Moreover, in the final
gels, we ran replicates of some samples between gels in order to be able to couple and adjust them
according to the duplicates and the ladder. Comparison of bands (operational taxonomic units, OTU)
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between lanes was performed by hand. Information was converted into a binary matrix representing
the presence-absence of viral OTU; only communities present at more than two stations were considered
in the analyses. The banding pattern analysis, i.e., the diversity analysis, was conducted with all
samples, surface, and DCM, pooled together, so that we could identify which viral populations were
present in both the surface and DCM.

2.5. Data Analyses

The map of the study regions, the temperature-salinity (T-S) diagram, and the temperature and
salinity profiles were plotted using the software package Ocean Data View (ODV) [69]. Normality
distribution of environmental and biological data (except for algal biomass) was checked with the
Shapiro–Wilk test and, when necessary, continuous variables were logarithmically transformed prior
to analyses to fulfill the requirements of statistical tests. The mean value of all variables was calculated
considering all measurements performed at surface (n = 47–50) and at the DCM (n = 43–44). Spearman
correlation analyses were used to determine the relationship between viral (total and V1-V3) abundances
and biological and environmental variables. The Bonferroni–Holm correction was applied to each set
of correlation coefficients. Multiple regression analysis was used to assess the predictor variables for
the isoprene metabolite concentration. This was performed with the lm function from the R program.
The best models are considered to be those that maximize the R2 and minimize the standard error
of the estimate, with the minimum number of predictive variables. The distribution of abundances
and concentrations of the biological variables and the analyses of the band pattern obtained with
gel electrophoresis (see Section 2.4 for a detailed description of the technique) were plotted using
the KaleidaGraph program. Distribution of viral community composition (i.e., similarity between
band pattern among samples and sites) were plotted with non-metric multidimensional scaling plots
(NMDS) using the metaMDS function in the R program. The dissimilarity matrix calculated using
the Jaccard distance index and the stress factor is the statistical scale that indicates how good the 2-D
representation of the original data is. Finally, the relationship between viral community composition
and selected environmental variables was explored using constrained (or canonical) correspondence
analyses (CCA), a multivariate ordination technique [70] in which the inertia can be interpreted as the
explained variance. The group of environmental variables included in the CCA was chosen according
to a step-wise selection, in a backward direction, with an AIC of 96.641. The CCA shows how the
selected variables (represented as arrows) contribute to the structure of marine viral communities
(represented as points colored according to the sampling zone). The lengths of the arrows are equivalent
to their influence on the represented variables and exert in the viral communities (the longer the arrow,
the stronger the influence). All statistical tests were performed using the vegan package from R [71].

3. Results

3.1. Characterization of the Study Area: Environmental and Biological Variables

3.1.1. Temperature and Salinity

The T–S diagram of the sampled stations revealed hydrographic differences among the visited
regions (Figure 1B); this is also reflected in the vertical temperature and salinity profiles shown
in Figure S1A,B. The main hydrographic fronts during the PEGASO cruise are described in
Nunes et al. [36], following Orsi et al. [53]. The NSO and NSG regions were located within meanders
of the southern boundary of the eastwards Antarctic circumpolar current (SBACC) and the polar front
(PF). SSO was nearly 60 nautical miles north of the Weddell front (WF) and next to the marginal ice
zone of the Weddell Sea in winter. WA was also placed on the southern boundary of the Antarctic
circumpolar current (SBACC). NSG had the warmest waters, reaching 4.8 ◦C at the surface, and
presented rather homogeneous salinity profiles (around 33.80, Figure S1A). NSO and SSO, in spite of
their proximity, had different mean temperatures (seasonally warmed) and salinity (ice-melt water
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influenced), meaning SSO was significantly colder and less saline than NSO (Table 1, Figure S1).
Finally, WA had also low salinity, probably was also affected by ice-melt water, and intermediate water
temperatures (Figure S1B). The thermocline was appreciable at around 30 m (NSO), 16 m (SSO), 50 m
(NSG), and 23 m (WA) (Figure S1).

Table 1. Mean ± standard deviation (SD) of environmental and biological variables measured at all
stations. Mean of variables only available from surface (n = 47−50 stations): nutrients: nitrate (NO3

−),
nitrite (NO2

−), and ammonia (NH4
+), silicate (SiO4

2−), and phosphate (PO4
3-), fluorescent dissolved

organic matter (FDOM-peakT), and secondary metabolites: dimethyl sulfoniopropionate (DMSP),
dimethyl sulfide (DMS) and Isoprene at the different sampling areas. Concentrations are expressed in:
* µM, ** nM, and *** pM. Mean of variables available from both surface (n = 47–50) and DCM (n = 43–44):
temperature, salinity, chlorophyll a concentration (Chl-a, µg L−1), biomasses of cryptophytes, diatoms,
and haptophytes (ng Chl-a L−1), prokaryote abundance (PA, 105 cells mL−1), prokaryotic heterotrophic
production (PHP, µg C L−1 d−1), viral abundances (106 virus mL−1): total (VA), low and medium
(V1, V2) and high fluorescence (V3). See explanation of Figure 1 for region acronyms.

AREAS NSO SSO NSG WA

VARIABLES Depths Mean SD Mean SD Mean SD Mean SD

NO3− * Surface 27.76 1.89 28.44 3.42 18.35 5.47 18.63 0.89
NO2− * Surface 0.23 0.06 0.17 0.04 0.27 0.05 0.19 0.03
NH4

+ * Surface 1.11 3.51 1.03 1.03 0.78 2.02 2.48 1.87
SiO4

2− Surface 47.21 4.08 45.72 11.96 2.02 20.73 49.75 3.66
PO4

3− * Surface 2.04 0.21 2.15 0.28 1.42 0.43 1.81 0.16
FDOM (R.U.) Surface 18.5 4.9 7.9 1.3 15.4 3.1 40.8 6.3

DMSP ** Surface 249.1 101.2 103.5 57.2 84.4 28.0 115.7 14.61
DMS ** Surface 7.0 2.6 7.8 1.6 5.8 1.0 2.1 0.6

Isoprene *** Surface 9.6 1.7 4.7 1.6 76.5 8.3 12.0 0.6

Temperature Surface 0.5 0.3 −0.8 0.1 4.8 0.5 1.4 0.1
DCM 0.0 0.3 −1.5 0.4 4.3 0.4 1.7 0.6

Salinity Surface 33.88 0.073 33.14 0.064 33.74 0.007 33.41 0.002
DCM 34.02 0.068 34.20 0.148 33.77 0.004 33.42 0.053

Chl-a Surface 1.82 0.33 0.31 0.05 5.05 1.88 4.45 0.46
DCM 1.61 0.38 0.37 0.18 7.51 3.27 3.53 0.63

Cryptophytes Surface 288.1 110.5 11.1 4.16 28.27 14.21 898.7 268.2
DCM 117.8 112.4 9.43 4.80 34.47 19.67 676.5 203.0

Diatoms Surface 116.9 58.17 10.9 4.94 1983.9 1451 109.9 31.81
DCM 272.2 102.2 56.82 50.46 2402 1321.2 139.4 33.33

Haptophytes Surface 274.2 80.75 80.76 18.15 373.5 127.4 629.5 199.5
DCM 225.7 50.45 85.85 41.23 369.5 150.8 583.1 151.1

PA Surface 2.4 0.5 2.9 0.6 5.4 0.9 3.4 0.9
DCM 2.6 0.5 3.6 1.4 5.2 1.0 3.3 0.5

PHP Surface 0.46 0.17 0.31 0.18 1.04 0.44 0.40 0.13
DCM 0.30 0.10 0.27 0.13 1.24 0.41 0.29 0.05

VA Surface 4.5 2.0 3.0 1.5 21.5 10.7 13.5 4.1
DCM 3.1 1.7 4.0 1.5 17.9 6.6 12.0 7.2

V1 Surface 2.4 1.1 1.6 0.8 8.7 4.1 6.8 2.1
DCM 1.6 0.8 1.7 0.3 6.9 2.7 6.0 3.9

V2 Surface 1.8 0.8 1.2 0.7 10.8 5.9 6.1 2.0
DCM 1.3 0.7 1.6 0.3 8.3 3.9 5.3 3.0

V3 Surface 0.3 0.1 0.2 0.1 2.2 1.2 0.7 0.3
DCM 0.2 0.2 0.3 0.1 1.7 0.8 0.7 0.3

3.1.2. Inorganic Nutrients, FDOM and Secondary Compounds

Mean concentrations of inorganic nutrients (NO3
−, NO2

−, NH4
+, SiO4

2−, PO4
3−) and fluorescent

dissolved organic matter (FDOM–peakT), as well as secondary metabolites (DMSP, DMS, and isoprene)
measured at the surface, varied among sampling regions (Table 1). Nitrite and ammonia had almost
negligible concentrations, compared to those of nitrate. Nitrate and phosphate concentration averages
reached higher values in SSO and NSO (27.76–28.44 µM NO3

− and 2.04–2.15 µM PO4
3−, respectively)

than in NSG and WA (18.35–18.63 µM NO3−, and 1.42–1.81 µM PO4
3−, respectively). Then, silicate
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showed extremely low average values at NSG (mean: 2.02 ± 20.73 µM SiO4
2−, Table 1) and very high

between 45.72 and 49.75 µM at the other regions. Although we did not measure micronutrients, there is
evidence from prior studies that NSG is placed in an iron-sufficient zone [36,72,73]. The FDOM-peakT
was remarkably higher at WA (40.8 ± 6.3 R.U, Table 1) than in the other areas. DMSP concentration was
two-fold higher at NSO than in the rest of the regions (249.1 ± 101.2 nM, Table 1) and DMS was highest
at SSO (7.8 ± 1.6 nM, Table 1). Isoprene reached the highest concentration at NSG (76.5 ± 8.3 nM) and
the lowest at SSO (4.7 ± 1.6 nM, Table 1).

3.1.3. Chlorophyll a, Phytoplankton Taxa and Prokaryote Concentrations

Chl-a concentration was two-fold higher in NSG and WA than in NSO and was at nearly the limit
of detection at SSO, both at the surface and at the DCM (Figure 2A, Table 1). The contribution of the
dominant phytoplankton groups (cryptophytes, diatoms, and haptophytes) varied also among the
sampling regions (Figure 2B,C). NSG was dominated by diatom biomass (83% of the total Chl-a-derived
biomass of the three algal groups at the surface, and 85.6% at the DCM) (Table 1, Figure 2B,C). WA
was dominated by cryptophytes (around 50%), followed by haptophytes (around 40%), at both depth
layers (Table 1, Figure 2B,C). In NSO, the surface’s phytoplankton community showed co-dominance
between cryptophytes (42.4%) and haptophytes (40.4%), with a lower presence of diatoms (17.2%),
while at the DCM, diatoms and haptophytes co-dominated (44.1 and 36.7%, respectively). In the SSO,
haptophytes were always dominant, reaching 78.7% of the total algal biomass (of the three groups)
at the surface and 56.4% at the DCM (Table 1, Figure 2B,C). Prokaryote abundance (PA) showed
the highest mean values at NSG, both at the surface and at the DCM (5.4 ± 0.9 × 105 prokaryote
mL−1, and 5.2 ± 1.0 × 105 prokaryote mL−1, respectively (Table 1, Figure 2D)). PA differences between
surface and DCM were only noticeable at SSO, where the DCM was enriched by a factor of 1.2
(Table 1, Figure 2D). Finally, PHP was highest in NSG and lowest in SSO (1.04 ± 0.44 µg C L−1 d−1 and
0.31 ± 0.18 µg C L−1 d−1, respectively (Table 1)).
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Figure 2. Distribution of the microbiological variables at the surface and DCM in the four visited
areas. (A) Chlorophyll a concentration. (B,C) Percentage of haptophyte, cryptophyte, and diatom
biomass, with respect to the sum of the three phytoplankton groups biomass, at the surface and at
DCM, respectively. (D) Prokaryote abundance. See explanation in Figure 1 for acronyms.
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3.2. Viral Abundance

Viral abundance (VA), like almost all the other variables, achieved the highest mean values at
NSG (21.5 ± 10.7 × 106 viruses mL−1 at the surface and 17.9 ± 6.6 × 106 viruses mL−1 at the DCM
(Figure 3A)) and the lowest at the surface of SSO (3.0 ± 1.5 × 106 viruses mL−1). Mean VA generally
tended to be higher at the surface than at the DCM (Table 1), except for SSO (Table 1, Figure 3A). The
contributions of low and medium fluorescence viral abundances (V1 and V2) to total viral abundance
(VA) were similar (Figure 3B,C,E), except for NSG, where V2 was slightly higher than V1 (Table 1,
Figure 3B,E). The V3 fraction (viruses with high fluorescence content, Figure 3 D) was less abundant at
all regions, reaching on average ~7%, 6%, 10%, and 6% of the total VA at NSO, SSO, NSG, and WA,
respectively (Figure 3E). Viral abundance was positively correlated with temperature, PA, Chl-a, PHP,
diatom and haptophyte biomass, nitrite, FDOM, and isoprene concentrations (Table 2). Conversely, VA
covaried negatively with nitrate, silicate, phosphate, and DMS concentrations (Table 2).
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Figure 3. Distribution of viral abundance in the four visited areas, at the surface and DCM. (A) Total
viral abundance. (B−-D) Abundance of different viral groups (V1, V2, and V3). (E) Percentage of viral
groups in relation to total viral abundance. Presumably, fractions of V1 and V2 are mainly attributed to
bacteriophages and V3 to viruses of phytoplankton. See explanation in Figure 1 for acronyms.
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Table 2. Spearman correlation coefficients between total viral abundance (VA) and different viral abundance fractions (V1, V2, V3) with physicochemical and biological
variables measured at surface (n = 47–50). Significant values after the Bonferroni–Holm correction (for a significance level of 0.05) are highlighted in bold. See Table 1
for units. Temp: temperature; Chl-a: chlorophyll a; PA: prokaryote abundance; PHP: prokaryotic heterotrophic production; Crypto: cryptophytes; Hapto: haptophytes;
NO3−, NO2−, NH4

+, SiO4
2−, PO4, FDOM: fluorescent dissolved organic matter -peakT; DMSP: dimethyl sulfoniopropionate, DMS: dimethyl sulfide.

Temp Salinity PA Chl-a PHP Crypto. Diatoms Hapto. NO3− NO2− NH4
+ SiO42− PO43− FDOM DMSP DMS Isoprene

VA 0.78 0.14 0.50 0.78 0.53 0.43 0.78 0.65 −0.82 0.38 −0.05 −0.50 −0.70 0.47 −0.18 −0.53 0.78
V1 0.74 0.14 0.47 0.69 0.41 0.38 0.70 0.52 −0.67 0.24 −0.08 −0.51 −0.54 0.39 −0.19 −0.50 0.64
V2 0.78 0.14 0.54 0.78 0.50 0.40 0.77 0.64 −0.80 0.35 −0.07 −0.49 −0.70 0.44 −0.21 −0.51 0.74
V3 0.88 0.31 0.58 0.83 0.54 0.41 0.85 0.70 −0.82 0.50 −0.11 −0.50 −0.69 0.43 −0.17 −0.52 0.78
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3.3. Viral Community Composition

We assessed viral diversity from 20 stations at the surface (8 in NSO, 6 in SSO, 3 in NSG, and 3 in
WA) and from 17 at the DCM (7 in NSO, 5 in SSO, 2 in NSG, and 3 in WA). Considering all stations,
we observed 22 distinct RAPD bands ranging in size from about 250 bp to 2000 bp (Figures S2 and
S3). The banding pattern from each sample displayed in the agarose gels (Figure S2), corresponds to
the most abundant populations of the viral community present at each station and gives an idea of
the viral community composition. Thus, if we compare the band pattern of each lane (i.e., station),
we can assess the viral diversity among and within regions and depths layers. NSG accounted for
76.7% of the detected bands, followed by NSO with 66.7%, WA with 60%, and SSO with 53.3%. From
those, NSO was the region with a higher number of bands relative to the sampling effort (i.e., sampled
stations per region). On average, half of the bands observed at the surface were also detected at the
DCM of the same station (58% at NSO, 37% at SSO, 58% at NSG, and 61% at WA (Figure S3)). Several
bands were only present at the NSO region (e.g., bands: 3, 9, 11, 14 (Figure S3)) suggesting some
viral population endemism, while other bands (e.g., bands 15, 16, and 19 (Figure S3)) were found in
different regions, pointing towards more cosmopolitan viral members. We grouped viral communities
using a non-metric multidimensional scaling analysis (NMDS) (Figure 4), based on the RAPD’s band
pattern, with a satisfactory stress factor of 0.171 (Figure 4 and Figure S4). Some viral communities
were more similar within the same region than among regions, indicating that viruses differentiate
regionally (Figure 4 and Figure S4). This can be especially appreciated with the viruses in the NSO,
which form a compact group at both depth layers, revealing a highly homogeneous viral community,
also appreciable for viruses from the surface at SSO (Figure 4A). In contrast, the viral communities of
the WA and NSG regions were more widely dispersed, both at the surface and at the DCM (Figure 4A,B
and Figure S4).
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We used constrained correspondence analyses (CCA) (Figure 5) to explore the relationships 
between viral community structures and the resultant best explanatory variables according to step-
wise selection. These variables were: temperature, salinity, nutrient concentrations (NO3-, SiO42−), PA, 
PHP, Chl-a, and the biomass of diatoms and haptophytes. In addition, secondary metabolites (DMSP 

Figure 4. Non-metric multidimensional scaling (NMDS) plots of the marine viral community
composition. (A) Surface viral diversity. (B) DCM viral diversity. Plotted data arise from a matrix
of similarity drawn by the banding pattern of randomly amplified polymorphic DNA (RAPD)-PCR
products obtained for the pooled set of samples of the surface and DCM (Figure S2). Full dots represent
surface communities and empty circles represent DCM samples. Numbers correspond to the station
sampled. See explanation in Figure 1 for acronyms.

We used constrained correspondence analyses (CCA) (Figure 5) to explore the relationships
between viral community structures and the resultant best explanatory variables according to step-wise
selection. These variables were: temperature, salinity, nutrient concentrations (NO3−, SiO4

2−), PA,
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PHP, Chl-a, and the biomass of diatoms and haptophytes. In addition, secondary metabolites (DMSP
and isoprene) were considered, in order to address the role of viral communities on the gas and particle
exchange for aerosolization. The first two ordination axes of the CCA accounted for 62.9% of the
variance in the viral community composition with a total constrained inertia of 77.8% (Figure 5). The
first ordination axis of the CCA accounting for 33.8% of the variance was mainly related to temperature
on the positive side and with nutrients on the negative one. Therefore, the stations of the more
temperate regions (NSG and WA, Figure S1) appeared on the right side of the graph, while those of the
colder regions were found on the left side (NSO and SSO (Figure S1)). The second axis accounted for a
slightly smaller proportion of the variance (29.1%) and was positively related to salinity and algae
biomass (most importantly in the WA region (Figure 5)); thus, most samples of SSO, the less saline
region, occupied the negative side of this axis.
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Surface marine viral communities from 20 sites, related to environmental (temperature, salinity, NO3−,
and SiO4

2−) and biological (Chl-a, PA, PHP, diatoms, and haptophytes) variables, and to secondary
metabolites (DMSP and isoprene concentrations). Variables are shown as arrows, and viral community
data as dots. Longer arrows denote a higher significant relationship. Same dots coloring as used in
Figure 4A. Blue numbers correspond to the stations sampled. See explanation in Figure 1 for acronyms.

4. Discussion

Viral communities showed some segregation differences among the sampled regions, both at
surface waters and at the DCM (Figure 4). However, while some viral populations were geographically
constrained, others were widely distributed, as shown by the banding pattern of the RAPD (Figures S2
and S3). Indeed, several studies have reported a high global viral diversity and almost as high local
diversity [74–79], as well as connectivity along the water column [80–83]. This might be based, on one



Life 2020, 10, 107 14 of 20

hand, in the migration capability (i.e., transport by oceanic currents and sinking attached to particles)
of marine viruses [84], and on the other hand, on environment selective pressure [15,17].

Authors such as Breitbart and Rohwer [75] suggested the seed-bank theory, where high local viral
diversity relies on host availability and diversity. There, viruses would move from the seed-bank state
to the active phase whenever their host would be “blooming”. Once the predominant host cells decay,
the empty niche would be occupied by another hosting species, and the consequent displacement
of viruses from the seed-bank state would occur [75]. These ecological dynamics may apply in the
present study, explaining the obtained grouping of Antarctic viral community structures according to
the sampled regions (in particular in the NSO and SSO regions (Figure 4)). In addition, Brum et al. [77]
proposed temperature as a relevant environmental factor that influences changes in viral activity and
diversity. Thus, during the spring–summer transition, they detected a reversion from lysogenic to lytic
viruses that increased the viral and microbial diversity. All these processes will favor the geographical
differentiation of viral assemblages.

In our study, temperature and salinity substantially varied among regions (Figure 1B and Figure S1),
and the different degrees of stratification of the water column (with mixed layers from 16 m in SSO to
50 m in NSG) might have affected the light penetration and nutrient supply from deeper layers to the
upper mixed layer, as is reported in Nunes et al. [36], for the studied area. In addition, it is expected
that the development of different phytoplankton species [35] and prokaryotes [82,83] may influence
the environmental conditions, modifying nutrient concentration and contributing to the production of
secondary metabolites, such as DMSP, DMS, and isoprene [14–18,85,86]. At the same time, viruses
could participate in these biogeochemical processes infecting phytoplankton and prokaryotes and
releasing to the environment dissolved organic matter (DOM) from the cell-enclosed material [87,88].
It makes sense, then, that our results showed a strong significant correlation between fluorescent
dissolved organic matter (FDOM, peak T, considered an indicator of proteinaceous compounds [89],
and labile DOM [57]), and all viral abundance fractions (Table 2). Then, viruses would intervene in
regulating microbial biomass and diversity, which in turn would be reflected in the viral community
composition [25–27,84,88]. Viral abundance related positively with that of their potential hosts
(prokaryotes and phytoplankton), but negatively with some inorganic nutrient concentrations (NO3,
SiO4

2− and PO4
3− (Table 2)). This could be a consequence of inorganic nutrient uptake by algae at rates

which vary among different phytoplankton taxa and depend on micronutrient availability [36]. Thus, in
the iron-rich waters of NSG [36], where diatoms dominated the phytoplankton biomass (Figure 3), the
inorganic nutrient concentrations, especially silicate, registered the lowest values (Table 1). In contrast,
in the other regions (NSO, SSO, and WA), where iron was limited [3], inorganic nutrient concentrations
were higher (Table 1).

The potential role of viruses in producing secondary metabolites as DMSP (DMS precursor) by
lysing phytoplankton host cells, was experimentally reported by Hill et al. [26]. Then, we expected
that viral abundance and DMSP concentration would correlate; however, that was not reflected in
our results (Table 2). Bratbak et al. [25] also observed no correlation between viral abundance and
DMSP concentration and posed that bacteria degradation represents the major sink for DMSP and
DMS, which is also supported by Kiene and Service [90]. Furthermore, other DMSP-freeing pathways
(i.e., grazing, senescence, apoptosis, etc.) may also play a role in increasing its release [20,22,23,91,92].
In the case of DMS, its concentration was negatively correlated with viruses. DMS has been shown to
be strongly dependent on microbial community composition (e.g., presence of DMS consumers [15]
or demethylating bacteria [17]) and to environmental conditions (e.g., wind-related ventilation and
photolysis), which modify the structure of the microbial food web [15]. This may be the case of the area
south of South Orkney (SSO) area, where the highest irradiance was registered, and thus, DMSP to
DMS transformation could be enhanced. The formation of isoprene is mainly attributed to the activity
and physiology of phytoplankton [28–31], while the effect of viral lysis is still unclear [14,18]. In our
study, although isoprene concentration and viral abundance strongly covaried (Table 2), we believe that
it is not a cause–effect. We are aware that diatom viruses are mainly ssRNA and ssDNA [93], and viral
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abundances reported here, by FCM, refer to dsDNA. Then, through multiple regression analyses,
we obtained that the model that better predicted the isoprene concentration variability highlighted
diatom biomass as the only explanatory factor and excluded the dsDNA viral abundance (log isoprene
conc. = −3.53 (±1.43) + 0.37(±0.07) × log diatom conc.; n = 18, R2 = 0.78, p < 0.0001). Hence, further
investigation is needed in studying the interaction between diatoms and their specific viruses in the
formation of isoprene. Indeed, some studies with other photosynthetic microorganisms reported
an increase of isoprene production after viral infection, as is the case of Prochlorococcus infected by
phages [14,18].

In summary, the observed regional segregation of the different viral communities (Figures 4
and 5) in this study, could be a result—to a greater or lesser extent—of the presence of different
potential prokaryote and phytoplankton hosts, as observed by several authors [35,50,51,77,82,83],
and to the variability of some physicochemical parameters [15,17]. Viral communities at the NSO and
SSO regions were associated with the coldest waters and with high inorganic nutrient concentrations
(Table 1, Figure 5). In particular, the group of viruses dominating the NSO region also coexisted with
high DMSP concentration (Table 1) and a high proportion of haptophyte and cryptophyte biomass
(Figure 2B,C), which according to Stefels et al. [16], are the main phytoplankton taxa responsible
of the DMSP production. However, this was not reflected in the increase of DMS, perhaps due
to low bacterial lyase activity, important in the DMSP degradation [91,92,94], or to environmental
factors (i.e., temperature and sunlight etc. [15]). In the NSG and WA regions, although the number
of samples was low, viral communities were more heterogeneous. Indeed, high temperatures and
the availability of different dominant potential prokaryotic and phytoplanktonic hosts may influence
the viral community composition. The high prokaryotic heterotrophic production and prokaryote
abundance recorded at the NSG could be the results of a high growth rate of different successful
prokaryote communities, derived from the carbon released by the various diatom taxa blooming
during the sampling time [36]. High isoprene concentrations can be also associated with this bloom of
diatoms, according to several studies [29,95,96]. Finally, regarding the variability of viral assemblages
in the WA, relatively high temperatures could be associated with an advanced state of phytoplankton
succession [36], which may have been driven by the high abundance and diversity of potential hosts
such as haptophytes, cryptophytes, and prokaryotes [75].

5. Conclusions

In the present study, we found that the Antarctic and sub-Antarctic marine viral abundances
are mainly associated with temperature and the abundance and biomass of their potential hosts.
Furthermore, the viral community composition showed higher similarities within areas than among
regions, particularly in surface waters. Presumably, the combination of physicochemical and biological
factors led to distinct scenarios, which could drive variability in marine viral communities and
simultaneously influence the various components of the microbial food web. However, these
relationships must be interpreted in a dynamic way, because while viruses are causing changes in
prokaryote and phytoplankton communities, at the same time it is the viruses that are changing in
response to shifts in prokaryotic and phytoplankton community composition. While it is known
that different phytoplankton taxa are associated with distinct prokaryote communities, further
characterization of prokaryotic community composition would provide more insight on this potential
diversification driver. Concerning secondary metabolites, we did not find a clear relationship between
viruses and DMSP, DMS, and isoprene; thus, further experimental and field studies are needed in
order to disentangle the complex relationships occurring in the marine food web that are involved in
their release.
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Physicochemical variables measured during the PEGASO cruise, Table S2: Biological variables measured during
the PEGASO cruise.
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